Bayesian Query Super-Optimization

Jeffrey Tao, Natalie Maus, Haydn Jones, Jacob Gardner, Ryan Marcus | DB@Penn

Penn

UNIVERSITY 0f PENNSYLVANIA

&

VAE
9 Decode & execute query DB
Using our plan encoding format which covers join orderings and

Encoder Decoder operator selection. Execute decoded plan against the database. .
e Bayesian Optimization
Latent Space Proceeds in a loop of
_>
eTrain VAE - V\/ e e eRecord latency ®

Sample random PK-FK join
gueries from schema, plan

e Next observation®

Update surrogate with latent
space point, latency observation

with Postgres, encode

Query of interest
SELECT min(...)
FROM title t,

Thompson sampling to balance exploration/
exploitation, uncertainty-based timeout

9 Initialize Optimization®

h Surrogate Model

movie_companies mc,

WHERE mc.movie_1id t.1d

50-200 (Plan, Latency) pairs;
random (non-x-join) or
Postgresqgl with hints

%
Query Latency

Observations

<\

Uncertainty

Latent space

Figure 1. Our system super-optimizes queries by searching the space of possible query plans using Bayesian Optimization.

You have a set of queries that are well-known, run
frequently, and yet are under-optimized!

What if you optimized your queries offline?
1. The space of possible plans is vast.
2. Executing non-optimal queries is expensive!

Bayesian Optimization over structured inputs|1]
with censored observations is sample-efficient and
minimizes the impact of bad plans with timeouts.

Evaluated over the JOB vs. PostgreSQL w/ optimal hints (Bao [2]) and
reinforcement learning (Balsa [3]).

e After a few hours optimizing each query (parallelizable across
queries), beats optimal hints on all queries and reduces total JOB
execution time by ~1/3.

e Most optimization runs bottom out in low 100s of query executions.

e Finds strictly better plans than other methods

e Random query plan search (with timeouts) is unreasonably effective!

JOB_16B comparison of optimization strategies

PostgreSQL

Geometric mean improvement over PostgreSQL

1.0

Bao
= Qur Method
—— Balsa

o
(0]
1

o
(@)]
1

©
o
1

o
N

Geometric mean proportional runtime

0.0

1 2 3 4 5 6 7 8 9
Wall clock time (hours)

10

Figure 2. 1.0 is parity with PostgreSQL,
lower is better. Our method produces the
most per-query improvement.

Sum of best plan runtime for each query

140 A

120 A

Plan runtime (s)

100 A

Whole JOB runtime (s)
o ™
o o

o
o

N
o
I

0

PostgreSQL Random Our Method

Bao

Figure 3. Lower is better. Our method reduces

the total workload execution time by the most.

20

=
o

w A U1 O NOOO

=== Bao

= Random
= Qur Method
- Balsa

Ll ____________________________

2h 3h 4h

Cumulative optimization time (hours)

1h 5h

Optimized Plan for JOB 16B

Figure 4 (right). Whether our method significantly improves upon the baselines varies per-query.
Our method finds plans equivalent to or better than the best baseline on all queries. Optimized

plans vary in shape (across JOB, 47 left deep, 51 zigzag, 14 bushy).

Jump-start optimization using the optimal Postgres hint set as a timeout
Multi-task optimization of a whole workload by targeting the most-
promising queries

Train generative model for few-shot optimization of arbitrary queries

Plan runtime (s)

[1] Maus et al., Local Latent Space Bayesian Optimization over Structured Inputs, NeurlPS 22
[2] Marcus et al., Bao: Making Learned Query Optimization Practical, SIGMOD ‘21
[3] Yang et al., Balsa: Learning a Query Optimizer Without Expert Demonstrations, SIGMOD ‘22

speculative.tech/nedb2024

©
o

X
o

o
o

u
o

&
o

JOB_19D comparison of optimization strategies

S —

PostgreSQL
=== Bao
= Random
= Qur Method
- Balsa

L

2h 3h 4h

Cumulative optimization time (hours)

1lh 5h



