
Niccolò Meneghetti
University of Michigan-Dearborn

niccolom@umich.edu

StarfishDB:
Probabilistic Programming

Datalog in Action

Outline

2

StarfishDB: a�ery Execution Engine for Relational
Probabilistic Programming

OUAEL BEN AMARA⇤, University of Michigan-Dearborn, U.S.A.
SAMI HADOUAJ⇤, University of Michigan-Dearborn, U.S.A.
NICCOLÒ MENEGHETTI, University of Michigan-Dearborn, U.S.A.

We introduce Star�shDB, a query execution engine optimized for relational probabilistic programming. Our
engine adopts the model of Gamma Probabilistic Databases, representing probabilistic programs as a collection
of relational constraints, imposed against a generative stochastic process. We extend the model with the
support for recursion, factorization and the ability to leverage just-in-time compilation techniques to speed
up inference. We test our engine against a state-of-the-art sampler for Latent Dirichlet Allocation.

CCS Concepts: • Information systems ! Uncertainty; • Computing methodologies ! Statistical
relational learning; Probabilistic reasoning; • Mathematics of computing! Gibbs sampling.

Additional Key Words and Phrases: Probabilistic Programming, Probabilistic Databases, Bayesian Inference

ACM Reference Format:
Ouael Ben Amara⇤, Sami Hadouaj⇤, and Niccolò Meneghetti. 2024. Star�shDB: a Query Execution Engine
for Relational Probabilistic Programming. Proc. ACM Manag. Data 2, 3 (SIGMOD), Article 185 (June 2024),
31 pages. https://doi.org/10.1145/3654988

1 INTRODUCTION
Probabilistic Programming (PP) is one of the most successful formalisms to design and deploy
Bayesian statistical models [127]. A probabilistic program consists of two components: (i) a formal
speci�cation of a stochastic generative process and (ii) a collection of observed outcomes for such
process. Together, they de�ne a posterior probability distribution over the latent variables of the
generative process, obtained by conditioning the process with respect to the given observations.
Starting from a generic probabilistic program, a PP compiler can automatically synthesize an
inference algorithm to approximate the posterior distribution, without requiring any additional
implementation e�ort from the end user. This approach has been very popular, giving rise to a
plethora of languages, like Stan [19], Edward [125], PyMC3 [112] and many others [6, 44, 72, 75,
82, 119, 124].

Recently, a new breed of PP frameworks has been developed in the context of Statistical Relational
Learning (or SRL[106]). These languages adopt a declarative approach to probabilistic programming,
by expressing a program as a relational stochastic process that is conditioned by �rst-order logic
constraints. The two most recent additions to this line of work are Gamma Probabilistic Databases
(or Gamma-PDBs [78]) and Probabilistic Programming Datalog (or PPDL [6]). The framework of
*These authors contributed equally to this work.

Authors’ addresses: Ouael Ben Amara⇤, benamara@umich.edu, University of Michigan-Dearborn, Dearborn, MI, U.S.A.; Sami
Hadouaj⇤, shadouaj@umich.edu, University of Michigan-Dearborn, Dearborn, MI, U.S.A.; Niccolò Meneghetti, niccolom@
umich.edu, University of Michigan-Dearborn, Dearborn, MI, U.S.A..

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and
the full citation on the �rst page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2024 Copyright held by the owner/author(s).
ACM 2836-6573/2024/6-ART185
https://doi.org/10.1145/3654988

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 185. Publication date: June 2024.

• De Finetti Logic Programming

• Variational Inference

• Probabilistic Programming Datalog

The Authors

3

SamiOuael

Probabilistic Programming

4

Data:

Assumewe are given data, D, consisting ofN fully unsupervised ex-
amples in M dimensions:

D = {t(i)}N
i=1 where t(i) � RM

Generative Story: z � Categorical(�)

t � Gaussian(µz,�z)

Goal: compute the posterior density of the generative process w.r.t. the data.

Pólya Dice

5

�⃗�

x[0]

x[1]

x[2]

Pólya die → a Categorical distribution (parametrized by �⃗�)
 with a Dirichlet prior (parametrized by �⃗�)

�⃗�

Pólya Dice

6

(1, 1, 1, 1, 1, 1)
�⃗�

x[0]

x[1]

x[2]

Pólya die → a Categorical distribution (parametrized by �⃗�)
 with a Dirichlet prior (parametrized by �⃗�)

�⃗�

Pólya Dice

7

(1, 1, 1, 1, 1, 1)
�⃗�

x[0]

x[1]

x[2]

Pólya die → a Categorical distribution (parametrized by �⃗�)
 with a Dirichlet prior (parametrized by �⃗�)

(.2, .2, .1, .2, .1, .2)

�⃗�

Pólya Dice

8

(1, 1, 1, 1, 1, 1)
�⃗�

x[0]

x[1]

x[2]

Pólya die → a Categorical distribution (parametrized by �⃗�)
 with a Dirichlet prior (parametrized by �⃗�)

(.2, .2, .1, .2, .1, .2)

�⃗�

x[0]=3

x[1]=1

x[2]=1

Pólya Dice

9

(1, 1, 1, 1, 1, 1)
�⃗�

x[0]

x[1]

x[2]

Pólya die → a Categorical distribution (parametrized by �⃗�)
 with a Dirichlet prior (parametrized by �⃗�)

(.2, .2, .1, .2, .1, .2)

�⃗�

x[0]=3

x[1]=1

x[2]=1

exchangeable!

