Towards Adaptive Transaction Processing in Untrusted Environments

Mohammad Javad Amiri
Divy Agrawal, Amr El Abbadi, Boon Thau Loo, Dahlia Malkhi, Ryan Marcus, Mo Sadoghi, Chenyuan Wu, Haoyun Qin, Bhavana Mehta
MAKE STONY BROOK DB GREAT AGAIN

Phil Lewis
Art Bernstein

• Databases and Transaction Processing: An Application-Oriented Approach
• Concurrency in programming and database systems

Avi Silberschatz Fred Schneider Jeffrey Ullman Divy Agrawal
State Machine Replication: a replicated service whose state is mirrored across different deterministic replicas

• Assign order to each client request in the global service history and execute it in that order
Crash fault-tolerant protocol: (Multi-)Paxos

- Requires $2f+1$ nodes to be able to tolerate f failures
- How to deal with Byzantine failure?
 - nodes exhibit arbitrary, potentially malicious, behavior
 - Potential causes: software bugs, hardware failures, malicious attacks
Byzantine fault-tolerant protocol: PBFT

- Nodes can fail arbitrarily, including deviating from the protocol
- Require $3f+1$ nodes to tolerate f concurrent failures
- E.g., PBFT
BFT protocols landscape

What protocol best fits our needs?
BFT protocols design space and design dimensions

- Design space
 - A set of dimensions to analyze BFT protocols

- Design choices
 - Trade-offs between dimensions
 - A set of one-to-one functions, each maps protocols in its domain to protocols in its range

- Focus on partially synchronous BFT protocols

Design space of BFT protocols

Protocol structure
- P1. Commitment strategy
- P2. Number of commitment phases
- P3. View-change
- P4. Checkpointing
- P5. Recovery
- P6. Types of clients

Quality of Service
- Q1. Order-fairness
- Q2. Load balancing

Environmental Settings
- E1. Number of replicas
- E2. Communication topology
- E3. Authentication
- E4. Responsiveness, synchronization, and timers

Performance Optimization
- O1. Out-of-order processing
- O2. Request pipelining
- O3. Parallel ordering
- O4. Parallel execution
- O5. Read-only requests processing
- O6. Separating ordering and execution
- O7. Trusted hardware
- O8. Request/reply dissemination
Design choices

1. Linearization
2. Phase reduction through redundancy
3. Leader rotation
4. Non-responsive leader rotation
5. Optimistic replica reduction
6. Optimistic phase reduction
7. Speculative phase reduction
8. Speculative execution
9. Optimistic conflict-free
10. Resilience
11. Authentication
12. Robust
13. Fair
14. Tree-based LoadBalancer
Derivation of protocols from PBFT using design choices

1. Linearization
2. Phase reduction through redundancy
3. Leader rotation
4. Non-responsive leader rotation
5. Optimistic replica reduction
6. Optimistic phase reduction
7. Speculative phase reduction
8. Speculative execution
9. Optimistic conflict-free
10. Resilience
11. Authentication
12. Robust
13. Fair
14. Tree-based LoadBalancer
Bedrock platform

- Rapid prototyping of BFT protocols
- Using a domain-specific language

- Fair and Efficient experimental evaluation of BFT protocols

No faulty replica

Single faulty backup

Geo-distributed setup
Beyond consensus protocols

• Transaction processing: ordering and execution
 • Concurrency control mechanism
 • Transaction reordering algorithms
 • Block size adaptation

• Hardware resource management
 • Elasticity of disaggregated data center (DDC) infrastructure
 • Switching between DDC vs. non-DDC traditional setup
 • How to deal with the high overhead of switching?

Wu, C., Mehta, B., Amiri, M. J., Marcus, R., & Loo, B. T. AdaChain: A Learned Adaptive Blockchain, VLDB’23

Full Stack Adaptivity

- Robust online data collection
- No single trusted entity
- Each node has a learning agent
- Nodes agree on decisions
- Featurizing faults and protocols
- Switch at runtime
 - Protocol, paradigm or resources
- Cross-layer adaptivity
 - Identify performance bottlenecks
 - Protocol/paradigm Compatibility

Wu, C., Amiri, M. J., Qin, H., Mehta, B., Marcus, R., & Loo, B. T., Towards Full Stack Adaptivity in Permissioned Blockchains. VLDB’24
THANK YOU!

Questions?