
CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

CS660: Grad Intro to Database Systems

Class 9: External Sorting

Instructor: Manos Athanassoulis

https://bu-disc.github.io/CS660/

https://bu-disc.github.io/CS660/

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Units

External Sorting

Intro & 2-way external sorting

General external sorting & performance analysis

Using B+-Trees for sorting

2

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Why Sort?

a classic problem in computer science!

but also a database specific problem, with many use cases:

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Why Sort?

a classic problem in computer science!

but also a database specific problem, with many use cases:

(i) data requested in sorted order
e.g., find students in increasing gpa order (using ORDER BY)

(ii) bulk loading B+ tree index

(iii) eliminating duplicates (why?)

(iv) summarizing groups of tuples (what is that?)

(v) Sort-merge join [more about that later]

GROUP BY!

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Sorting Challenges

(easy) problem:

how to sort 1GB data with 1GB memory?

(hard) problem:

how to sort 1GB data with 1MB memory?

why not virtual memory (i.e., swapping on disk)?

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Goal

minimize disk accesses when working under memory constraints

Idea

 stream data, calculate something useful, and write back on disk

6

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Streaming Data Through RAM
An important method for sorting & other DB operations

Compute f(x) for each record, write out the result

f(x)
RAM

Input
Buffer

Output
Buffer

OUTPUTINPUT

(1) Read a page (from INPUT to Input Buffer)

(1)

(2)

(2) Calculate f(x) for each item (e.g., sort, (de-)compress, discard rows [selection], discard columns [projection]

(3)

(2b) When Input Buffer is consumed, read another page

(2b)

(3) When Output Buffer fills, write it to OUTPUT

Note that reads and writes are not (always) coordinated!
• For f() being compress(), select(), project() we may read many pages per write
• For f() being decompress() we may write many pages per read

What about f() being sort()?

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Let’s apply this to sorting!

8

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

2-Way Sort: Requires 3 Buffers

Pass 0: Read a page, sort it, write it.
– only one input buffer page (as in previous slide)

Pass 1, 2, 3, …, etc.:
– requires 3 buffer pages (2 input buffers)

– merge pairs of runs into runs twice as long

Main memory buffers

INPUT 1

INPUT 2

OUTPUT

DiskDisk

sort
RAM

Input
Buffer

Output
Buffer

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Two-Way External Merge Sort

10

Each pass we read + write each page in file.

N pages in the file =>

the number of passes ? ?

So total cost is: ? ?

Idea

Divide and conquer

sort sub-files and merge

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3

4,6
4,7

8,9

1,3

5,6 2

2,3

4,4
6,7

8,9

1,2
3,5

6

1,2

2,3

3,4
4,5

6,6
7,8

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Two-Way External Merge Sort

11

Each pass we read + write each page in file.

N pages in the file =>

the number of passes = 𝑙𝑜𝑔2𝑁 + 1

So total cost is: 2𝑁 𝑙𝑜𝑔2𝑁 + 1

Idea

Divide and conquer

sort sub-files and merge

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3

4,6
4,7

8,9

1,3

5,6 2

2,3

4,4
6,7

8,9

1,2
3,5

6

1,2

2,3

3,4
4,5

6,6
7,8

is this good enough?

No! why?

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Units

External Sorting

Intro & 2-way external sorting

General external sorting & performance analysis

Using B+-Trees for sorting

12

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

General External Merge Sort

To sort a file with N pages using B buffer pages:
– Pass 0: use B buffer pages. Produce Τ𝑁 𝐵 sorted runs of B pages each.

– Pass 1, 2, …, etc.: merge B-1 runs.

B Main memory buffers

INPUT 1

INPUT B-1

OUTPUT

DiskDisk

INPUT 2

.

How can we exploit more than 3 buffer pages?

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

General External Merge Sort

N = 108 pages

5

B=5 buffer pages

5 3… 108/5 = 22 sorted runs of 5 pages each (last run 3 pages)

20 8
… 22/4 = 6 sorted runs
of 5 ∙ 4 = 20 pages each (last run 8)20

80 28
… 6/4 = 2 sorted runs
of 20 ∙ 4 = 20 pages (last run 28)

Sorted File!

