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Furthermore, GPU-based 
sampling is bottlenecked 

by transfer overheads

 Entire neighborhoods are 
loaded in memory only to 

be discarded once the 
sample is collected
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In situ neighborhood sampling for large-scale GNN training  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Execution time breakdown of the 
sampling kernels for the 2-layer GNN

Execution time breakdown of the 
sampling kernels for the 3-layer GNN

Execution time of our epoch-wide 
kernel over the random-access kernel
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What if?

We can push down computation 
closer to the storage


