
Low Rank Approximation for Learned Query Optimization
Zixuan Yi1, Yao Tian2, Zack Ives1, Ryan Marcus1

1 University of Pennsylvania 2 The Hong Kong University of Science and Technology

Simple, low-overhead 
Linear Methods can perform 
nearly as effective as complex 
deep learning approach for 
Offline Learned QO.
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Workload Matrix M: 
Each row represents a SQL query. 
Each column represents a hint 
(parameterization of the QO).
One possible hint:
Disable Nested Loop Join
Enable Hash Join
Enable Merge Join
Enable Index Scan
Enable Seq Scan
Enable Index-only Scan

Each entry represents the latency 
time for DB to execute the query 
under the hint. 

M is LOW RANK
Intuition: two queries that behave 
similarly on some hints are likely 
to behave similarly on other hints 
as well. 
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Why? Current Learned QOs cause 
unpredictable regressions.
(“my query was fast yesterday, why 
is it slow today?”)
How? verify that potential new 
query plans are actually better than 
the default plan.
Setting: Repetitive workload!
Goal: simultaneously minimize
the workload latency and the total 
offline exploration time, while 
maintaining the “no-regressions” 
guarantee.

Offline Learned QO
Checkout the paper for more detailed info: 
zixy17.github.io/pdf/aiDM.pdf
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Option1: LimeQO 
(Linear Method Only)

Use Alternating Least Squares
Algorithm to recover the 
unobserved entries
from the observed ones.

Option2: LimeQO+ 
(Adding Query Features in)

Use query plan features in 
tree structure (including 
cardinality estimation result 
and cost) and 
QH Matrix embeddings 
as input.

LimeQO strategy for Offline Learned QO
Generate the full matrix, then explore the queries with the biggest potential gain ratio
(current min observed value – predicted row min) / predicted row min

Tree Convolution Layers

Experiments
Dataset: CEB core workload 
• 3133 queries in total
• takes ~3 hours for PostgreSQL default to finish 
• ~1 hour if every query is chosen the optimal hint

Random randomly explore 
unobserved entries.
Greedy explore the 
tail latency queries first.
LimeQO uses only 
Linear Method to predict.
LimeQO+ uses query features 
and matrix embeddings 
to train and predict.
Offline-Bao uses TCNN to 
select unobserved entries to 
explore. It does not verify plans 
before selecting them so 
regressions happens.

Total Latency Time is simply 
adding up the observed row 
minimum in the workload matrix.
Offline Exploration Time is the 
total time to execute the query 
plan + overhead time of the 
technique. We also applied 
timeout and censored techniques 
to reduce offline time.

Caption: Both LimeQO and LimeQO+ outperform Bao. 
Even without any features, pure linear method 
(LimeQO) can perform nearly as effective as the one 
using complex Neural Network (LimeQO+).