0:

1:

2:

3:

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Cost of External Merge Sort

Number of passes: 1 + 𝑙𝑜𝑔𝐵−1 𝑁/𝐵

Cost = 2𝑁 ∙ (# of passes)

to sort 108-page file with 5 buffers:
– Pass 0: 108/5 = 22 sorted runs of 5 pages each (last run is only 3 pages)

– Pass 1: 22/4 = 6 sorted runs of 20 pages each (last run is only 8 pages)

– Pass 2: 2 sorted runs, 80 pages and 28 pages

– Pass 3: Sorted file of 108 pages

Formula check: 1 + 𝑙𝑜𝑔𝐵−1 𝑁/𝐵 = 1 + 𝑙𝑜𝑔422 = 1 + 3

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Number of Passes of External Sort

16

 N B=3 B=5 B=9 B=17 B=129 B=257

100 7 4 3 2 1 1

1,000 10 5 4 3 2 2

10,000 13 7 5 4 2 2

100,000 17 9 6 5 3 3

1,000,000 20 10 7 5 3 3

10,000,000 23 12 8 6 4 3

100,000,000 26 14 9 7 4 4

1,000,000,000 30 15 10 8 5 4

I/O cost is 2N times number of passes: 2 ∙ N ∙ 1 + 𝑙𝑜𝑔𝐵−1 𝑁/𝐵

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-Memory Sort Algorithm

Quicksort is fast (very fast)!!
 we generate in Pass 0 N/B #runs of B pages each

can we generate longer runs?
why do we want that?

yes! Idea: maintain a current set as a heap

17

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

(aka “replacement sort”)

0: read in B-2 blocks
1: find the smallest record greater than the largest value to
output buffer

– add it to the end of the output buffer
– fill moved record’s slot with next value from the input buffer, if empty refill input

buffer

2: else: end run
3: goto (1)

18

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

19

30, 20 10, 40 22, 17 25, 73

N = 9 pages (file), B = 4 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 25, 30, 40, 73

Heapsort
4-2=2 pages

input outputcurrent

file (on disk)

16, 26 21, 13 22, 24

13, 16, 21, 22, 23, 24, 26, 29 27, 28

23, 29 27, 28

1 page

up to 4 pages

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

20

30, 20 10, 40 22, 17 25, 73

N = 9 pages (file), B = 4 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 25, 30, 40, 73

30, 20

input outputcurrent

file (on disk)

16, 26 21, 13 22, 24

13, 16, 21, 22, 23, 24, 26, 29 27, 28

23, 29 27, 28

Heapsort
4-2=2 pages

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

21

30, 20 10, 40 22, 17 25, 73

N = 9 pages (file), B = 4 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 25, 30, 40, 73

20, 30

input outputcurrent

file (on disk)

16, 26 21, 13 22, 24

13, 16, 21, 22, 23, 24, 26, 29 27, 28

23, 29 27, 28

Heapsort
4-2=2 pages

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

22

30, 20 10, 40 22, 17 25, 73

N = 9 pages (file), B = 4 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 25, 30, 40, 73

10, 40 20, 30

input outputcurrent

file (on disk)

16, 26 21, 13 22, 24

13, 16, 21, 22, 23, 24, 26, 29 27, 28

23, 29 27, 28

Heapsort
4-2=2 pages

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

23

30, 20 10, 40 22, 17 25, 73

N = 9 pages (file), B = 4 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 25, 30, 40, 73

10, 20, 30, 40

input outputcurrent

file (on disk)

16, 26 21, 13 22, 24

13, 16, 21, 22, 23, 24, 26, 29 27, 28

23, 29 27, 28

Heapsort
4-2=2 pages

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

24

30, 20 10, 40 22, 17 25, 73

N = 9 pages (file), B = 4 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 25, 30, 40, 73

22, 17 10, 20, 30, 40

input outputcurrent

file (on disk)

16, 26 21, 13 22, 24

13, 16, 21, 22, 23, 24, 26, 29 27, 28

23, 29 27, 28

Heapsort
4-2=2 pages

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

25

30, 20 10, 40 22, 17 25, 73

N = 9 pages (file), B = 4 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 25, 30, 40, 73

22, 17 20, 30, 40 10

input outputcurrent

file (on disk)

pop from the heap the smallest value

16, 26 21, 13 22, 24

13, 16, 21, 22, 23, 24, 26, 29 27, 28

23, 29 27, 28

Heapsort
4-2=2 pages

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

26

30, 20 10, 40 22, 17 25, 73

N = 9 pages (file), B = 4 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 25, 30, 40, 73

22 17, 20, 30, 40 10

input outputcurrent

file (on disk)

update the current heap from input

16, 26 21, 13 22, 24

13, 16, 21, 22, 23, 24, 26, 29 27, 28

23, 29 27, 28

Heapsort
4-2=2 pages

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

27

30, 20 10, 40 22, 17 25, 73

N = 9 pages (file), B = 4 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 25, 30, 40, 73

22 20, 30, 40 10, 17

input outputcurrent

file (on disk)

pop from the heap the smallest value

16, 26 21, 13 22, 24

13, 16, 21, 22, 23, 24, 26, 29 27, 28

23, 29 27, 28

Heapsort
4-2=2 pages

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

28

30, 20 10, 40 22, 17 25, 73

N = 9 pages (file), B = 4 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 25, 30, 40, 73

