
CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

CS660: Grad Intro to Database Systems

Class 17: Relational Query Optimization

Instructor: Manos Athanassoulis

https://bu-disc.github.io/CS660/

https://bu-disc.github.io/CS460/

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Programming Assignment Demos

This week we perform the fire demo (code-review).

All groups must schedule a demo.

If you haven’t done or scheduled your demo by now, please do.

There will be one more demo.

2

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Guest Lecture

“OSDB: Exposing the Operating System’s Inner Database”

Thu, Nov 21

by George Neville-Neil

3

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Big Picture

4

Query Parser

Query Optimizer

Plan
Generator

Plan Cost
Estimator

Query Plan Evaluator

Catalog Manager

Select *

From Blah B

Where B.blah = “foo”

Query

Schema Statistics

Last three lectures:
Algorithms & Costs

Next two lectures:
find best plan

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Review of Query Processing

Implementation of single Relational Operations

Choices depend on indexes, memory, stats,…

Joins
– Blocked nested loops:

• simple, exploits extra memory

– Indexed nested loops:
• best if one relation small and one indexed

– Sort/Merge Join
• good with small amount of memory, bad with duplicates

– Hash Join
• fast (enough memory), bad with skewed data

5

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Units

Query Optimization

Overview

Query optimization

Cost estimation

Plan enumeration and costing

System R strategy
6

Readings: Chapter 12.4

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Query Optimization
Typically many methods of executing a given query, all giving same answer

Cost of alternative methods often varies enormously

Desirable to find a low-cost execution strategy

We will cover:

– Relational algebra equivalences

– Cost estimation (building on previous cost models)
• Result size estimation and reduction factors

• Statistics and Catalogs

– Enumerating alternative plans

Will focus on “System R”-style optimizers

7

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Refresh: Query execution

8

Query Parser

Query Optimizer

Plan
Generator

Plan Cost
Estimator

Query Plan Evaluator

Catalog Manager

Usually there is a
heuristics-based
rewriting step before
the cost-based steps.

Select *

From Blah B

Where B.blah = “foo”

Query

Schema Statistics

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

A Familiar Schema for Examples

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)
Boats (bid: integer, bname: string, color: string)

9

S: N=500, ps=80, ts=50b
R: M=1000, pR=100, ts=40b

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

A tree, with relational algebra operators as nodes

Each operator labeled with choice of algorithm

Query Plans

Sailors Reserves

sid=sid

bid=100 rating > 5

sname

(Page-Oriented

Nested loops)

(On-the-fly)

(On-the-fly)Plan:

By convention, outer is on left. 10

π

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Iterator Interface

A note on implementation:

Relational operators at nodes support
uniform iterator interface:

open(), get_next(), close()

Unary Operators – On open() call
open() on child

Binary Operators – call open() on left
child then on right

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

11

π

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Query Optimization Overview

1.Query first broken into “blocks”

2.Each block converted to relational algebra

3.Then, for each block, several alternative query plans are considered

4.Plan with lowest estimated cost is selected

12

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid AND

R.bid=100 AND S.rating>5

A Query:

To optimize:

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Motivating Example

13

S: N=500, ps=80, ts=50b
R: M=1000, pR=100, ts=40b

Sailors Reserves

sid=sid

bid=100 rating > 5

sname

π

(Page-Oriented
Nested loops)

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid AND

R.bid=100 AND S.rating>5

• Cost: 500+500*1000 I/Os

• By no means the worst plan!

• Misses several opportunities: selections could have been
pushed earlier, no use is made of any available indexes, etc.

• Goal: Find more efficient plans to compute the same answer.

(on-the-fly)

(on-the-fly)

Assumptions:
• 100 boats
• 10 different ratings
• 5 buffer pool pages

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Sailors

Reserves

Alternative Plans - Pushing Selects

14

S: N=500, ps=80, ts=50b
R: M=1000, pR=100, ts=40b

sid=sid

bid=100 rating > 5

sname

π

(Page-Oriented
Nested loops)

(on-the-fly)

(on-the-fly)

Assumptions:
• 100 boats
• 10 different ratings
• 5 buffer pool pages

N+N*M=500,500 IOs

sid=sid

rating > 5

sname

π

(Page-Oriented
Nested loops)

(on-the-fly)

(on-the-fly)

Sailors Reserves

bid=100

(on-the-fly)

500+500*(5/10)*1000=250,500 IOs

read all S

for qualifying tuples from S
read R

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Sailors Reserves

Alternative Plans - Pushing Selects

15

S: N=500, ps=80, ts=50b
R: M=1000, pR=100, ts=40b

sid=sid

snameπ

(Page-Oriented
Nested loops)

(on-the-fly)

(on-the-fly)

