StarfishDB: Probabilistic Programming Datalog in Action

> Niccolò Meneghetti *University of Michigan-Dearborn* niccolom@umich.edu

Outline

StarfishDB: a Query Execution Engine for Relational Probabilistic Programming

OUAEL BEN AMARA^{*}, University of Michigan-Dearborn, U.S.A. SAMI HADOUAJ^{*}, University of Michigan-Dearborn, U.S.A. NICCOLÒ MENEGHETTI, University of Michigan-Dearborn, U.S.A.

- De Finetti Logic Programming
- Variational Inference
- Probabilistic Programming Datalog

The Authors

Probabilistic Programming

Generative Story: $z\sim ext{Categorical}(m{\phi})$ $\mathbf{x}\sim ext{Gaussian}(m{\mu}_z, m{\Sigma}_z)$

Data:
$$\mathcal{D} = \{\mathbf{x}^{(i)}\}_{i=1}^N$$
 where $\mathbf{x}^{(i)} \in \mathbb{R}^M$

Goal: compute the posterior density of the generative process w.r.t. the data.

De Finetti Logic Programming

A DFL Program consists of:

- A generative process (defined as a set of pairwise independent Pólya dice)
- 2. A set of exchangeable constraints

Exchangeable Constraints

De Finetti Logic Programming

A DFL Program consists of:

- A generative process (defined as a set of pairwise independent Pólya dice)
- 2. A set of exchangeable constraints

Exchangeable Constraints

Posterior of two Pólya coins

Posterior of two Pólya coins

Posterior of two Pólya coins

Ada 🥝 Bob 🕑

> C1: If Bob is happy, so is Ada C2: Ada and Bob have the same mood

De Finetti Logic Programming

Computing the exact posterior is impractical. Two solutions:

- 1. Gibbs Sampling
- 2. Variational Inference

Variational Inference

$$q(\Theta, \Phi) \stackrel{\text{def}}{=} q_{\Theta} \cdot q_{\Phi}$$

$$q_{\Theta} \stackrel{\text{def}}{=} \prod_{\boldsymbol{\theta}_{i} \in \Theta} q_{\boldsymbol{\theta}_{i}}(\boldsymbol{\theta}_{i} \mid \boldsymbol{\mu}_{i}) \stackrel{\text{Dirichlet}}{\text{densities}}$$

$$q_{\Phi} \stackrel{\text{def}}{=} \prod_{\boldsymbol{\phi}_{m} \in \Phi} q_{\boldsymbol{\phi}_{m}}(\tau \mid \boldsymbol{\lambda}_{m}) \stackrel{\text{Categorical}}{\text{distributions}}$$

Variational Inference

$$q(\Theta, \Phi) \stackrel{\text{def}}{=} q_{\Theta} \cdot q_{\Phi}$$

$$q_{\Theta} \stackrel{\text{def}}{=} \prod_{\boldsymbol{\theta}_{i} \in \Theta} q_{\boldsymbol{\theta}_{i}}(\boldsymbol{\theta}_{i} \mid \boldsymbol{\mu}_{i}) \stackrel{\text{Dirichlet}}{\text{densities}}$$

$$q_{\Phi} \stackrel{\text{def}}{=} \prod_{\boldsymbol{\phi}_{m} \in \Phi} q_{\boldsymbol{\phi}_{m}}(\tau \mid \boldsymbol{\lambda}_{m}) \stackrel{\text{Categorical}}{\text{distributions}}$$

optimize
$$\boldsymbol{\mu}_i \longrightarrow q_{\boldsymbol{\theta}_i}(\theta_{i,v}) \propto \boldsymbol{\alpha}_i + \sum_{\phi_m \in \Phi} \left[\sum_{\tau \in \text{SAT}(\phi_m \wedge (X_i = v))} q_{\phi_m}(\tau) \right]$$

optimize $\boldsymbol{\lambda}_m \longrightarrow q_{\phi_m}(\tau) \propto \prod_{\boldsymbol{\theta}_i \in \Theta} \exp \mathbb{E}_q \left[\log q_{\boldsymbol{\theta}_i}(\theta_{i,\tau[i]}) \right]$

Where do the constraints come from?