20, 22, 30, 40 10, 17

input outputcurrent

file (on disk)

update the current heap from input

16, 26 21, 13 22, 24

13, 16, 21, 22, 23, 24, 26, 29 27, 28

23, 29 27, 28

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

29

30, 20 10, 40 22, 17 25, 73

N = 9 pages (file), B = 4 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 25, 30, 40, 73

25, 73 20, 22, 30, 40 10, 17

input outputcurrent

file (on disk)

buffers are full

16, 26 21, 13 22, 24

13, 16, 21, 22, 23, 24, 26, 29 27, 28

23, 29 27, 28

Heapsort
4-2=2 pages

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

30

30, 20 10, 40 22, 17 25, 73

N = 9 pages (file), B = 4 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 25, 30, 40, 73

25, 73 20, 22, 30, 40

10, 17

input outputcurrent

file (on disk)

flush output to disk

16, 26 21, 13 22, 24

13, 16, 21, 22, 23, 24, 26, 29 27, 28

23, 29 27, 28

Heapsort
4-2=2 pages

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

31

30, 20 10, 40 22, 17 25, 73

N = 9 pages (file), B = 4 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 25, 30, 40, 73

25, 73 22, 30, 40 20

10, 17

input outputcurrent

file (on disk)

pop heap

16, 26 21, 13 22, 24

13, 16, 21, 22, 23, 24, 26, 29 27, 28

23, 29 27, 28

Heapsort
4-2=2 pages

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

32

30, 20 10, 40 22, 17 25, 73

N = 9 pages (file), B = 4 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 25, 30, 40, 73

73 22, 25, 30, 40 20

10, 17

input outputcurrent

file (on disk)

update current

16, 26 21, 13 22, 24

13, 16, 21, 22, 23, 24, 26, 29 27, 28

23, 29 27, 28

Heapsort
4-2=2 pages

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

33

30, 20 10, 40 22, 17 25, 73

N = 9 pages (file), B = 4 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 25, 30, 40, 73

73 25, 30, 40 20, 22

10, 17

input outputcurrent

file (on disk)

pop heap

16, 26 21, 13 22, 24

13, 16, 21, 22, 23, 24, 26, 29 27, 28

23, 29 27, 28

Heapsort
4-2=2 pages

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

34

30, 20 10, 40 22, 17 25, 73

N = 9 pages (file), B = 4 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 25, 30, 40, 73

25, 30, 40, 73 20, 22

10, 17

input outputcurrent

file (on disk)

update current from input

16, 26 21, 13 22, 24

13, 16, 21, 22, 23, 24, 26, 29 27, 28

23, 29 27, 28

Heapsort
4-2=2 pages

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

35

30, 20 10, 40 22, 17 25, 73

N = 9 pages (file), B = 4 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 25, 30, 40, 73

25, 30, 40, 73 20, 22

10, 17

input outputcurrent

file (on disk)

update current from input

16, 26 21, 13 22, 24

13, 16, 21, 22, 23, 24, 26, 29 27, 28

23, 29 27, 28

Heapsort
4-2=2 pages

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

36

30, 20 10, 40 22, 17 25, 73

N = 9 pages (file), B = 4 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 25, 30, 40, 73

16, 26 25, 30, 40, 73 20, 22

10, 17

input outputcurrent

file (on disk)

buffers are full

16, 26 21, 13 22, 24

13, 16, 21, 22, 23, 24, 26, 29 27, 28

23, 29 27, 28

Heapsort
4-2=2 pages

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

37

30, 20 10, 40 22, 17 25, 73

N = 9 pages (file), B = 4 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 25, 30, 40, 73

16, 26 25, 30, 40, 73

10, 17, 20, 22

input outputcurrent

file (on disk)

flush output to disk

16, 26 21, 13 22, 24

13, 16, 21, 22, 23, 24, 26, 29 27, 28

23, 29 27, 28

Heapsort
4-2=2 pages

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

38

30, 20 10, 40 22, 17 25, 73

N = 9 pages (file), B = 4 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 25, 30, 40, 73

16, 26 30, 40, 73 25

10, 17, 20, 22

input outputcurrent

file (on disk)

pop smallest value from heap

16, 26 21, 13 22, 24

13, 16, 21, 22, 23, 24, 26, 29 27, 28

23, 29 27, 28

Heapsort
4-2=2 pages

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

39

30, 20 10, 40 22, 17 25, 73

N = 9 pages (file), B = 4 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 25, 30, 40, 73