Assumptions:
• 100 boats
• 10 different ratings
• 5 buffer pool pages

250,500 IOs

sid=sid

rating > 5

snameπ

(Page-Oriented
Nested loops)

(on-the-fly)

(on-the-fly)

Reserves

bid=100

(on-the-fly)

500+500*(5/10)*1000=250,500 IOs

read all S

for qualifying tuples from S
read R

Sailors

bid=100

(on-the-fly)

 cost is the same!
need to read all of R to check
selection and join conditions

rating > 5

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Alternative Plans - Pushing Selects

16

S: N=500, ps=80, ts=50b
R: M=1000, pR=100, ts=40b

sid=sid

snameπ

(Page-Oriented
Nested loops)

(on-the-fly)

(on-the-fly)

Assumptions:
• 100 boats
• 10 different ratings
• 5 buffer pool pages

250,500 IOs

Reserves

1000+1000*(1/100)*500=6,000 IOs

read all R

read S only for
qualifying tuples from R

Sailors

(on-the-fly)

much lower cost!
because of selectivity of “bid=100”

sid=sid

snameπ

(Page-Oriented
Nested loops)

(on-the-fly)

(on-the-fly)

Sailors

Reserves

bid=100
(on-the-fly)

rating > 5

bid=100

rating > 5

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Alternative Plans - Pushing Selects

17

S: N=500, ps=80, ts=50b
R: M=1000, pR=100, ts=40b

Assumptions:
• 100 boats
• 10 different ratings
• 5 buffer pool pages

6000 IOs

sid=sid

snameπ

(Page-Oriented
Nested loops)

(on-the-fly)

(on-the-fly)

Sailors

Reserves

bid=100
(on-the-fly)

rating > 5

Reserves Sailors

sid=sid

rating > 5

snameπ

(Page-Oriented
Nested loops)

(Scan S & write to temp T2)

(on-the-fly)

bid=100

(on-the-fly)

1000+500+500*(5/10)+1000*(1/100)*500*(5/10)=4,250 IOs
read all R

read all of S once & write
the qualifying tuples to T2

for all qualifying
tuples of R, read T2

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Alternative Plans - Pushing Selects

18

S: N=500, ps=80, ts=50b
R: M=1000, pR=100, ts=40b

Assumptions:
• 100 boats
• 10 different ratings
• 5 buffer pool pages

4250 IOs

Reserves Sailors

sid=sid

rating > 5

snameπ

(Page-Oriented
Nested loops)

(Scan S &
write to temp T2)

(on-the-fly)

bid=100

(on-the-fly)

500+1000+1000*(1/100)+500*(5/10)*1000*(1/100)=4,010 IOs
read all S

read all of R once & write
the qualifying tuples to T2

for all qualifying
tuples of S, read T2

ReservesSailors

sid=sid

rating > 5

snameπ

(Page-Oriented
Nested loops)

(Scan S & write to temp T2)

(on-the-fly)

bid=100

(on-the-fly)

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Alternative Plans - Pushing Selects

19

S: N=500, ps=80, ts=50b
R: M=1000, pR=100, ts=40b

Assumptions:
• 100 boats
• 10 different ratings
• 5 buffer pool pages

Reserves Sailors

sid=sid

rating > 5

snameπ

(Page-Oriented
Nested loops)

(Scan S &
write to temp T2)

(on-the-fly)

bid=100

(Scan R &
write to temp T1)

1000+1000*(1/100)+500+500*(5/10)+10+4*250=2,770 IOs

read all of R once & write
to T1 (10 pages) BNLJ with k=3, T1+ceil(T1/k)*T2, ceil(10/3)=4

read S & write to
T2 (250 pages)

instead of BNLJ we could also SMJ:
with join cost 3*(10+250) and total cost
1000+10+500+250+3*(10+250)=2,540 IOs

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

read R & write to T1
(10 pages * 4/40=1 page)

Alternative Plans – Pushing 𝜎 & 𝜋

20

S: N=500, ps=80, ts=50b
R: M=1000, pR=100, ts=40b

Assumptions:
• 100 boats
• 10 different ratings
• 5 buffer pool pages
• sid occupies 4 bytes
• sname occupies 12b

Reserves Sailors

sid=sid

rating > 5

snameπ

(Page-Oriented
Nested loops)

(Scan S &
write to temp T2)

(on-the-fly)

bid=100

(Scan R &
write to T1)

sidπ π sname, sid

1000+1+500+80+1+80=1,662 IOs
BNLJ but T1 fits in memory
so join cost: T1+T2

read S & write to
T2 (250 pages * 16/50=80 pages)

important to project sname, sid – why?

