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Figure 1. Our system super-optimizes queries by searching the space of possible query plans using Bayesian Optimization.

You have a set of queries that are well-known, run
frequently, and yet are under-optimized!

What if you optimized your queries offline?
1. The space of possible plans is vast.
2. Executing non-optimal queries is expensive!

Bayesian Optimization over structured inputs|1]
with censored observations is sample-efficient and
minimizes the impact of bad plans with timeouts.

Evaluated over the JOB vs. PostgreSQL w/ optimal hints (Bao [2]) and
reinforcement learning (Balsa [3]).

e After a few hours optimizing each query (parallelizable across
queries), beats optimal hints on all queries and reduces total JOB
execution time by ~1/3.

e Most optimization runs bottom out in low 100s of query executions.

e Finds strictly better plans than other methods

e Random query plan search (with timeouts) is unreasonably effective!
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Figure 2. 1.0 is parity with PostgreSQL,
lower is better. Our method produces the
most per-query improvement.
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Figure 3. Lower is better. Our method reduces

the total workload execution time by the most.
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Figure 4 (right). Whether our method significantly improves upon the baselines varies per-query.
Our method finds plans equivalent to or better than the best baseline on all queries. Optimized

plans vary in shape (across JOB, 47 left deep, 51 zigzag, 14 bushy).

Jump-start optimization using the optimal Postgres hint set as a timeout
Multi-task optimization of a whole workload by targeting the most-
promising queries

Train generative model for few-shot optimization of arbitrary queries

Plan runtime (s)
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