
You have a set of queries that are well-known, run 
frequently, and yet are under-optimized!



What if you optimized your queries offline
 The space of possible plans is vast
 Executing non-optimal queries is expensive!



Bayesian Optimization over structured inputs[1] 
with censored observations is sample-efficient and 
minimizes the impact of bad plans with timeouts.
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Motivation

 Jump-start optimization using the optimal Postgres hint set as a timeou
 Multi-task optimization of a whole workload by targeting the most-

promising querie
 Train generative model for few-shot optimization of arbitrary queries

Future Work

Evaluated over the JOB vs. PostgreSQL w/ optimal hints (Bao [2]) and 
reinforcement learning (Balsa [3])

 After a few hours optimizing each query (parallelizable across 
queries), beats optimal hints on all queries and reduces total JOB 
execution time by ~1/3

 Most optimization runs bottom out in low 100s of query executions
 Finds strictly better plans than other method
 Random query plan search (with timeouts) is unreasonably effective!
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Figure 2. 1.0 is parity with PostgreSQL, 
lower is better. Our method produces the 
most per-query improvement.

Figure 1. Our system super-optimizes queries by searching the space of possible query plans using Bayesian Optimization.

Figure 3. Lower is better. Our method reduces 
the total workload execution time by the most.

Figure 4 (right). Whether our method significantly improves upon the baselines varies per-query. 
Our method finds plans equivalent to or better than the best baseline on all queries. Optimized 
plans vary in shape (across JOB, 47 left deep, 51 zigzag, 14 bushy).
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