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

read S

Alternative Plans – Indexes

21

S: N=500, ps=80, ts=50b
R: M=1000, pR=100, ts=40b

Assumptions:
• 100 boats
• 10 different ratings
• 5 buffer pool pages
• clustered idx on R.sid

• height = 3

Reserves

Sailors

sid=sid

rating > 5

snameπ

(Index NLJ with pipelining)

(on-the-fly)

bid=100

500+500*(5/10)*(3+1)=1,500 IOs

for every page with
qualifying tuples

(on-the-fly) (clustered index on sid)

probe the index

note that projecting unwanted fields
from outer here does not help! why?

(on-the-fly)

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

read qualifying tuples
from R using the idx

Alternative Plans – Indexes

22

S: N=500, ps=80, ts=50b
R: M=1000, pR=100, ts=40b

Assumptions:
• 100 boats
• 10 different ratings
• 5 buffer pool pages
• clustered idx on R.sid

• height = 3
• idx on S.Sid

• hash idx, cost = 1.2

Reserves

Sailors

sid=sid

rating > 5

snameπ

(Index NLJ with pipelining)

(on-the-fly)

bid=100

10+1000*(1/100)*100*1.2=1,210 IOs

for every qualifying tuple (multiply by pR)

(idx access,
on-the-fly)

(index)

probe the index

since sid is the PK of S, there is only
one matching tuple so unclustered is ok!

if idx on S.sid does not exist, then push rating>5

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Units

Query Optimization

Overview

Query optimization

Cost estimation

Plan enumeration and costing

System R strategy
23

Readings: Chapters 15.1 and 15.3

The tools needed to systematically find the best plan!

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Step 1: Break query into Query Blocks

Query block = unit of optimization

Nested blocks are usually treated as calls to a subroutine, made
once per outer tuple

– (This is an over-simplification, but serves for now)

24

SELECT S.sname
FROM Sailors S
WHERE S.age IN

(SELECT MAX (S2.age)
FROM Sailors S2
GROUP BY S2.rating)

Nested block

Outer block

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Step 2: Converting query block into
relational algebra expression

SELECT S.sid
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = “red”

25

𝜋𝑆.𝑆𝑖𝑑 𝜎𝐵.𝑐𝑜𝑙𝑜𝑟="𝑟𝑒𝑑" 𝑆𝑎𝑖𝑙𝑜𝑟𝑠 ⋈ 𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑠 ⋈ 𝐵𝑜𝑎𝑡𝑠

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

A Fancier Example …

For each sailor with the highest rating (over all sailors), and at
least two reservations for red boats, find the sailor id and the
earliest date on which the sailor has a reservation for a red boat

26

SELECT S.sid, MIN (R.day)
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = “red”
AND S.rating = (SELECT MAX (S2.rating) FROM Sailors S2)
GROUP BY S.sid

HAVING COUNT (*) >= 2

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

SELECT S.sid, MIN (R.day)
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = “red”
AND S.rating = (SELECT MAX (S2.rating) FROM Sailors S2)
GROUP BY S.sid

HAVING COUNT (*) >= 2

Example translated to relational algebra

Inner Block

27

𝜋𝑆.𝑆𝑖𝑑, 𝑀𝐼𝑁(𝑅.𝑑𝑎𝑦)

𝐻𝐴𝑉𝐼𝑁𝐺𝐶𝑂𝑈𝑁𝑇 ∗ >2 𝐺𝑅𝑂𝑈𝑃 𝐵𝑌𝑆.𝑆𝑖𝑑 𝜎𝐵.𝑐𝑜𝑙𝑜𝑟=𝑟𝑒𝑑 ∧ 𝑆.𝑟𝑎𝑡𝑖𝑛𝑔=𝑣𝑎𝑙 𝑆𝑎𝑖𝑙𝑜𝑟𝑠 ⋈ 𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑠 ⋈ 𝐵𝑜𝑎𝑡𝑠

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Select-Project-Join Optimization
Core of every query is a select-project-join (SPJ) expression

Other aspects, if any, carried out on result of SPJ core:
Group By (either sort or hash)

Having (apply filter on-the-fly)

Aggregation (easy once grouping done)

Order By (sorting is the name of the game)

Not much room to exploit equivalences on non-SPJ parts

Focus on optimizing SPJ core

28

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Relational Algebra Equivalences

29

Selections: 𝜎𝐶1∧⋯∧𝐶𝑛 𝑅 ≡ 𝜎𝐶1 … 𝜎𝑛 𝑅 (Cascade)

𝜎𝐶1 𝜎𝐶2 𝑅 ≡ 𝜎𝐶2 𝜎𝐶1 𝑅 (Commute)

Projections: 𝜋𝑎1 𝑅 ≡ 𝜋𝑎1 … 𝜋𝑎𝑛 𝑅 (Cascade)

𝑎𝑖 is a set of attributes of R and 𝑎𝑖 ⊆ 𝑎𝑖+1 for 𝑖 = 1,2,… , 𝑛 − 1

These equivalences allow us to “push”
selections and projections ahead of joins

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Examples …

σage<18 ٨ rating>5 (Sailors)

↔ σage<18 (σrating>5 (Sailors))

↔ σrating>5 (σage<18 (Sailors))

πage,rating (Sailors) ↔ πage (πrating (Sailors)) (??)