EMP	ROLE	EMP	ROLE	EMP	ROLE	EMP	ROLE
Ada (<mark>x</mark> 1)	Lead (v _{1,1})	Ada	Lead	Ada	Dev	Ada	QA
		Bob	Lead	Bob	Lead	Bob	Lead
	Dev (V _{1,2})	EMP	ROLE	EMP	ROLE	EMP	ROLE
	QA (V _{1,3})	Ada	Lead	Ada	Dev	Ada	QA
Bob (x ₂)		Bob	Dev	Bob	Dev	Bob	Dev
	Lead $(V_{2,1})$	EMP	ROLE	EMP	ROLE	EMP	ROLE
	Dev (V _{2,2})	Ada	Lead	Ada	Dev	Ada	QA
	QA (V _{2,3})	Bob	QA	Bob	QA	Bob	QA

query-answer

Syntax

(1) Probabilistic Programming Datalog

Bárány, Vince, Balder Ten Cate, Benny Kimelfeld, Dan Olteanu, and Zografoula Vagena. "Declarative probabilistic programming with datalog." *ACM Transactions on Database Systems (TODS)* 42, no. 4 (2017): 1-35.

Probabilistic Programming Datalog

weather($\underline{C}, \underline{T}, w \in \{\text{sun, rain}\} \sim Cat[\![P]\!]) \leftarrow \text{city}(\underline{C}, \underline{P}), \text{ts}(\underline{T}).$

Probabilistic Programming Datalog

weather($C, T, w \in \{\text{sun, rain}\} \sim Cat[\![P]\!]) \leftarrow \text{city}(C, P), \text{ts}(T).$

city('Fargo', [.1, .9]), ts('noon')

Probabilistic Programming Datalog

weather($C, T, w \in \{\text{sun, rain}\} \sim Cat[\![P]\!]) \leftarrow \text{city}(C, P), \text{ts}(T).$

city('Fargo', [.1, .9]), ts('noon')

weather('Fargo', 'noon', sun) with prob 0.1
weather('Fargo', 'noon', rain) with prob 0.9

weather($C, T, w \in \{\text{sun, rain}\} \sim Cat[\![P]\!]) \leftarrow \text{city}(C, P), \text{ts}(T).$

```
city('Fargo', [.1, .9]), ts('noon')
```

weather('Fargo', 'noon', sun) with prob 0.1
weather('Fargo', 'noon', rain) with prob 0.9

 $obs(\underline{VarId, ObsId}, v \in D \sim Cat[P]) \leftarrow lp(VarId, D, P),$ sample(VarId, ObsId). $lp(VarId, D, p \in S_{|D|} \sim Dir[H]) \leftarrow dt(VarId, D, H).$

Where do the constraints come from?

(many)

(Datalog probabilistic program)

 $\begin{aligned} &dt([red, D], ts, [1, 1, .., 1]) \leftarrow d(D, P, W). \\ &dt([blue, T], ws, [1, 1, .., 1]) \leftarrow t(T). \\ &sample([red, D], P) \leftarrow d(D, P, W). \\ &sample([blue, T], [D, P]) \leftarrow d(D, P, W), obs([red, D], P, T). \\ &qa^*(D, P, W) \leftarrow d(D, P, W), obs([blue, T], [D, P], W). \end{aligned}$

(ground constraints)

 $(x_{0,0}[s]=v_{0}^{x}x_{0,1}[n]=v_{0}^{y})v(x_{0,0}[s]=v_{1}^{x}x_{0,1}[n]=v_{1}^{y}) \\ (x_{0,0}[e]=v_{0}^{x}x_{1,0}[w]=v_{0}^{y})v(x_{0,0}[e]=v_{1}^{x}x_{0,1}[w]=v_{1}^{y}) \\ (x_{1,0}[s]=v_{0}^{x}x_{1,1}[n]=v_{0}^{y})v(x_{1,0}[s]=v_{1}^{x}x_{1,1}[n]=v_{1}^{y}) \\ (x_{0,1}[e]=v_{0}^{x}x_{1,1}[w]=v_{0}^{y})v(x_{0,1}[e]=v_{1}^{x}x_{1,1}[w]=v_{1}^{y}) \\ (x_{2,0}[s]=v_{0}^{x}x_{2,1}[n]=v_{0}^{y})v(x_{2,0}[s]=v_{1}^{x}x_{2,1}[n]=v_{1}^{y})$

27

Inference in Action

Thank you!

(Questions?)