16 26, 30, 40, 73 25

10, 17, 20, 22

input outputcurrent

file (on disk)

update current from input

16 cannot be used since 22 is on disk

16, 26 21, 13 22, 24

13, 16, 21, 22, 23, 24, 26, 29 27, 28

23, 29 27, 28

Heapsort
4-2=2 pages

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

40

30, 20 10, 40 22, 17 25, 73

N = 9 pages (file), B = 4 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 25, 30, 40, 73

16 30, 40, 73 25, 26

10, 17, 20, 22

input outputcurrent

file (on disk)

pop smallest value from heap

16, 26 21, 13 22, 24

13, 16, 21, 22, 23, 24, 26, 29 27, 28

23, 29 27, 28

Heapsort
4-2=2 pages

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

41

30, 20 10, 40 22, 17 25, 73

N = 9 pages (file), B = 4 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 25, 30, 40, 73

16 30, 40, 73

10, 17, 20, 22, 25, 26

input outputcurrent

file (on disk)

flush to disk

16, 26 21, 13 22, 24

13, 16, 21, 22, 23, 24, 26, 29 27, 28

23, 29 27, 28

Heapsort
4-2=2 pages

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

42

30, 20 10, 40 22, 17 25, 73

N = 9 pages (file), B = 4 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 25, 30, 40, 73

16 73 30, 40

10, 17, 20, 22, 25, 26

input outputcurrent

file (on disk)

pop smallest values from heap

16, 26 21, 13 22, 24

13, 16, 21, 22, 23, 24, 26, 29 27, 28

23, 29 27, 28

Heapsort
4-2=2 pages

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

43

30, 20 10, 40 22, 17 25, 73

N = 9 pages (file), B = 4 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 25, 30, 40, 73

16 73

10, 17, 20, 22, 25, 26, 30, 40

input outputcurrent

file (on disk)

cannot load, so flush

16, 26 21, 13 22, 24

13, 16, 21, 22, 23, 24, 26, 29 27, 28

23, 29 27, 28

Heapsort
4-2=2 pages

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

44

30, 20 10, 40 22, 17 25, 73

N = 9 pages (file), B = 4 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 25, 30, 40, 73

16 73

10, 17, 20, 22, 25, 26, 30, 40

input outputcurrent

file (on disk)

pop heap & update current

16, 26 21, 13 22, 24

13, 16, 21, 22, 23, 24, 26, 29 27, 28

23, 29 27, 28

Heapsort
4-2=2 pages

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

45

30, 20 10, 40 22, 17 25, 73

N = 9 pages (file), B = 4 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 25, 30, 40, 73

16

10, 17, 20, 22, 25, 26, 30, 40, 73

input outputcurrent

file (on disk)

nothing to do, flush

16, 26 21, 13 22, 24

13, 16, 21, 22, 23, 24, 26, 29 27, 28

23, 29 27, 28

Heapsort
4-2=2 pages

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

46

30, 20 10, 40 22, 17 25, 73

N = 9 pages (file), B = 4 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 25, 30, 40, 73

21, 13 16

10, 17, 20, 22, 25, 26, 30, 40, 73

input outputcurrent

file (on disk)

16, 26 21, 13 22, 24

13, 16, 21, 22, 23, 24, 26, 29 27, 28

23, 29 27, 28

Heapsort
4-2=2 pages

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

47

30, 20 10, 40 22, 17 25, 73

N = 9 pages (file), B = 4 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 25, 30, 40, 73

13, 16, 21

10, 17, 20, 22, 25, 26, 30, 40, 73

input outputcurrent

file (on disk)

16, 26 21, 13 22, 24

13, 16, 21, 22, 23, 24, 26, 29 27, 28

23, 29 27, 28

Heapsort
4-2=2 pages

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

48

30, 20 10, 40 22, 17 25, 73

N = 9 pages (file), B = 4 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 25, 30, 40, 73

22, 24 13, 16, 21

10, 17, 20, 22, 25, 26, 30, 40, 73

input outputcurrent

file (on disk)

16, 26 21, 13 22, 24

13, 16, 21, 22, 23, 24, 26, 29 27, 28

23, 29 27, 28

Heapsort
4-2=2 pages

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

49

30, 20 10, 40 22, 17 25, 73

N = 9 pages (file), B = 4 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 25, 30, 40, 73

24 13, 16, 21, 22

10, 17, 20, 22, 25, 26, 30, 40, 73

input outputcurrent

file (on disk)

16, 26 21, 13 22, 24

13, 16, 21, 22, 23, 24, 26, 29 27, 28

23, 29 27, 28

Heapsort
4-2=2 pages update current

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

50

30, 20 10, 40 22, 17 25, 73

N = 9 pages (file), B = 4 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 25, 30, 40, 73