πage,rating (Sailors) ↔ πage,rating (πage,rating,sid (Sailors))

30

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Another Equivalence

A projection commutes with a selection that only
uses attributes retained by the projection

πage, rating, sid (σage<18 ٨ rating>5 (Sailors))

↔ σage<18 ٨ rating>5 (πage, rating, sid (Sailors))

31

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Equivalences Involving Joins

These equivalences allow us to choose different join orders

R (S T) (R S) T (Associative)

(R S) (S R) (Commutative)

32

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

σS.sid = R.sid (Sailors x Reserves)

↔ Sailors S.sid = R.sid Reserves

Mixing Joins with Selections & Projections

Converting selection + cross-product to join

Selection on just attributes of S commutes with R S

We can also “push down” projection (but be careful…)

σS.age<18 (Sailors S.sid = R.sid Reserves)

↔ (σS.age<18 (Sailors)) S.sid = R.sid Reserves

πS.sname (Sailors S.sid = R.sid Reserves)

↔ πS.sname (πsname,sid(Sailors) S.sid = R.sid πsid(Reserves))
33

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

What do you think? True or False?

R x S = S x R

(R x S) x T = R x (S x T)

p(R U S) = p(R) U S

R U S = S U R

p(R - S) = R - p(S)

R U (S U T) = (R U S) U T

R.p v S.q (R S) =

[(p R) S] U [R (q S)]

7.

1.

2.

3.

4.

5.

6.

34

Think about them
and discuss in piazza!!!

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Query Rewriting

Modern DBMS’s may rewrite queries before the optimizer sees them

Main purpose: de-correlate and/or flatten nested subqueries

De-correlation:
– Convert correlated subquery into uncorrelated subquery

Flattening:
– Convert query with nesting into query w/o nesting

35

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Example: Decorrelating a Query

Advantage: nested block only needs to be
executed once (rather than once per S tuple)

36

SELECT S.sid
FROM Sailors S
WHERE EXISTS

(SELECT *
FROM Reserves R
WHERE R.bid=103
AND R.sid=S.sid)

Equivalent uncorrelated query:

SELECT S.sid
FROM Sailors S
WHERE S.sid IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid=103)

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Example: “Flattening” a Query

Advantage: can use a join algorithm + optimizer can
select among join algorithms & reorder freely

SELECT S.sid
FROM Sailors S
WHERE S.sid IN

(SELECT R.sid
FROM Reserves R
WHERE R.bid=103)

Equivalent non-nested query:

SELECT S.sid
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

AND R.bid=103

37

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Query transformations: Summary

Before optimizations, queries are flattened and de-correlated

Queries are first broken into blocks

Blocks are converted to relational algebra expressions

Equivalence transformations are used to push down selections and
projections

38

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

CS660: Grad Intro to Database Systems

Class 18: Relational Query Optimization
(cont.)

Instructor: Manos Athanassoulis

https://midas.bu.edu/classes/CS660/

https://midas.bu.edu/classes/CS460/

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Units

Query Optimization

Overview

Query optimization

Cost estimation

Plan enumeration and costing

System R strategy
40

Readings: Chapter 15.2

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Recall: Query Optimization Overview

1. Query first broken into “blocks”

2. Each block converted to relational algebra

3. Then, for each block, several alternative query plans are considered

4. Plan with lowest estimated cost is selected

41

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid AND

R.bid=100 AND S.rating>5

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(sname)(bid=100 rating > 5) (Reserves Sailors)

π

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Cost-based Query Sub-System

42

Query Parser

Query Optimizer

Plan
Generator

Plan Cost
Estimator

Query Plan Evaluator

Catalog Manager

Usually there is a
heuristics-based
rewriting step before
the cost-based steps.

Schema Statistics

Select *

From Blah B

Where B.blah = “foo”

Query

Steps 3 & 4

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Two Main Issues

1. For a given query, what plans are considered?
Algorithm to search plan space for cheapest (estimated) plan.

2. How is the cost of a plan estimated?

Ideally: Want to find best plan.

Reality: Avoid worst plans!