Pólya Dice

10

(1, 1, 1, 1, 1, 1)
�⃗�

x[0]

x[1]

x[2]

Pólya die → a Categorical distribution (parametrized by �⃗�)
 with a Dirichlet prior (parametrized by �⃗�)

�⃗�

x[0]=3

x[1]=1

x[2]=1

exchangeable!

(3, 1, 2, 1, 1, 1)

posterior/votes

De Finetti Logic Programming

A DFL Program consists of:

1. A generative process
(defined as a set of pairwise independent Pólya dice)

2. A set of exchangeable constraints

Exchangeable Constraints

12

�⃗�1 x1[1]�⃗�1

�⃗�2 x2[1]�⃗�2

�⃗�n

xn[1]

�⃗�n

...

φ1

φ2

x1[2]

x2[2]

xn[2]

x1[1]=6
v

x2[1]=6
v

x3[1]=6

x1[2]=x2[2]=x3[2]

De Finetti Logic Programming

A DFL Program consists of:

1. A generative process
(defined as a set of pairwise independent Pólya dice)

2. A set of exchangeable constraints

185:6 Ouael Ben Amara⇤, Sami Hadouaj⇤, and Niccolò Meneghe�i

% (q | A) represents the odds of sampling from G a possible world that satis�es constraint q ;
% (q1 | q2,A) represents the odds of sampling a possible world that satis�es constraint q1 from the
set of possible worlds that satisfy q2.

We say that two constraints q1 and q2 are independent when their joint distribution % (q1,q2 | A)
can be expressed as the product % (q1 | A) · % (q2 | A). We say that two constraints q1 and
q2 are exchangeable when % (q1,q2 | D(q1),D(q2)) = % (q1 | D(q1)) · % (q2 | D(q2)). It is
easy to see that D(q1) \ D(q2) = ; is a su�cient condition for q1 and q2 to be independent;
similarly V��(q1) \ V��(q2) = ; is a su�cient condition for exchangeability. Thus, we can enforce
these properties in our probabilistic programs through simple syntactic restrictions. In Example 1
constraints q0 and q1 are exchangeable, but not independent.

We are now ready to de�ne the syntax of our propositional language for probabilistic program-
ming.

D��������� 1. Let G = {D1, ..,D# } be a generative process, and let � = {q1, ..q=2 } be a collection
of =2 Boolean constraints, de�ned over G. The pair P = (G,�) represents a well-formed probabilistic
program if the following conditions are met:

(1) For any constraint q 2 � all the elements of V��(q) are pairwise independent.
(2) All the expressions in � are pairwise exchangeable.
(3) Set � is satis�able, i.e. S��

⇣”
q2� q,X

⌘
< ;.

The probabilistic program de�ned in Example 1 is well-formed. Notice that expression q1 reuses
each variable in V��(q1) more than once and this does not constitute a violation of condition (1).
For any well-formed probabilistic program P = (G,�), with A, ⇥ and X de�ned in the usual

way, our goal is to compute the posterior density of latent parameters ⇥ w.r.t. �. Such posterior is
de�ned by the following equation

? (⇥ | �,A) =
’

g2S��(�,X)
? (⇥ | g,A) · % (g | �,A) (15)

While ? (⇥ | g,A) is easy to compute, as per Equation (6), evaluating ? (⇥ | �,A) by Equation (15)
remains impractical, since S�� (�,X) may contain an exponentially large number of terms. Notice
that ? (⇥ | �,A) can be seen as the expected value of ? (⇥ | g,A) when g is sampled from distribution
% (g | �,A). Therefore, if we are able to devise an e�cient method to sample terms in S�� (�,X)
from % (g | �,A), then we will have an e�ective way to approximate ? (⇥ | �,A). The framework
proposed in [78] successfully achieves this very goal: it shows how to design an e�cient Gibbs
sampler [41] for % (g | �,A), for any arbitrary, well-formed probabilistic program. Algorithm 1
shows the pseudo-code of such sampler. Its internal state consists of a mapping (S) that associates
each constraint q 2 � with one term in S�� (q,V��(q)). This mapping is initialized between
lines 1 and 3. Once S is initialized, the expression

”
q2� S[q] is guaranteed to belong to S�� (�,X).

This invariant will remain true for the whole execution of the sampler. Between lines 4 and 8 the
algorithm repeatedly resamples a satisfying term g2 for each constraint q2 2 �. The new term is
sampled from distribution % (g2 | q2 , g�2 ,A), where g�2 is a term expression that satis�es all the
constraints in �, with the exception of q2 . Notice that sampling from % (g2 | q2 , g�2 ,A) is much
easier than sampling directly from % (g | �,A), since expressions q2 and g�2 are, by construction,
exchangeable. Furthemore, the distribution % (g2 | q2 , g�2 ,A), used at line 7, constantly shifts during
the execution of the algorithm, consistently with the logic of Markov Chain Monte Carlo algorithms:
in [78] it is shown that the sequence of updates to S performed by Algorithm 1 forms a Markov
chain that is irreducible and aperiodic, and has % (g | �,A) at its stationary distribution.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 185. Publication date: June 2024.

posterior

product of Dirichlet densities

assignments to X
that satisfy Φ

Pólya urn

Exchangeable Constraints

14

�⃗�1 x1[1]�⃗�1

�⃗�2 x2[1]�⃗�2

�⃗�n

xn[1]

�⃗�n

...

