
CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

CS660: Intro to Database Systems

Class 6: The Storage Layer

Instructor: Manos Athanassoulis

https://bu-disc.github.io/CS660/

https://bu-disc.github.io/CS660/

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Units

The Storage Layer

DBMS layers and storage hierarchy

Disks

Flash disks

Buffer Management

Readings: Chapter 9.1

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Units

The Storage Layer

DBMS layers and storage hierarchy

Disks

Flash disks

Buffer Management

Readings: Chapter 9.1

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

DBMS Layer-Cake

4

Queries

LAST TIME →

DB

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

Also: Concurrency
Control & Recovery

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

DBMS Layer-Cake

5

Queries

TODAY →

DB

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

Also: Concurrency
Control & Recovery

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

DBMS Layer-Cake

6

Also managed
by OS →

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Why not OS?

Layers of abstraction are good … but:
Unfortunately, OS often gets in the way of DBMS

DBMS needs to do things “its own way”
Specialized prefetching

Control over buffer replacement policy
LRU not always best (sometimes worst!!)

Control over thread/process scheduling
“Convoy problem” arises when OS scheduling conflicts with DBMS locking

Control over flushing data to disk
WAL protocol requires flushing log entries to disk

7

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Disks and Files

DBMS stores information on disks.
In an electronic world, disks
are a mechanical anachronism!

This has major implications for DBMS design!
READ: transfer data from disk to main memory (RAM).

WRITE: transfer data from RAM to disk.

Both are high-cost operations, relative to
in-memory operations, so must be planned carefully!

8

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Why Not Store It All in Main Memory?

Costs too high
High-end Databases today in the Petabyte range.

~ 60% of the cost of a production system is in the disks.

 Memory even more expensive!!

Main memory is volatile
We want data to be saved between runs. (Obviously!)

But, main-memory database systems do exist!
Smaller size, performance optimized

Volatility is ok for some applications

9

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

What about Flash?

Flash chips used for >20 years

Flash evolved
USB keys

Storage in mobile devices

Consumer and enterprise flash disks (SSD)

Flash in a DBMS
Main storage

Accelerator/enabler (Specialized cache, logging device)

10

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

The Storage Hierarchy

11

Smaller, Faster, More Expensive

Bigger, Slower, Cheaper

CPU

L1 Cache…

L3 Cache

Main Memory

Flash Storage

Magnetic Disk

Magnetic Tape

Flash
Storage

Main memory (RAM) for
currently used data.

Disk for the main database
(secondary storage).

Tapes for archival storage
(tertiary storage).

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Units

The Storage Layer

DBMS layers and storage hierarchy

Disks

Flash disks

Buffer Management

Readings: Chapter 9.1, 9.2, HDD paper

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Disks

Secondary storage device of choice.

Main advantage over tapes: random access vs. sequential.

Data is stored and retrieved in units called disk blocks or pages.

Unlike RAM, time to retrieve a disk page varies depending upon
location on disk.

Therefore, relative placement of pages on disk has major impact on DBMS
performance!

15

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Anatomy of a Disk

16

Platters

The platters spin (5-15 kRPM). Spindle

The arm assembly is moved in or out to
position a head on a desired track.
Tracks under heads make a cylinder
(imaginary!).

Disk head

Arm movement

Arm assembly

Only one head reads/writes at
any one time.

Tracks

Sector

 Block size is a multiple
of sector size (which is fixed).

Newer disks have several “zones”,
with more data on outer tracks.

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Accessing a Disk Page

Time to access (read/write) a disk block:

– seek time (moving arms to position disk head on track)

– rotational delay (waiting for block to rotate under head)

– transfer time (actually moving data to/from disk surface)

17

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Seeking in modern disks
Seek time discontinuity

Short seeks are dominated by “settle time”
– Move to one of many nearby tracks within settle time

– D is on the order of tens to hundreds

– D gets larger with increase of disk track density
19

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Rotational Delay

20

Head Here

Block I Want

if the disk rotates with 10 KRPM, and I want to read
2/3 of the track away what is the rotational delay?

(1/10000)*60sec =
10-4 * 60 = 6 *10-3 = 6ms
so, 2/3 * 6ms = 4ms

what if I am randomly
reading 4KB pages with this delay?

4KB/4ms = 1MB/s

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Seek time & rotational delay dominate

– Seek time varies from about 1 to 20 ms

– Rotational delay varies from 0 to 10 ms

– Transfer rate is < 1ms per 4KB page

Key to lower I/O cost:
reduce seek/rotation delays!

Also note: For shared disks most time spent
waiting in queue for access to arm/controller

21

Seek

Rotate

Transfer

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Arranging Pages on Disk

“Next” block concept:
– blocks on same track, followed by

– blocks on same cylinder, followed by

– blocks on adjacent cylinder

 Blocks in a file should be arranged sequentially on disk (by
“next”), to minimize seek and rotational delay.

