
You have a set of queries that are well-known, run
frequently, and yet are under-optimized!

What if you optimized your queries offline�
�� The space of possible plans is vast�
�� Executing non-optimal queries is expensive!

Bayesian Optimization over structured inputs[1]
with censored observations is sample-efficient and
minimizes the impact of bad plans with timeouts.

Jeffrey Tao, Natalie Maus, Haydn Jones, Jacob Gardner, Ryan Marcus | DB@Penn

Bayesian Query Super-Optimization

[1] Maus et al., Local Latent Space Bayesian Optimization over Structured Inputs, NeurIPS ‘22

[2] Marcus et al., Bao: Making Learned Query Optimization Practical, SIGMOD ‘21

[3] Yang et al., Balsa: Learning a Query Optimizer Without Expert Demonstrations, SIGMOD ‘22

Motivation

� Jump-start optimization using the optimal Postgres hint set as a timeou�
� Multi-task optimization of a whole workload by targeting the most-

promising querie�
� Train generative model for few-shot optimization of arbitrary queries

Future Work

Evaluated over the JOB vs. PostgreSQL w/ optimal hints (Bao [2]) and
reinforcement learning (Balsa [3])�

� After a few hours optimizing each query (parallelizable across
queries), beats optimal hints on all queries and reduces total JOB
execution time by ~1/3�

� Most optimization runs bottom out in low 100s of query executions�
� Finds strictly better plans than other method�
� Random query plan search (with timeouts) is unreasonably effective!

Results

Surrogate Model

Observations

Uncertainty

Latent space

Q
ue

ry
 L

at
en

cy

Encoder Decoder

Latent Space

VAE

SELECT min(...)

 FROM title t, 
 movie_companies mc,

 ...

 WHERE mc.movie_id = t.id

 ...

Query of interest

Thompson sampling to balance exploration/
exploitation, uncertainty-based timeout

Using our plan encoding format which covers join orderings and
operator selection. Execute decoded plan against the database.

Update surrogate with latent

space point, latency observation

50-200 (Plan, Latency) pairs;

random (non-×-join) or
Postgresql with hints

Proceeds in a loop of

DB

1 Train VAE

2 Initialize Optimization

3 Next observation

4 Decode & execute query

5 Record latency

6 Bayesian Optimization

3 5

Sample random PK-FK join
queries from schema, plan
with Postgres, encode

speculative.tech/nedb2024

Figure 2. 1.0 is parity with PostgreSQL,
lower is better. Our method produces the
most per-query improvement.

Figure 1. Our system super-optimizes queries by searching the space of possible query plans using Bayesian Optimization.

Figure 3. Lower is better. Our method reduces
the total workload execution time by the most.

Figure 4 (right). Whether our method significantly improves upon the baselines varies per-query.
Our method finds plans equivalent to or better than the best baseline on all queries. Optimized
plans vary in shape (across JOB, 47 left deep, 51 zigzag, 14 bushy).

Optimized Plan for JOB 16B