φ1

φ2

x1[2]

x2[2]

xn[2]

x1[1]=6
v

x2[1]=6
v

x3[1]=6

x1[2]=x2[2]=x3[2]

Posterior of two Pólya coins

Ada J
Bob L

Ada J
Bob J

Ada L
Bob J

Ada L
Bob J

happiness of Ada

ha
pp

in
es

s o
f B

ob

C1: If Bob is happy, so is Ada

Posterior of two Pólya coins

Ada J
Bob L

Ada J
Bob J

Ada L
Bob J

Ada L
Bob J

happiness of Ada

ha
pp

in
es

s o
f B

ob

C1: If Bob is happy, so is Ada
C2: Ada is happy
C3: Ada is happy
C4: Ada is happy
C5: Ada is sad

Posterior of two Pólya coins

Ada J
Bob L

Ada J
Bob J

Ada L
Bob J

Ada L
Bob J

happiness of Ada

ha
pp

in
es

s o
f B

ob

C1: If Bob is happy, so is Ada
C2: Ada and Bob have the same
mood

De Finetti Logic Programming

Computing the exact posterior is impractical. Two solutions:

1. Gibbs Sampling

2. Variational Inference

185:6 Ouael Ben Amara⇤, Sami Hadouaj⇤, and Niccolò Meneghe�i

% (q | A) represents the odds of sampling from G a possible world that satis�es constraint q ;
% (q1 | q2,A) represents the odds of sampling a possible world that satis�es constraint q1 from the
set of possible worlds that satisfy q2.

We say that two constraints q1 and q2 are independent when their joint distribution % (q1,q2 | A)
can be expressed as the product % (q1 | A) · % (q2 | A). We say that two constraints q1 and
q2 are exchangeable when % (q1,q2 | D(q1),D(q2)) = % (q1 | D(q1)) · % (q2 | D(q2)). It is
easy to see that D(q1) \ D(q2) = ; is a su�cient condition for q1 and q2 to be independent;
similarly V��(q1) \ V��(q2) = ; is a su�cient condition for exchangeability. Thus, we can enforce
these properties in our probabilistic programs through simple syntactic restrictions. In Example 1
constraints q0 and q1 are exchangeable, but not independent.

We are now ready to de�ne the syntax of our propositional language for probabilistic program-
ming.

D��������� 1. Let G = {D1, ..,D# } be a generative process, and let � = {q1, ..q=2 } be a collection
of =2 Boolean constraints, de�ned over G. The pair P = (G,�) represents a well-formed probabilistic
program if the following conditions are met:

(1) For any constraint q 2 � all the elements of V��(q) are pairwise independent.
(2) All the expressions in � are pairwise exchangeable.
(3) Set � is satis�able, i.e. S��

⇣”
q2� q,X

⌘
< ;.

The probabilistic program de�ned in Example 1 is well-formed. Notice that expression q1 reuses
each variable in V��(q1) more than once and this does not constitute a violation of condition (1).
For any well-formed probabilistic program P = (G,�), with A, ⇥ and X de�ned in the usual

way, our goal is to compute the posterior density of latent parameters ⇥ w.r.t. �. Such posterior is
de�ned by the following equation

? (⇥ | �,A) =
’

g2S��(�,X)
? (⇥ | g,A) · % (g | �,A) (15)

While ? (⇥ | g,A) is easy to compute, as per Equation (6), evaluating ? (⇥ | �,A) by Equation (15)
remains impractical, since S�� (�,X) may contain an exponentially large number of terms. Notice
that ? (⇥ | �,A) can be seen as the expected value of ? (⇥ | g,A) when g is sampled from distribution
% (g | �,A). Therefore, if we are able to devise an e�cient method to sample terms in S�� (�,X)
from % (g | �,A), then we will have an e�ective way to approximate ? (⇥ | �,A). The framework
proposed in [78] successfully achieves this very goal: it shows how to design an e�cient Gibbs
sampler [41] for % (g | �,A), for any arbitrary, well-formed probabilistic program. Algorithm 1
shows the pseudo-code of such sampler. Its internal state consists of a mapping (S) that associates
each constraint q 2 � with one term in S�� (q,V��(q)). This mapping is initialized between
lines 1 and 3. Once S is initialized, the expression

”
q2� S[q] is guaranteed to belong to S�� (�,X).

This invariant will remain true for the whole execution of the sampler. Between lines 4 and 8 the
algorithm repeatedly resamples a satisfying term g2 for each constraint q2 2 �. The new term is
sampled from distribution % (g2 | q2 , g�2 ,A), where g�2 is a term expression that satis�es all the
constraints in �, with the exception of q2 . Notice that sampling from % (g2 | q2 , g�2 ,A) is much
easier than sampling directly from % (g | �,A), since expressions q2 and g�2 are, by construction,
exchangeable. Furthemore, the distribution % (g2 | q2 , g�2 ,A), used at line 7, constantly shifts during
the execution of the algorithm, consistently with the logic of Markov Chain Monte Carlo algorithms:
in [78] it is shown that the sequence of updates to S performed by Algorithm 1 forms a Markov
chain that is irreducible and aperiodic, and has % (g | �,A) at its stationary distribution.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 185. Publication date: June 2024.

posterior

product of Dirichlet densities

assignments to X
that satisfy Φ

Pólya urn

Variational Inference

185:6 Ouael Ben Amara⇤, Sami Hadouaj⇤, and Niccolò Meneghe�i

% (q | A) represents the odds of sampling from G a possible world that satis�es constraint q ;
% (q1 | q2,A) represents the odds of sampling a possible world that satis�es constraint q1 from the
set of possible worlds that satisfy q2.