43

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Highlights of System R Optimizer

Impact:
– Most widely used currently; works well for < 10 joins

Cost estimation:
– Very inexact, but works okay in practice

– Statistics, maintained in system catalogs, used to estimate cost of operations and
result sizes

– Considers combination of CPU and I/O costs

– More sophisticated techniques known now

Plan Space: Too large, must be pruned
– Only the space of left-deep plans is considered

– Cross products are avoided

44

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Schema for Examples

Reserves:
– tuple size is 40 bytes, 100 tuples per page, 1000 pages, 100 distinct bids

Sailors:
– tuple size is 50 bytes, 80 tuples per page, 500 pages, 10 Ratings, 40,000 sids

45

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Cost Estimation

For each plan considered:
– Must estimate cost of each operation in plan tree.

• Depends on input cardinalities

• We’ve already discussed how to estimate the cost of operations
(sequential scan, index scan, joins, etc.)

– Must estimate size of result for each operation in tree!

• Use information about the input relations

• For selections and joins, assume independence of predicates

– In System R, cost is boiled down to a single number consisting of #I/O + factor *
#CPU instructions

49

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Statistics and Catalogs
Need information about the relations and indexes involved. Catalogs
typically contain at least:

– # tuples (NTuples) and # pages (NPages) per relation

– # distinct key values (NKeys) for each index

– low/high key values (Low/High) for each index

– Index height (IHeight) for each tree index

– # index pages (INPages) for each index

Statistics in catalogs are updated periodically
– Updating whenever data changes is too expensive; lots of approximation anyway, so slight

inconsistency is OK

More detailed information (e.g., histograms of the values in some field)
are sometimes stored

50

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Size Estimation and Reduction Factors

Consider a query block:

Maximum # tuples in result is the product of the cardinalities of relations
in the FROM clause

Reduction factor (RF) associated with each term reflects the impact of the
term in reducing result size

RF is usually called “selectivity”

51

SELECT attribute list
FROM relation list
WHERE term1 AND ... AND termk

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Result Size Estimation for Selections

Result cardinality = Max # tuples * product of all RF’s
(Implicit assumption that values are uniformly distributed and terms are independent!)

Term col=value (given index I on col)

RF = 1/NKeys(I)

Term col>value

RF = (High(I)-value)/(High(I)-Low(I))

Note: if missing indexes, assume RF = 1/10

52

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Result Size Estimation for Joins

Q: Given a join of R and S, what is the range of possible result sizes (in
#of tuples)?

– Hint: what if R_cols ⋂ S_cols = ?

– R_cols ⋂ S_cols is a key for R (and a Foreign Key in S)?

53

Every row of S will have one match in R: NTuples(S)

Anything between 0 and NTuples(S)*NTuples(R)

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Result Size Estimation for Joins

General case: R_cols ⋂ S_cols = {A} (and A is key for neither)

– If NKeys(A,S) > NKeys(A,R)
• Assume S values are a superset of R values, so each R value finds a matching value in S

• Estimate each tuple r of R generates NTuples(S)/NKeys(A,S) result tuples, so…

est_size = NTuples(R) * NTuples(S)/NKeys(A,S)

– Else, if NKeys(A,R) > NKeys(A,S) … symmetric argument, yielding:

est_size = NTuples(S) * NTuples(R)/NKeys(A,R)

– Overall:

est_size = NTuples(R)*NTuples(S)/MAX{NKeys(A,S), NKeys(A,R)}

54

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

On the Uniform Distribution Assumption

Assuming uniform distribution is rather crude

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 140 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Uniform distribution approximating DDistribution D

55

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Histograms

For better estimation, use a histogram

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 140 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Equidepth histogramEquiwidth histogram

Bucket 1

Count=8

Bucket 2

Count=4

Bucket 3

Count=15

Bucket 4

Count=3

Bucket 5

Count=15

Bucket 1

Count=9

Bucket 2

Count=10

Bucket 3

Count=10

Bucket 4

Count=7

Bucket 5

Count=9

56

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Cost estimation: Summary

The costs of possible strategies vary widely

Estimate result sizes using statistics

Estimate costs of each operator

Focus on optimizing select-project-join (SPJ) blocks

57

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Units

Query Optimization

Overview

Query optimization

Cost estimation

Plan enumeration and costing

System R strategy
64

Readings: Chapter 15.4

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Enumeration of Alternative Plans

There are two main cases:
– Single-relation plans

– Multiple-relation plans

For queries over a single relation:
– Each available access path (file scan / index) is considered, and the one with the

least estimated cost is chosen

– The different operations are essentially carried out together (e.g., if an index is
used for a selection, projection is done for each retrieved tuple)

65

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Cost Estimates for Single-Relation Plans

Index I on primary key matches selection:
– Cost is Height(I)+1 for a B+ tree, about 1+1.2 for hash index

Clustered index I matching one or more selects:
– (NPages(I)+NPages(R)) * product of RF’s of matching selects.

Non-clustered index I matching one or more selects:
– (NPages(I)+NTuples(R)) * product of RF’s of matching selects

Sequential scan of file:
– NPages(R)

– Note: Must also charge for duplicate elimination if required

66

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Example
Reminder: Sailors has 500 pages, 40000 tuples, and index page holds 800 sids.

