You have a set of queries that are well-known, run frequently, and yet are under-optimized!

What if you optimized your queries offline?
1. The space of possible plans is vast.
2. Executing non-optimal queries is expensive!

Bayesian Optimization over structured inputs[1] with censored observations is sample-efficient and minimizes the impact of bad plans with timeouts.

Bayesian Query Super-Optimization

You have a set of queries that are well-known, run frequently, and yet are under-optimized!

What if you optimized your queries offline?
1. The space of possible plans is vast.
2. Executing non-optimal queries is expensive!

Bayesian Optimization over structured inputs[1] with censored observations is sample-efficient and minimizes the impact of bad plans with timeouts.

Bayesian Optimization

You have a set of queries that are well-known, run frequently, and yet are under-optimized!

What if you optimized your queries offline?
1. The space of possible plans is vast.
2. Executing non-optimal queries is expensive!

Bayesian Optimization over structured inputs[1] with censored observations is sample-efficient and minimizes the impact of bad plans with timeouts.

Bayesian Optimization

You have a set of queries that are well-known, run frequently, and yet are under-optimized!

What if you optimized your queries offline?
1. The space of possible plans is vast.
2. Executing non-optimal queries is expensive!

Bayesian Optimization over structured inputs[1] with censored observations is sample-efficient and minimizes the impact of bad plans with timeouts.

Bayesian Optimization

You have a set of queries that are well-known, run frequently, and yet are under-optimized!

What if you optimized your queries offline?
1. The space of possible plans is vast.
2. Executing non-optimal queries is expensive!

Bayesian Optimization over structured inputs[1] with censored observations is sample-efficient and minimizes the impact of bad plans with timeouts.

Bayesian Optimization

You have a set of queries that are well-known, run frequently, and yet are under-optimized!

What if you optimized your queries offline?
1. The space of possible plans is vast.
2. Executing non-optimal queries is expensive!

Bayesian Optimization over structured inputs[1] with censored observations is sample-efficient and minimizes the impact of bad plans with timeouts.

Bayesian Optimization

You have a set of queries that are well-known, run frequently, and yet are under-optimized!

What if you optimized your queries offline?
1. The space of possible plans is vast.
2. Executing non-optimal queries is expensive!

Bayesian Optimization over structured inputs[1] with censored observations is sample-efficient and minimizes the impact of bad plans with timeouts.

Bayesian Optimization

You have a set of queries that are well-known, run frequently, and yet are under-optimized!

What if you optimized your queries offline?
1. The space of possible plans is vast.
2. Executing non-optimal queries is expensive!

Bayesian Optimization over structured inputs[1] with censored observations is sample-efficient and minimizes the impact of bad plans with timeouts.