We say that two constraints q1 and q2 are independent when their joint distribution % (q1,q2 | A)
can be expressed as the product % (q1 | A) · % (q2 | A). We say that two constraints q1 and
q2 are exchangeable when % (q1,q2 | D(q1),D(q2)) = % (q1 | D(q1)) · % (q2 | D(q2)). It is
easy to see that D(q1) \ D(q2) = ; is a su�cient condition for q1 and q2 to be independent;
similarly V��(q1) \ V��(q2) = ; is a su�cient condition for exchangeability. Thus, we can enforce
these properties in our probabilistic programs through simple syntactic restrictions. In Example 1
constraints q0 and q1 are exchangeable, but not independent.

We are now ready to de�ne the syntax of our propositional language for probabilistic program-
ming.

D��������� 1. Let G = {D1, ..,D# } be a generative process, and let � = {q1, ..q=2 } be a collection
of =2 Boolean constraints, de�ned over G. The pair P = (G,�) represents a well-formed probabilistic
program if the following conditions are met:

(1) For any constraint q 2 � all the elements of V��(q) are pairwise independent.
(2) All the expressions in � are pairwise exchangeable.
(3) Set � is satis�able, i.e. S��

⇣”
q2� q,X

⌘
< ;.

The probabilistic program de�ned in Example 1 is well-formed. Notice that expression q1 reuses
each variable in V��(q1) more than once and this does not constitute a violation of condition (1).
For any well-formed probabilistic program P = (G,�), with A, ⇥ and X de�ned in the usual

way, our goal is to compute the posterior density of latent parameters ⇥ w.r.t. �. Such posterior is
de�ned by the following equation

? (⇥ | �,A) =
’

g2S��(�,X)
? (⇥ | g,A) · % (g | �,A) (15)

While ? (⇥ | g,A) is easy to compute, as per Equation (6), evaluating ? (⇥ | �,A) by Equation (15)
remains impractical, since S�� (�,X) may contain an exponentially large number of terms. Notice
that ? (⇥ | �,A) can be seen as the expected value of ? (⇥ | g,A) when g is sampled from distribution
% (g | �,A). Therefore, if we are able to devise an e�cient method to sample terms in S�� (�,X)
from % (g | �,A), then we will have an e�ective way to approximate ? (⇥ | �,A). The framework
proposed in [78] successfully achieves this very goal: it shows how to design an e�cient Gibbs
sampler [41] for % (g | �,A), for any arbitrary, well-formed probabilistic program. Algorithm 1
shows the pseudo-code of such sampler. Its internal state consists of a mapping (S) that associates
each constraint q 2 � with one term in S�� (q,V��(q)). This mapping is initialized between
lines 1 and 3. Once S is initialized, the expression

”
q2� S[q] is guaranteed to belong to S�� (�,X).

This invariant will remain true for the whole execution of the sampler. Between lines 4 and 8 the
algorithm repeatedly resamples a satisfying term g2 for each constraint q2 2 �. The new term is
sampled from distribution % (g2 | q2 , g�2 ,A), where g�2 is a term expression that satis�es all the
constraints in �, with the exception of q2 . Notice that sampling from % (g2 | q2 , g�2 ,A) is much
easier than sampling directly from % (g | �,A), since expressions q2 and g�2 are, by construction,
exchangeable. Furthemore, the distribution % (g2 | q2 , g�2 ,A), used at line 7, constantly shifts during
the execution of the algorithm, consistently with the logic of Markov Chain Monte Carlo algorithms:
in [78] it is shown that the sequence of updates to S performed by Algorithm 1 forms a Markov
chain that is irreducible and aperiodic, and has % (g | �,A) at its stationary distribution.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 185. Publication date: June 2024.

posterior

product of Dirichlet densities

assignments to X
that satisfy Φ

Pólya urn

q(Q, F)
def
= qQ · qF

qQ
def
= ’

qqqi2Q
qqqqi (qqqi | µµµi)

qF
def
= ’

fm2F
qfm(t | lllm)

References Cited

11

variational
approximation

Dirichlet
densities

Categorical
distributions

Variational Inference

q(Q, F)
def
= qQ · qF

qQ
def
= ’

qqqi2Q
qqqqi (qqqi | µµµi)

qF
def
= ’

fm2F
qfm(t | lllm)

References Cited

11

variational
approximation

Dirichlet
densities

Categorical
distributions

q(Q, F)
def
= qQ · qF

qQ
def
= ’

qqqi2Q
qqqqi (qqqi | µµµi)

qF
def
= ’

fm2F
qfm(t | lllm)

qfm(t) µ ’
qqqi2Q

exp Eq

h
log qqqqi (qi,t[i])

i
(80)

qqqqi (qi,v) µ aaai + Â
fm2F

2

4 Â
t2SAT(fm^(Xi=v))

qfm(t)

3

5 (81)

References Cited

11

q(Q, F)
def
= qQ · qF

qQ
def
= ’

qqqi2Q
qqqqi (qqqi | µµµi)

qF
def
= ’

fm2F
qfm(t | lllm)

qfm(t) µ ’
qqqi2Q

exp Eq

h
log qqqqi (qi,t[i])

i
(80)

qqqqi (qi,v) µ aaai + Â
fm2F

2

4 Â
t2SAT(fm^(Xi=v))

qfm(t)

3

5 (81)

References Cited

11

optimize µi

optimize λm

Where do the constraints come from?