NPages(I) = 40000 tuples / 800 sids per page = 50.

If we have an index on rating:

– Cardinality: (1/NKeys(I)) * NTuples(S) = (1/10)*40000 tuples retrieved

– Clustered index: cost = (1/NKeys(I)) * (NPages(I)+NPages(S)) = (1/10) * (50+500) = 55 pages retrieved.

– Unclustered index: cost = (1/NKeys(I)) * (NPages(I)+NTuples(S)) = (1/10) * (50+40000) = 4005 pages.

If we have an index on sid:

– Would have to retrieve all tuples/pages.
With a clustered index, the cost is 50+500 / with unclustered index, 50+40000

Doing a file scan:

– We retrieve all file pages (500)

68

SELECT S.sid
FROM Sailors S
WHERE S.rating=8

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Queries Over Multiple Relations

As number of joins increases, number of alternative plans grows rapidly →
need to restrict search space

Fundamental decision in System R:
only left-deep join trees are considered

– Left-deep trees allow us to generate all fully pipelined plans

• Intermediate results are not written to temporary files

• Not all left-deep trees are fully pipelined (e.g., SM join)

70
BA

C

D

BA

C

D

C DBA

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Plan Enumeration – The Hard Way
1. Select order of relations (the only degree of freedom for left-deep

plans)
– maximum possible orderings = N! (but no X-products)

2. For each join, select join algorithm

3. For each input relation, select access method

Q: How many plans for a query over N relations?

Back-of-envelope calculation:
• With 3 join algorithms, I indexes per relation:

plans ≈ [N!] * [3(N-1)] * [(I + 1)N]

• Suppose N = 3, I = 2: # plans ≈ 3! * 32 * 33 = 1458 plans

For each candidate plan, must estimate cost

71Query optimization is NP-complete

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Plan Enumeration Example

Let’s assume:

– Two join algorithms to choose from:

• Hash-Join / NL-Join (page-oriented or Index-NL-Join)

– Unneeded columns removed at each stage

– Non-clustered B+Tree index on R.sid; no other indexes

– R.sid index has 50 pages

– S has 500 pages, 80 tuples/page

– R has 1000 pages, 100 tuples/page

– B has 10 pages

– 100 R S tuples fit on a page

74

SELECT S.sname, B.bname, R.day
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid

after join we keep only
the needed columns

important to calculate the
result size in #pages

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Candidate Plans

1. Enumerate relation orderings:

76

RS

B

SELECT S.sname, B.bname, R.day
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid

BS

R

SR

B

BR

S

RB

S
x

SB

Rx

Prune plans with cross-products immediately!

𝑆 ⋈ 𝑅 𝑅 ⋈ 𝐵

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

2. Enumerate join algorithm choices:

77

RS

B

RS

B

HJ

HJ

RS

B

HJ

NLJ

RS

B

NLJ

HJ

RS

B

NLJ

NLJ

+ do same for
3 other plans

→ 4*4 = 16 plans so far..

SELECT S.sname, B.bname, R.day
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid

Candidate Plans

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Candidate Plans

3. Enumerate access method choices:

78

RS

B

NLJ

NLJ

+ do same for
other plans

RS

B

NLJ

NLJ

(heap scan)

(heap scan)

(heap scan)

RS

B

NLJ

NLJ

(INDEX scan on R.sid)

(heap scan)

(heap scan)

SELECT S.sname, B.bname, R.day
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Now estimate the cost of each plan
Example:

Cost to join S with R

|S| + ((|S|*ps) * cost of finding matching R tuples)

500*80 * (1/40000)(50[idx]+100,000) = 100,050

Size of S R = NTuples(S)*NTuples(R)/distinct keys(sid) =100,000 tuples; 100,000/100 = 1000 pages

Cost to NL join with B = 1000 * 10 = 10000 (pipelined)

→ Total estimated cost = 500 + 100,050 + 10000 = 110,550

79

RS

B

NLJ

NLJ

(INDEX scan on R.sid)

(heap scan)

(heap scan)

R.sid index has 50 pages
|S|= 500 pg, 80 tuples/pg
|R|= 1000 pg, 100 tuples/pg
|B|= 10 pages
100 R S tuples fit on a page
There are 40000 sids

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Now You Try …
Estimate the cost of each of these plans:

Relevant stats:

• S has 500 pages,
80 tuples/page

• R has 1000 pages,
100 tuples/page

• B has 10 pages

• 100 S R tuples fit
on a page

RS

B

HJ

NLJ

RS

B

NLJ

NLJ

RS

B

NLJ

HJ

RS

B

HJ

HJ

Join algorithms:

NLJ = page-oriented NL Join

– Scan left input + scan right input
once per page in left input

HJ = hash-join (assume 2 passes)

– Scan both inputs + write both
inputs in buckets + read all buckets

S = Sailors

R = Reserves

B = Boats

1) 2) 3) 4)

86

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Answers …

S R size = 100,000 tuples; 1000 pages

Estimated cost = 500 + 500(1000) + 1000(10) = 510,500

RS

B

NLJ

NLJ

scan S join w/R join w/B

Plan 2:

S R size = 100,000 tuples; 1000 pages

Estimated cost = 500 + 500(1000) + 2*1000 + 3*10 = 502,530

RS

B

HJ

NLJ

scan S join w/R join w/B

Plan 1:

87

|S|= 500 pg, 80 tuples/pg
|R|= 1000 pg, 100 tuples/pg
|B|= 10 pages
100 R⋈S tuples fit on a page

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Answers …

S R size = 100,000 tuples; 1000 pages

Cost = 500 + 2*500 + 3*1000 + 1000(10) = 14500

RS

B

NLJ

HJ

scan S join w/R join w/B

Plan 4:

S R size = 100,000 tuples; 1000 pages

Cost = 500 + 2*500 + 3*1000 + 2*1000 + 3*10 = 6530

RS

B

HJ

HJ

scan S join w/R join w/B

Plan 3:

88

|S|= 500 pg, 80 tuples/pg
|R|= 1000 pg, 100 tuples/pg
|B|= 10 pages
100 R⋈S tuples fit on a page

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Enumerated Plans (just the S-R-B ones)

RS

B

HJ

NLJ

RS

B

HJ

INLJ

(index)

RS

B

NLJ

NLJ

RS

B

NLJ

INLJ

(index)

RS

B

NLJ

HJ

RS

B

HJ

HJ

Observe that many plans share common sub-plans
(i.e., only upper part differs)

89

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Notice Anything?

Much of the computation is redundant

Idea: when we estimate costs & result
sizes of sub-plans, remember them.

90

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Units

Query Optimization

Overview

Query optimization

Cost estimation

Plan enumeration and costing

System R strategy
91Readings: Chapter 15.6

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Improved Strategy (used in System R)

Shared sub-plan observation suggests a better strategy:

Enumerate plans using N passes (N = # relations joined):
– Pass 1: Find best 1-relation plans for each relation

– Pass 2: Find best ways to join result of each 1-relation plan as outer to another relation
(All 2-relation plans.)

– Pass N: Find best ways to join result of a (N-1)-relation plan as outer to the Nth relation
(All N-relation plans.)

For each subset of relations, retain only:
– Cheapest subplan overall (possibly unordered), plus

– Cheapest subplan for each interesting order of the tuples

For each subplan retained, remember cost and result size estimates

92

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

A Note on ”Interesting Orders”

An intermediate result has an “interesting order” if it is sorted by any of:

– ORDER BY attributes

– GROUP BY attributes

– Join attributes of other joins

93

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

System R Plan Enumeration

A N-1 way plan is not combined with an additional relation unless there is
a join condition between them (unless all predicates in WHERE have been
used up)

– i.e., avoid Cartesian products if possible

Always push all selections & projections as far down in the plans as
possible

– Usually a good strategy, as long as these operations are cheap

94

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

System R Plan Enumeration Example

This time let’s assume:

– Two join algorithms to choose from:
• Sort-Merge-Join / NL-Join (page-oriented or Index-NL-Join)

– Clustered B+Tree on S.sid (height=3; 500 leaf pages)

– S has 10,000 pages, 5 tuples/page

– R has 10 pages, 10 tuples/page

– B has 10 pages, 20 tuples/page

– 10 R S tuples fit on a page

– 10 R B tuples fit on a page

95

SELECT S.sname, B.bname, R.day
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Pass 1 (single-relation subplans)

S: (a) heap scan or (b) scan index on S.sid

a) heap scan cost = 10,000

b) index scan cost = 500 + 10,000 = 10,500

Retain both, since (b) has “interesting order” by sid

R: heap scan only option

Cost = 10

B: heap scan only option

Cost = 10
96

Two join algorithms to choose from:
Sort-Merge-Join / NL-Join (page-oriented or Index-NL-Join)

Clustered B+Tree on S.sid (height=3; 500 leaf pages)

S has 10,000 pages, 5 tuples/page
R has 10 pages, 10 tuples/page
B has 10 pages, 20 tuples/page

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Pass 2 (2-relation subplans)

Heap scan-S as outer:

a) NL-Join with R, cost = 10,000 + 10,000(10) = 110,000

b) SM-Join with R, cost = 10,000 + 2*10,000 + 3*10 = 30,030

Index scan-S as outer:

c) NL-Join with R, cost = 10,500 + 10,000(10) = 110,500

d) SM-Join with R, cost = 10,500 + 3*10 = 10,530

Retain (d) only

97

Starting with S as outer

S
R

?