24 16, 21, 22 13

10, 17, 20, 22, 25, 26, 30, 40, 73

input outputcurrent

file (on disk)

pop smallest value from heap

16, 26 21, 13 22, 24

13, 16, 21, 22, 23, 24, 26, 29 27, 28

23, 29 27, 28

Heapsort
4-2=2 pages

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

51

30, 20 10, 40 22, 17 25, 73

N = 9 pages (file), B = 4 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 25, 30, 40, 73

16, 21, 22, 24 13

10, 17, 20, 22, 25, 26, 30, 40, 73

input outputcurrent

file (on disk)

update current

16, 26 21, 13 22, 24

13, 16, 21, 22, 23, 24, 26, 29 27, 28

23, 29 27, 28

Heapsort
4-2=2 pages

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

52

30, 20 10, 40 22, 17 25, 73

N = 9 pages (file), B = 4 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 25, 30, 40, 73

23, 29 16, 21, 22, 24 13

10, 17, 20, 22, 25, 26, 30, 40, 73

input outputcurrent

file (on disk)

16, 26 21, 13 22, 24

13, 16, 21, 22, 23, 24, 26, 29 27, 28

23, 29 27, 28

Heapsort
4-2=2 pages

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

53

30, 20 10, 40 22, 17 25, 73

N = 9 pages (file), B = 4 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 25, 30, 40, 73

23, 29 21, 22, 24 13, 16

10, 17, 20, 22, 25, 26, 30, 40, 73

input outputcurrent

file (on disk)

pop smallest value from heap

16, 26 21, 13 22, 24

13, 16, 21, 22, 23, 24, 26, 29 27, 28

23, 29 27, 28

Heapsort
4-2=2 pages

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

54

30, 20 10, 40 22, 17 25, 73

N = 9 pages (file), B = 4 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 25, 30, 40, 73

23, 29 21, 22, 24

10, 17, 20, 22, 25, 26, 30, 40, 73

input outputcurrent

file (on disk)

flush to new file

13, 16

file (on disk)

16, 26 21, 13 22, 24

13, 16, 21, 22, 23, 24, 26, 29 27, 28

23, 29 27, 28

Heapsort
4-2=2 pages

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

55

30, 20 10, 40 22, 17 25, 73

N = 9 pages (file), B = 4 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 25, 30, 40, 73

23, 29 22, 24 21

10, 17, 20, 22, 25, 26, 30, 40, 73

input outputcurrent

file (on disk)

pop smallest value of heap

13, 16

file (on disk)

16, 26 21, 13 22, 24

13, 16, 21, 22, 23, 24, 26, 29 27, 28

23, 29 27, 28

Heapsort
4-2=2 pages

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

56

30, 20 10, 40 22, 17 25, 73

N = 9 pages (file), B = 4 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 25, 30, 40, 73

22, 23, 24, 29 21

10, 17, 20, 22, 25, 26, 30, 40, 73

input outputcurrent

file (on disk)

update current

13, 16

file (on disk)

16, 26 21, 13 22, 24

13, 16, 21, 22, 23, 24, 26, 29 27, 28

23, 29 27, 28

Heapsort
4-2=2 pages

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

57

30, 20 10, 40 22, 17 25, 73

N = 9 pages (file), B = 4 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 25, 30, 40, 73

27, 28 22, 23, 24, 29 21

10, 17, 20, 22, 25, 26, 30, 40, 73

input outputcurrent

file (on disk)

update current

13, 16

file (on disk)

16, 26 21, 13 22, 24

13, 16, 21, 22, 23, 24, 26, 29 27, 28

23, 29 27, 28

Heapsort
4-2=2 pages

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

58

30, 20 10, 40 22, 17 25, 73

N = 9 pages (file), B = 4 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 25, 30, 40, 73

27, 28 23, 24, 29 21, 22

10, 17, 20, 22, 25, 26, 30, 40, 73

input outputcurrent

file (on disk)

pop smallest value of heap

13, 16

file (on disk)

16, 26 21, 13 22, 24

13, 16, 21, 22, 23, 24, 26, 29 27, 28

23, 29 27, 28

Heapsort
4-2=2 pages

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

59

30, 20 10, 40 22, 17 25, 73

N = 9 pages (file), B = 4 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 25, 30, 40, 73

27, 28 23, 24, 29

10, 17, 20, 22, 25, 26, 30, 40, 73

input outputcurrent

file (on disk)

flush to disk

13, 16, 21, 22

file (on disk)

16, 26 21, 13 22, 24

13, 16, 21, 22, 23, 24, 26, 29 27, 28

23, 29 27, 28

Heapsort
4-2=2 pages

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

60

30, 20 10, 40 22, 17 25, 73

N = 9 pages (file), B = 4 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 25, 30, 40, 73