21

Ada (x1)

Lead (v1,1)

Dev (v1,2)

QA (v1,3)

EMP ROLE

Bob (x2)

Lead (v2,1)

Dev (v2,2)

QA (v2,3)

“Ada and Bob share the same role”
φ := (x1=v1,1 ∧ x2=v2,1) ∨ (x1=v1,2 ∧ x2=v2,2) ∨ (x1=v1,3 ∧ x2=v2,3)

Ada Lead

EMP ROLE

Bob Lead

Ada Dev

EMP ROLE

Bob Lead

Ada QA

EMP ROLE

Bob Lead

Ada Lead

EMP ROLE

Bob Dev

Ada Dev

EMP ROLE

Bob Dev

Ada QA

EMP ROLE

Bob Dev

Ada Lead

EMP ROLE

Bob QA

Ada Dev

EMP ROLE

Bob QA

Ada QA

EMP ROLE

Bob QA

query-answer

Syntax

22

Sami Ouael

(1) Probabilistic Programming Datalog
Bárány, Vince, Balder Ten Cate, Benny Kimelfeld, Dan Olteanu, and
Zografoula Vagena. "Declarative probabilistic programming with
datalog." ACM Transactions on Database Systems (TODS) 42, no. 4
(2017): 1-35.

Probabilistic Programming Datalog

23

StarfishDB: a�ery Execution Engine for Relational Probabilistic Programming 185:15

city and) is a timestamp, then we should sample a valueF from {sun, rain} w.r.t. a Categorical
distribution parametrized by % and emit the resulting fact for predicate “weather”.

weather(⇠,) ,F 2 {sun, rain} ⇠ C0CJ%K) city(⇠, %), ts()).

If we pair the above clause with the ground facts “city(fargo, [.1, .9])” and “ts(noon)”, then the
program will generate the ground fact “weather(fargo, noon, sun)” with probability .1, and the
ground fact “weather(fargo, noon, rain)” with probability .9. The key constraint ⇠,) on predicate
“weather” ensures that only one value from {sun, rain} is sampled for any speci�c location and
moment in time.

To represent a Gamma Probabilistic Database instance we will use only two probabilistic clauses,
that are predetermined and will remain �xed in all the probabilistic programs. These two clauses
are:

obs(VarId,ObsId, E 2 ⇡ ⇠ C0CJ%K) lp(VarId,⇡, %),
sample(VarId,ObsId).

lp(VarId,⇡, ? 2 S|⇡ | ⇠ D8AJ�K) dt(VarId,⇡,�).

HereD8AJ�K represents a Dirichlet density parametrized by vector� . No other probabilistic clause
is allowed in our programs; the rest of the program must consist of regular Datalog clauses, where
the use of predicates “dt”, “sample”, “obs” and “lp” is restricted as follows: (1) Predicate “dt” can
only be used in ground facts (or deterministic derivations); it is used to instantiate X-tuples and
declare their domains (⇡) and hyper-parameters (�). Attribute VarId must act as a key for it. (2)
Predicate “sample” is unrestricted, and can be used to draw samples from any X-tuple. Notice that if
the same grounding of predicate “sample” is derived multiple times, only one sample is generated.
(3) Predicate “obs” can only be used within the body of a clause, to gather the result of a sampling
operation. (4) Predicate “lp” cannot be used outside of the two �xed probabilistic clauses.
In conclusion, we will represent any Gamma Probabilistic Database instance G as a collection

of ground facts for the predicate “dt” (having one such fact for each X-tuple), together with the
two probabilistic clauses listed above. The Boolean constraints (�) will be expressed using classic
Datalog clauses and a provenance mechanism, as explained in the following section.

3.3 Provenance
We are now ready to equip our restricted fragment of GDatalog with a provenance/lineage [48, 49]
mechanism. In classic Datalog, lineage expressions are used to link every ground fact in the least
Herbrand model with all the facts in the extensional theory it can be derived from. For any fact C
in the least Herbrand model, the lineage of C is a Boolean expression that uses the facts from the
extensional theory as literals, and identi�es all the subsets of the extensional theory that allows us
to derive fact C , through the intensional theory. For example, let’s consider the following Datalog
theory:

works-for(ada, bob).
works-for(ada, chloe).
works-for(bob, zoe).
works-for(chloe, zoe).
works-for(�,⇠) works-for(�,⌫),works-for(⌫,⇠).

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 185. Publication date: June 2024.

Probabilistic Programming Datalog

24

StarfishDB: a�ery Execution Engine for Relational Probabilistic Programming 185:15

city and) is a timestamp, then we should sample a valueF from {sun, rain} w.r.t. a Categorical
distribution parametrized by % and emit the resulting fact for predicate “weather”.

weather(⇠,) ,F 2 {sun, rain} ⇠ C0CJ%K) city(⇠, %), ts()).

If we pair the above clause with the ground facts “city(fargo, [.1, .9])” and “ts(noon)”, then the
program will generate the ground fact “weather(fargo, noon, sun)” with probability .1, and the
ground fact “weather(fargo, noon, rain)” with probability .9. The key constraint ⇠,) on predicate
“weather” ensures that only one value from {sun, rain} is sampled for any speci�c location and
moment in time.