Note: best S R plan exploits “interesting
order” of non-optimal subplan !

Two join algorithms to choose from:
Sort-Merge-Join / NL-Join (page-oriented or Index-NL-Join)

Clustered B+Tree on S.sid (height=3; 500 leaf pages)

S has 10,000 pages, 5 tuples/page
R has 10 pages, 10 tuples/page
B has 10 pages, 20 tuples/page

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Pass 2 (continued)

Join with S:

a) NL-Join with S, cost = 10 + 10(10,000) = 100,010

b) Index-NL-Join with Index-S, cost = 10 + 100*4 = 410

c) SM-Join with S, cost = 10 + 2*10 + 3*10,000 = 30,030

Join with B:

a) NL-Join with B, cost = 10 + 10(10) = 110

b) SM-Join with B, cost = 10 + 2*10 + 3*10 = 60

98

Starting with R as outer

R
S or B ?

?

Two join algorithms to choose from:
Sort-Merge-Join / NL-Join (page-oriented or Index-NL-Join)

Clustered B+Tree on S.sid (height=3; 500 leaf pages)

S has 10,000 pages, 5 tuples/page
R has 10 pages, 10 tuples/page
B has 10 pages, 20 tuples/page

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Pass 2 (continued)

Join with R:

a) NL-Join with R, cost = 10 + 10(10) = 110

b) SM-Join with R, cost = 10 + 2*10 + 3*10 = 60

99

Starting with B as outer

B
R

?

Two join algorithms to choose from:
Sort-Merge-Join / NL-Join (page-oriented or Index-NL-Join)

Clustered B+Tree on S.sid (height=3; 500 leaf pages)

S has 10,000 pages, 5 tuples/page
R has 10 pages, 10 tuples/page
B has 10 pages, 20 tuples/page

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Further pruning of 2-relation subplans

100

S R

SMJ

(heap scan)(INDEX scan)

R S

(INDEX lookup)(heap scan)

R B

SMJ

(heap scan)(heap scan)

B R

SMJ

(heap scan)(heap scan)

cost=10,530
order=sid

cost=410
order=none

cost=60
order=bid

cost=60
order=bid

S R: B R:

Index-NLJ

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Pass 3 (3-relation subplans)

cost = 410 + 10*10 = 510

S ⋈ 𝑅 subplan:
cost=410
order=none
result size = 10 pagesB

NLJ

(heap scan)

B

SMJ

(heap scan)

cost = 410 + 2*10 + 3*10 = 460

R S

(INDEX lookup)(heap scan)

Index-NLJ

R S

(INDEX lookup)(heap scan)

Index-NLJ

101

result size = NTuples(S)*NTuples(R)/distinct_keys(S) =
= 10000*5*10*10/50000 = 100 tuples → 10 pages

S has 10,000 pages, 5 tuples/page
R has 10 pages, 10 tuples/page
B has 10 pages, 20 tuples/page
10 B ⋈ 𝑅 tuples fit in a page
10 S ⋈ 𝑅 tuples fit in a page

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Pass 3 (continued)

102

R B

SMJ

(heap scan)(heap scan)

B R subplan:
cost=60, order=bid
result size = 100 tuples (10 pages)

S

NLJ

(heap scan)

R B

SMJ

(heap scan)(heap scan)

S

SMJ

(heap scan)

cost = 60 + 10*2 + 3*10,000 = 30,080

R B

SMJ

(heap scan)(heap scan)

S

Index-NLJ

(INDEX lookup)

R B

SMJ

(heap scan)(heap scan)

S

SMJ

(INDEX scan)

cost = 60 + 100*4 = 460

cost = 60 + 10*2 + 10,500 = 10,580

cost = 60 + 10(10,000) = 100,060

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

And the Winner is …

Observations:
– Best plan mixes join algorithms

– Worst plan had cost > 100,000

(exact cost unknown due to pruning)

Optimization yielded ~ 1000-fold improvement over worst plan!

103

R B

SMJ

(heap scan)(heap scan)

S

Index-NLJ

(INDEX lookup)

cost = 460

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Some notes w.r.t. reality…

In spite of pruning plan space, this approach is still exponential in the # of
tables

– Rule of thumb: works well for < 10 joins

In real systems, COST considered is:

#IOs + factor * #CPU Instructions

104

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

System R strategy: Summary

Enumerate plans using N passes (N = # relations joined):

For each subset of relations, retain only:

– Cheapest subplan overall (possibly unordered), plus

– Cheapest subplan for each interesting order of the tuples

For each subplan retained, remember cost and result size
estimates

105