24, 27, 28, 29 23

10, 17, 20, 22, 25, 26, 30, 40, 73

input outputcurrent

file (on disk)

pop heap & update current

13, 16, 21, 22

file (on disk)

16, 26 21, 13 22, 24

13, 16, 21, 22, 23, 24, 26, 29 27, 28

23, 29 27, 28

Heapsort
4-2=2 pages

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

61

30, 20 10, 40 22, 17 25, 73

N = 9 pages (file), B = 4 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 25, 30, 40, 73

27, 28, 29 23, 24

10, 17, 20, 22, 25, 26, 30, 40, 73

input outputcurrent

file (on disk)

pop heap

13, 16, 21, 22

file (on disk)

16, 26 21, 13 22, 24

13, 16, 21, 22, 23, 24, 26, 29 27, 28

23, 29 27, 28

Heapsort
4-2=2 pages

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

62

30, 20 10, 40 22, 17 25, 73

N = 9 pages (file), B = 4 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 25, 30, 40, 73

27, 28, 29

10, 17, 20, 22, 25, 26, 30, 40, 73

input outputcurrent

file (on disk)

flush to disk

13, 16, 21, 22, 23, 24

file (on disk)

16, 26 21, 13 22, 24

13, 16, 21, 22, 23, 24, 26, 29 27, 28

23, 29 27, 28

Heapsort
4-2=2 pages

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

63

30, 20 10, 40 22, 17 25, 73

N = 9 pages (file), B = 4 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 25, 30, 40, 73

29 27, 28

10, 17, 20, 22, 25, 26, 30, 40, 73

input outputcurrent

file (on disk)

pop heap

13, 16, 21, 22, 23, 24

file (on disk)

16, 26 21, 13 22, 24

13, 16, 21, 22, 23, 24, 26, 29 27, 28

23, 29 27, 28

Heapsort
4-2=2 pages

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

64

30, 20 10, 40 22, 17 25, 73 16, 26

N = 9 pages (file), B = 4 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 25, 30, 40, 73

29

10, 17, 20, 22, 25, 26, 30, 40, 73

input outputcurrent

file (on disk)

21, 13 22, 24

flush to disk

13, 16, 21, 22, 23, 24, 27, 28

file (on disk)

13, 16, 21, 22, 23, 24, 26, 29 27, 28

23, 29 27, 28

Heapsort
4-2=2 pages

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

65

30, 20 10, 40 22, 17 25, 73 16, 26

N = 9 pages (file), B = 4 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 25, 30, 40, 73

29

10, 17, 20, 22, 25, 26, 30, 40, 73

input outputcurrent

file (on disk)

21, 13 22, 24

pop heap

13, 16, 21, 22, 23, 24, 27, 28

file (on disk)

13, 16, 21, 22, 23, 24, 26, 29 27, 28

23, 29 27, 28

Heapsort
4-2=2 pages

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

In-memory Heapsort

66

30, 20 10, 40 22, 17 25, 73 16, 26

N = 9 pages (file), B = 4 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 25, 30, 40, 73 13, 16, 21, 22, 23, 24, 26, 29

10, 17, 20, 22, 25, 26, 30, 40, 73

input outputcurrent

file (on disk)

21, 13 22, 24

27, 28

23, 29 27, 28

flush to disk

13, 16, 21, 22, 23, 24, 27, 28, 29

file (on disk)

Heapsort
4-2=2 pages

only 2 (longer) sorted runs!

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Fact: average length of a run in heapsort is 2*B

 The snowplow analogy

(1) Imagine a snowplow moving around a circular

track with a steady rate of snow fall.

(2) At any instant, there is a certain amount of snow S on

the track. Some falling snow comes in front of the plow, some behind.

(3) During the next revolution of the plow, all of this is removed, plus 1/2
of what falls during that revolution.

(4) Thus, the plow removes 2S amount of snow.

More on Heapsort

S

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

More on Heapsort

Fact: average length of a run in heapsort is 2*B

Worst-Case:
– What is min length of a run?

– How does this arise?

Best-Case:
– What is max length of a run?

– How does this arise?

Quicksort is faster, but ... longer runs often means fewer passes!