To represent a Gamma Probabilistic Database instance we will use only two probabilistic clauses,
that are predetermined and will remain �xed in all the probabilistic programs. These two clauses
are:

obs(VarId,ObsId, E 2 ⇡ ⇠ C0CJ%K) lp(VarId,⇡, %),
sample(VarId,ObsId).

lp(VarId,⇡, ? 2 S|⇡ | ⇠ D8AJ�K) dt(VarId,⇡,�).

HereD8AJ�K represents a Dirichlet density parametrized by vector� . No other probabilistic clause
is allowed in our programs; the rest of the program must consist of regular Datalog clauses, where
the use of predicates “dt”, “sample”, “obs” and “lp” is restricted as follows: (1) Predicate “dt” can
only be used in ground facts (or deterministic derivations); it is used to instantiate X-tuples and
declare their domains (⇡) and hyper-parameters (�). Attribute VarId must act as a key for it. (2)
Predicate “sample” is unrestricted, and can be used to draw samples from any X-tuple. Notice that if
the same grounding of predicate “sample” is derived multiple times, only one sample is generated.
(3) Predicate “obs” can only be used within the body of a clause, to gather the result of a sampling
operation. (4) Predicate “lp” cannot be used outside of the two �xed probabilistic clauses.
In conclusion, we will represent any Gamma Probabilistic Database instance G as a collection

of ground facts for the predicate “dt” (having one such fact for each X-tuple), together with the
two probabilistic clauses listed above. The Boolean constraints (�) will be expressed using classic
Datalog clauses and a provenance mechanism, as explained in the following section.

3.3 Provenance
We are now ready to equip our restricted fragment of GDatalog with a provenance/lineage [48, 49]
mechanism. In classic Datalog, lineage expressions are used to link every ground fact in the least
Herbrand model with all the facts in the extensional theory it can be derived from. For any fact C
in the least Herbrand model, the lineage of C is a Boolean expression that uses the facts from the
extensional theory as literals, and identi�es all the subsets of the extensional theory that allows us
to derive fact C , through the intensional theory. For example, let’s consider the following Datalog
theory:

works-for(ada, bob).
works-for(ada, chloe).
works-for(bob, zoe).
works-for(chloe, zoe).
works-for(�,⇠) works-for(�,⌫),works-for(⌫,⇠).

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 185. Publication date: June 2024.

city(‘Fargo’, [.1, .9]), ts(‘noon’)

Probabilistic Programming Datalog

25

StarfishDB: a�ery Execution Engine for Relational Probabilistic Programming 185:15

city and) is a timestamp, then we should sample a valueF from {sun, rain} w.r.t. a Categorical
distribution parametrized by % and emit the resulting fact for predicate “weather”.

weather(⇠,) ,F 2 {sun, rain} ⇠ C0CJ%K) city(⇠, %), ts()).

If we pair the above clause with the ground facts “city(fargo, [.1, .9])” and “ts(noon)”, then the
program will generate the ground fact “weather(fargo, noon, sun)” with probability .1, and the
ground fact “weather(fargo, noon, rain)” with probability .9. The key constraint ⇠,) on predicate
“weather” ensures that only one value from {sun, rain} is sampled for any speci�c location and
moment in time.

To represent a Gamma Probabilistic Database instance we will use only two probabilistic clauses,
that are predetermined and will remain �xed in all the probabilistic programs. These two clauses
are:

obs(VarId,ObsId, E 2 ⇡ ⇠ C0CJ%K) lp(VarId,⇡, %),
sample(VarId,ObsId).

lp(VarId,⇡, ? 2 S|⇡ | ⇠ D8AJ�K) dt(VarId,⇡,�).

HereD8AJ�K represents a Dirichlet density parametrized by vector� . No other probabilistic clause
is allowed in our programs; the rest of the program must consist of regular Datalog clauses, where
the use of predicates “dt”, “sample”, “obs” and “lp” is restricted as follows: (1) Predicate “dt” can
only be used in ground facts (or deterministic derivations); it is used to instantiate X-tuples and
declare their domains (⇡) and hyper-parameters (�). Attribute VarId must act as a key for it. (2)
Predicate “sample” is unrestricted, and can be used to draw samples from any X-tuple. Notice that if
the same grounding of predicate “sample” is derived multiple times, only one sample is generated.
(3) Predicate “obs” can only be used within the body of a clause, to gather the result of a sampling
operation. (4) Predicate “lp” cannot be used outside of the two �xed probabilistic clauses.
In conclusion, we will represent any Gamma Probabilistic Database instance G as a collection

of ground facts for the predicate “dt” (having one such fact for each X-tuple), together with the
two probabilistic clauses listed above. The Boolean constraints (�) will be expressed using classic
Datalog clauses and a provenance mechanism, as explained in the following section.

3.3 Provenance
We are now ready to equip our restricted fragment of GDatalog with a provenance/lineage [48, 49]
mechanism. In classic Datalog, lineage expressions are used to link every ground fact in the least
Herbrand model with all the facts in the extensional theory it can be derived from. For any fact C
in the least Herbrand model, the lineage of C is a Boolean expression that uses the facts from the
extensional theory as literals, and identi�es all the subsets of the extensional theory that allows us
to derive fact C , through the intensional theory. For example, let’s consider the following Datalog
theory:

works-for(ada, bob).
works-for(ada, chloe).
works-for(bob, zoe).
works-for(chloe, zoe).
works-for(�,⇠) works-for(�,⌫),works-for(⌫,⇠).

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 185. Publication date: June 2024.

city(‘Fargo’, [.1, .9]), ts(‘noon’)

weather(‘Fargo’, ‘noon’, sun) with prob 0.1

weather(‘Fargo’, ‘noon’, rain) with prob 0.9

Probabilistic Programming Datalog

26

StarfishDB: a�ery Execution Engine for Relational Probabilistic Programming 185:15

city and) is a timestamp, then we should sample a valueF from {sun, rain} w.r.t. a Categorical
distribution parametrized by % and emit the resulting fact for predicate “weather”.

weather(⇠,) ,F 2 {sun, rain} ⇠ C0CJ%K) city(⇠, %), ts()).

If we pair the above clause with the ground facts “city(fargo, [.1, .9])” and “ts(noon)”, then the
program will generate the ground fact “weather(fargo, noon, sun)” with probability .1, and the
ground fact “weather(fargo, noon, rain)” with probability .9. The key constraint ⇠,) on predicate
“weather” ensures that only one value from {sun, rain} is sampled for any speci�c location and
moment in time.

To represent a Gamma Probabilistic Database instance we will use only two probabilistic clauses,
that are predetermined and will remain �xed in all the probabilistic programs. These two clauses
are:

obs(VarId,ObsId, E 2 ⇡ ⇠ C0CJ%K) lp(VarId,⇡, %),
sample(VarId,ObsId).

lp(VarId,⇡, ? 2 S|⇡ | ⇠ D8AJ�K) dt(VarId,⇡,�).

HereD8AJ�K represents a Dirichlet density parametrized by vector� . No other probabilistic clause
is allowed in our programs; the rest of the program must consist of regular Datalog clauses, where
the use of predicates “dt”, “sample”, “obs” and “lp” is restricted as follows: (1) Predicate “dt” can
only be used in ground facts (or deterministic derivations); it is used to instantiate X-tuples and
declare their domains (⇡) and hyper-parameters (�). Attribute VarId must act as a key for it. (2)
Predicate “sample” is unrestricted, and can be used to draw samples from any X-tuple. Notice that if
the same grounding of predicate “sample” is derived multiple times, only one sample is generated.
(3) Predicate “obs” can only be used within the body of a clause, to gather the result of a sampling
operation. (4) Predicate “lp” cannot be used outside of the two �xed probabilistic clauses.
In conclusion, we will represent any Gamma Probabilistic Database instance G as a collection

of ground facts for the predicate “dt” (having one such fact for each X-tuple), together with the
two probabilistic clauses listed above. The Boolean constraints (�) will be expressed using classic
Datalog clauses and a provenance mechanism, as explained in the following section.

3.3 Provenance
We are now ready to equip our restricted fragment of GDatalog with a provenance/lineage [48, 49]
mechanism. In classic Datalog, lineage expressions are used to link every ground fact in the least
Herbrand model with all the facts in the extensional theory it can be derived from. For any fact C
in the least Herbrand model, the lineage of C is a Boolean expression that uses the facts from the
extensional theory as literals, and identi�es all the subsets of the extensional theory that allows us
to derive fact C , through the intensional theory. For example, let’s consider the following Datalog
theory:

works-for(ada, bob).
works-for(ada, chloe).
works-for(bob, zoe).
works-for(chloe, zoe).
works-for(�,⇠) works-for(�,⌫),works-for(⌫,⇠).

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 185. Publication date: June 2024.

StarfishDB: a�ery Execution Engine for Relational Probabilistic Programming 185:15

city and) is a timestamp, then we should sample a valueF from {sun, rain} w.r.t. a Categorical
distribution parametrized by % and emit the resulting fact for predicate “weather”.

weather(⇠,) ,F 2 {sun, rain} ⇠ C0CJ%K) city(⇠, %), ts()).

If we pair the above clause with the ground facts “city(fargo, [.1, .9])” and “ts(noon)”, then the
program will generate the ground fact “weather(fargo, noon, sun)” with probability .1, and the
ground fact “weather(fargo, noon, rain)” with probability .9. The key constraint ⇠,) on predicate
“weather” ensures that only one value from {sun, rain} is sampled for any speci�c location and
moment in time.

To represent a Gamma Probabilistic Database instance we will use only two probabilistic clauses,
that are predetermined and will remain �xed in all the probabilistic programs. These two clauses
are:

obs(VarId,ObsId, E 2 ⇡ ⇠ C0CJ%K) lp(VarId,⇡, %),
sample(VarId,ObsId).

lp(VarId,⇡, ? 2 S|⇡ | ⇠ D8AJ�K) dt(VarId,⇡,�).

HereD8AJ�K represents a Dirichlet density parametrized by vector� . No other probabilistic clause
is allowed in our programs; the rest of the program must consist of regular Datalog clauses, where
the use of predicates “dt”, “sample”, “obs” and “lp” is restricted as follows: (1) Predicate “dt” can
only be used in ground facts (or deterministic derivations); it is used to instantiate X-tuples and
declare their domains (⇡) and hyper-parameters (�). Attribute VarId must act as a key for it. (2)
Predicate “sample” is unrestricted, and can be used to draw samples from any X-tuple. Notice that if
the same grounding of predicate “sample” is derived multiple times, only one sample is generated.
(3) Predicate “obs” can only be used within the body of a clause, to gather the result of a sampling
operation. (4) Predicate “lp” cannot be used outside of the two �xed probabilistic clauses.
In conclusion, we will represent any Gamma Probabilistic Database instance G as a collection

of ground facts for the predicate “dt” (having one such fact for each X-tuple), together with the
two probabilistic clauses listed above. The Boolean constraints (�) will be expressed using classic
Datalog clauses and a provenance mechanism, as explained in the following section.