B-2
when the file is reversely sorted

the entire file
when the file is sorted

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

B

…

External Merge Sort Summary

69

unsorted file of N pages

B buffer pages:

BB
N/B sorted runs of B pages each

(or, fewer of 2 B − 2 each)
0:

B(B − 1)

N/B

B−1
 sorted runs of

B B − 1 pages each
1: B(B − 1) B(B − 1)

…

log𝐵−1
𝑁

𝐵
: N/B

B−1 log𝐵−1 𝑁/𝐵 = 1 sorted run! of 𝐵 ∙ B − 1 log𝐵−1 𝑁/𝐵 = 𝐵 ∙
𝑁

𝐵
= 𝑁 pages

B(B − 1)22: B(B − 1)2 B(B − 1)2

N/B

B−1 2 sorted runs of

B 𝐵 − 1 2 pages each

total #I/O: 2 ∙ 𝑁 ∙ 1 + log𝐵−1 Τ𝑁 𝐵

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

I/O for External Merge Sort

Do I/O a page at a time
– Not one I/O per record

In fact, read a block (chunk) of pages sequentially!

Suggests we should make each buffer (input/output) be a
block of pages (e.g., b=32 pages).

– But this will reduce fan-in during merge passes!

– In practice, most files still sorted in 2-3 passes.

total #I/O: 2 ∙ 𝑁 ∙ 1 + log Τ𝐵 𝑏 Τ𝑁 𝐵

Fanout reduced from B − 1 to Τ𝐵 𝑏 , but there is locality and sequential reads

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Double Buffering

To reduce wait time for I/O request to complete, can prefetch
into “shadow block”.

– Potentially, more passes; in practice, most files still sorted in 2-3 passes.

OUTPUT

OUTPUT'

Disk Disk

INPUT 1

INPUT k

INPUT 2

INPUT 1'

INPUT 2'

INPUT k'

block size
b

B main memory buffers, k-way merge

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Sorting Records!

Sorting has become a blood sport!

– Parallel sorting is the name of the game ...

Minute Sort: how many 100-byte records can you sort in
a minute?

Cloud Sort: what is the cost for sorting 100TB of data?

Joule Sort: how many joules needed for 1TB of data?

See http://sortbenchmark.org/

37 TB

$97

63KJ

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Units

External Sorting

Intro & 2-way external sorting

General external sorting & performance analysis

Using B+-Trees for sorting

73

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Using B+ Trees for Sorting

Scenario: Table to be sorted has B+ tree index on sorting
column(s).

Idea: Can retrieve records in order by traversing leaf pages.

Is this a good idea?

Cases to consider:
– B+ tree is clustered

– B+ tree is not clustered

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Reminder: Clustered vs. Unclustered

Cost of retrieving records found in range scan:
Clustered I/O cost = one I/O per page of matching tuples (𝑁 page accesses)

Unclustered I/O cost ≈ one I/O per matching tuple (𝑁 ∙ 𝑝 page accesses)

Data entries

(Index File)

(Data file)

Data Records

Data entries

Data Records

CLUSTERED UNCLUSTEREDIndex entries

direct search for

data entries

𝑁 pages
𝑝 tuples per page

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Using B+ Trees for Sorting

Scenario: Table to be sorted has B+ tree index on sorting
column(s).

Idea: Can retrieve records in order by traversing leaf pages.

Is this a good idea?

Cases to consider:
– B+ tree is clustered Good idea → one I/O per page!

– B+ tree is not clustered

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Using B+ Trees for Sorting

Scenario: Table to be sorted has B+ tree index on sorting
column(s).

Idea: Can retrieve records in order by traversing leaf pages.

Is this a good idea?

Cases to consider:
– B+ tree is clustered Good idea → one I/O per page!

– B+ tree is not clustered Could be a very bad idea → one I/O per tuple!

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Clustered B+ Tree Used for Sorting

Cost: root to the left-most leaf, then retrieve all leaf pages
(Alternative 1)

If Alternative 2 is used?

Additional cost of retrieving

data entries (Τ𝑁
𝑝 pages)

BUT, still each data page

is fetched just once (𝑁 pages)

78

 Always better than external sorting!

(Directs search)

Data Records

Index

Data Entries
("Sequence set")

 Approximate 1 + Τ1
𝑝 𝑁 with 𝑁

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Unclustered B+ Tree Used for Sorting

Alternative (2) for data entries; each data entry contains rid of a
data record. In general, one I/O per data record!

(Directs search)

Data Records

Index

Data Entries
("Sequence set")

 Approximate 𝑝 + Τ1
𝑝 𝑁 with 𝑝 ∙ 𝑁

Retrieve data entries (Τ𝑁
𝑝 pages)

and
each data page 𝑝 times
(p ∙ 𝑁 page accesses)

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

External Sorting vs. Unclustered Index

80

 p: # of records per page
 B=1000 pages, b=32 for sorting
 p=100 is the more realistic value.