3.3 Provenance
We are now ready to equip our restricted fragment of GDatalog with a provenance/lineage [48, 49]
mechanism. In classic Datalog, lineage expressions are used to link every ground fact in the least
Herbrand model with all the facts in the extensional theory it can be derived from. For any fact C
in the least Herbrand model, the lineage of C is a Boolean expression that uses the facts from the
extensional theory as literals, and identi�es all the subsets of the extensional theory that allows us
to derive fact C , through the intensional theory. For example, let’s consider the following Datalog
theory:

works-for(ada, bob).
works-for(ada, chloe).
works-for(bob, zoe).
works-for(chloe, zoe).
works-for(�,⇠) works-for(�,⌫),works-for(⌫,⇠).

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 185. Publication date: June 2024.

city(‘Fargo’, [.1, .9]), ts(‘noon’)

weather(‘Fargo’, ‘noon’, sun) with prob 0.1

weather(‘Fargo’, ‘noon’, rain) with prob 0.9

Where do the constraints come from?

27

(Datalog probabilistic program)

(x0,0[s]=v0^x0,1[n]=v0)v(x0,0[s]=v1^x0,1[n]=v1)
(x0,0[e]=v0^x1,0[w]=v0)v(x0,0[e]=v1^x0,1[w]=v1)
(x1,0[s]=v0^x1,1[n]=v0)v(x1,0[s]=v1^x1,1[n]=v1)
(x0,1[e]=v0^x1,1[w]=v0)v(x0,1[e]=v1^x1,1[w]=v1)
(x2,0[s]=v0^x2,1[n]=v0)v(x2,0[s]=v1^x2,1[n]=v1)
…
…
(many)

(ground constraints)

LLVM/ClangJIT

Acero

StarfishDB: a�ery Execution Engine for Relational Probabilistic Programming 185:17

that we want to extract. A plausible extensional theory with two documents and two topics is
provided below:

t(t1). d(d0, p0, ’the’). d(d1, p0, ’the’).
t(t2). d(d0, p1, ’cat’). d(d1, p1, ’dog’).

d(d0, p2, ’naps’). d(d1, p2, ’barks’).

The intensional theory instantiates two kinds of X-tuples, one that ranges over the set of words
(FB def= {barks, cat, dog, naps, the}) and another that ranges over the set of topics (CB def= {t1, t2}). They
are used to model the “blue” and “red” dice from Example 2, respectively:

dt([red,⇡], ts, [1, 1, .., 1]) d(⇡, %,,).
dt([blue,)],ws, [1, 1, .., 1]) t()).

sample([red,⇡], %) d(⇡, %,,).
sample([blue,)], [⇡, %]) d(⇡, %,,), obs([red,⇡], %,)).

qa⇤ (⇡, %,,) d(⇡, %,,), obs([blue,)], [⇡, %],,).

The �rst clause instantiates one “red” die for each document in the corpus; the second clause
instantiates one “blue” die for each topic. The remaining three clauses encode the generative
process Glda described in Example 2: for each word in the corpus we throw the “red” die associated
with the document where the word is located (clause 3); based on the outcome of this �rst throw,
we choose one of the “blue” dice and roll it (clause 4); the word that we observe as the result of this
second throw must match the initial word that we observed in the corpus (clause 5). The following
mapping shows the lineage expressions generated by this program.

83, ?,F
 (qa(3, ?,F)) 7! �ACC 2ts ((red,3) [?] = C) � ((blue, C) [(3, ?)] = F))

Here 3 denotes a document, ? as position andF a word. In the above lineage expressions the literal
((red,3) [?] = C) acts as an activation condition for the literal ((blue, C) [(3, ?)] = F). Notice that
all the constraints are almost-read-once, as per De�nition 2, and all share the very same template.
Running Algorithm 1 against this probabilistic program is functionally equivalent to running the
collapsed Gibbs sampler for LDA originally proposed by [50].

3.6 Hidden Markov Models
Hidden Markov Models (or HMMs [104]) are a popular probabilistic model for sequential data.
They are based on the assumption that some observed sequences of symbols are generated by a
latent, probabilistic �nite state machine [129, 130]. The goal of the model is to learn the latent
parameters of these machines from the data [8]. The model is formally de�ned by a set of internal
states (�) and a set of observable symbols (+), paired with two probability distributions, one
de�ned over � ⇥ � (the state-transition distribution) and one over � ⇥+ (the symbol-emission
distribution). To express the model in our language, we assume that the training data is encoded as
a collection of ground predicates in the form “d(SEQID, POS, SYMB)”, where SEQID identi�es a
training sequence, POS is a positional index and SYMB represents the character observed at position
POS of the sequence identi�ed by SEQID. Furthermore, the predicate “eos(SEQID, POS)” marks
the last position in a sequence. We implement the HMM model by declaring two X-tuples, one to
represent the state-transition probabilities (tr) and another for the symbol-emission probabilities

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 185. Publication date: June 2024.

Inference in Action

28

Sami Ouael

Thank you!

(Questions?)