N Sorting p=1 p=10 p=100

100 200 100 1,000 10,000

1,000 2,000 1,000 10,000 100,000

10,000 40,000 10,000 100,000 1,000,000

100,000 600,000 100,000 1,000,000 10,000,000

1,000,000 8,000,000 1,000,000 10,000,000 100,000,000

10,000,000 80,000,000 10,000,000 100,000,000 1,000,000,000

if 𝐵 ≥ 𝑁 then
only quick sort!

read and write (2N)

Special case, that the tree is always behaving like a clustered tree

𝑝 ∙ 𝑁

2 ∙ 𝑁 ∙ 1 + log Τ𝐵 𝑏 Τ𝑁 𝐵

more
realistic case

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Summary

External sorting is used for many different operations in DBs

External merge sort minimizes disk I/O cost:
– Pass 0: Produces sorted runs of size B (# buffer pages). Later passes: merge runs.

– # of runs merged at a time depends on B, and block size.

– Larger block size means less I/O cost per page.

– Larger block size means fewer runs merged.

– In practice, # of passes rarely more than 2 or 3.

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Summary, cont.

Choice of internal sort algorithm may matter:
– Quicksort: Quick!

– Heap/tournament sort: slower (2x), longer runs

The best sorts are wildly fast:
– Despite 40+ years of research, still improving!

Clustered B+ tree is good for sorting

Unclustered tree is usually very bad

	Slide 1: CS660: Grad Intro to Database Systems Class 9: External Sorting
	Slide 2: External Sorting
	Slide 3: Why Sort?
	Slide 4: Why Sort?
	Slide 5: Sorting Challenges
	Slide 6
	Slide 7: Streaming Data Through RAM
	Slide 8: Let’s apply this to sorting!
	Slide 9: 2-Way Sort: Requires 3 Buffers
	Slide 10: Two-Way External Merge Sort
	Slide 11: Two-Way External Merge Sort
	Slide 12: External Sorting
	Slide 13: General External Merge Sort
	Slide 14: General External Merge Sort
	Slide 15: Cost of External Merge Sort
	Slide 16: Number of Passes of External Sort
	Slide 17: In-Memory Sort Algorithm
	Slide 18: In-memory Heapsort
	Slide 19: In-memory Heapsort
	Slide 20: In-memory Heapsort
	Slide 21: In-memory Heapsort
	Slide 22: In-memory Heapsort
	Slide 23: In-memory Heapsort
	Slide 24: In-memory Heapsort
	Slide 25: In-memory Heapsort
	Slide 26: In-memory Heapsort
	Slide 27: In-memory Heapsort
	Slide 28: In-memory Heapsort
	Slide 29: In-memory Heapsort
	Slide 30: In-memory Heapsort
	Slide 31: In-memory Heapsort
	Slide 32: In-memory Heapsort
	Slide 33: In-memory Heapsort
	Slide 34: In-memory Heapsort
	Slide 35: In-memory Heapsort
	Slide 36: In-memory Heapsort
	Slide 37: In-memory Heapsort
	Slide 38: In-memory Heapsort
	Slide 39: In-memory Heapsort
	Slide 40: In-memory Heapsort
	Slide 41: In-memory Heapsort
	Slide 42: In-memory Heapsort
	Slide 43: In-memory Heapsort
	Slide 44: In-memory Heapsort
	Slide 45: In-memory Heapsort
	Slide 46: In-memory Heapsort
	Slide 47: In-memory Heapsort
	Slide 48: In-memory Heapsort
	Slide 49: In-memory Heapsort
	Slide 50: In-memory Heapsort
	Slide 51: In-memory Heapsort
	Slide 52: In-memory Heapsort
	Slide 53: In-memory Heapsort
	Slide 54: In-memory Heapsort
	Slide 55: In-memory Heapsort
	Slide 56: In-memory Heapsort
	Slide 57: In-memory Heapsort
	Slide 58: In-memory Heapsort
	Slide 59: In-memory Heapsort
	Slide 60: In-memory Heapsort
	Slide 61: In-memory Heapsort
	Slide 62: In-memory Heapsort
	Slide 63: In-memory Heapsort
	Slide 64: In-memory Heapsort
	Slide 65: In-memory Heapsort
	Slide 66: In-memory Heapsort
	Slide 67: More on Heapsort
	Slide 68: More on Heapsort
	Slide 69: External Merge Sort Summary
	Slide 70: I/O for External Merge Sort
	Slide 71: Double Buffering
	Slide 72: Sorting Records!
	Slide 73: External Sorting
	Slide 74: Using B+ Trees for Sorting
	Slide 75: Reminder: Clustered vs. Unclustered
	Slide 76: Using B+ Trees for Sorting
	Slide 77: Using B+ Trees for Sorting
	Slide 78: Clustered B+ Tree Used for Sorting
	Slide 79: Unclustered B+ Tree Used for Sorting
	Slide 80: External Sorting vs. Unclustered Index
	Slide 81: Summary
	Slide 82: Summary, cont.