 An important optimization: pre-fetching
– See R&G page 323

22

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

23

Define adjacent blocks
Access incurs settle time only

Equidistant wrt access time from starting block

1st adjacent block

D-th adjacent block

D: # of adjacent blocks

W: degree disk will rotate during settle time

Disk block has more
than one neighbor

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Rules of thumb…

1. Memory access much faster than disk I/O (~ 1000x)

2. “Sequential” I/O faster than “random” I/O (~ 10x)

24

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Disk Space Management

Lowest layer of DBMS software manages space on disk

Higher levels call upon this layer to:
– allocate/de-allocate a page

– read/write a page

Best if a request for a sequence of pages is satisfied by pages
stored sequentially on disk!

Higher levels don’t need to know if/how this is done, or how
free space is managed.

25

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Disk Arrays: RAID

Benefits:
– Higher throughput (via data “striping”)

– Longer MTTF (via redundancy)

26

Logical Physical

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Units

The Storage Layer

DBMS layers and storage hierarchy

Disks

Flash disks

Buffer Management

SSD paper

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Device Size Seq B/W Time to read

HDD 1980 100 MB 1.2 MB/s ~ 1 min

HDD 2020 4 TB 125 MB/s ~ 9 hours

28

“Disk is Tape. Flash is Disk.”
- Jim Gray

HDDs are moving deeper in the memory hierarchy, and new
algorithms are designed for new faster storage devices

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Flash disks

Secondary storage or caching layer.

Main advantage over disks:

 random reads as fast as sequential reads

BUT: slow random writes (slower than reads)

pages (like disks) and pages organized in flash blocks

unlike HDD, like RAM:

time to retrieve a page is not related to location on flash disk.

29

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

The internals of flash disks

30

FlashFlashFlash

Flash
Controller

FlashFlashFlashInternal
Memory

Internal
CPU

Interface (SATA / PCI)

SSD

Flash Package

Dies

Planes

Blocks

Pages

Interconnected flash chips

No mechanical limitations

Maintain the block API –
compatible with disks layout

Internal parallelism in
read/write

Complex software driver

Page
Mapping

Index

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Out-of-place updates cause invalidation

Invalidation causes garbage collection.

Block 0 Block 1

Plane

Page 0

Page 1

Page 2

Page 0

Page 1

Page 2

Writes in SSD

31

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Block 0

Free Free Free

Free Free Free

Free Free Free

Free Free Free

Free Free Free

Free Free Free

Free Free Free

Free Free Free

Block 1

Writes in SSD

32

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Block 0

Free Free Free

Free Free Free

Free Free Free

Free Free Free

A B C

D E F

G H Free

Free Free Free

Block 1

Writing in a free page isn’t costly!

Writes in SSD

33

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Block 0

Free Free Free

Free Free Free

Free Free Free

Free Free Free

A B C

D E F

G H Free

Free Free Free

Block 1

Update

A, B, C, D

Writes in SSD

34

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Block 0

Free Free Free

Free Free Free

Free Free Free

Free Free Free

B C

D E F

G H Free

Free Free Free

Block 1

Update

A, B, C, D

Writes in SSD

35

A

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Block 0

Free Free Free

Free Free Free

Free Free Free

Free Free Free

B C

D E F

G H

Free Free Free

Block 1

Update

A, B, C, D

Writes in SSD

36

A

A’

The Page Mapping Index should also be updated!

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Block 0

Free Free Free

Free Free Free

Free Free Free

Free Free Free

C

D E F

G H

Free Free Free

Block 1

Update

A, B, C, D

Writes in SSD

37

A

A’

B

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Block 0

Free Free Free

Free Free Free

Free Free Free

Free Free Free

C

D E F

G H

Free Free

Block 1

Update

A, B, C, D

Writes in SSD

38

A

A’

B

B’

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Block 0

Free Free Free

Free Free Free

Free Free Free

Free Free Free

E F

G H A’

B’ C’ D’

Block 1

Not all updates are costly!

Update

A, B, C, D

A B C

D

Writes in SSD

39

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

…Block 0

E F

G H A’

B’ C’ D’

A B C

D

M’ N’ O’

P’ Q’ R’

Block N

M N O

P Q R

Writes in SSD

40

What if there is no space?

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

…Block 0

E F

G H A’

B’ C’ D’

A B C

D

M’ N’ O’

P’ Q’ R’

Block N

M N O

P Q R

Writes in SSD

41

What if there is no space?

Garbage Collection!

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

…

What if there is no space?

Garbage Collection!

Block 0

Erased Erased

Erased Erased Erased

Erased Erased Erased

Erased Erased Erased

Erased

Erased Erased Erased

Erased Erased Erased

Block N

Erased Erased Erased

Erased Erased Erased

Writes in SSD

42

Valid pages: E F G H A’ B’ C’ D’ M’ N’ O’ P’ Q’ R’

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Block 0

Q’ R’ Free

Free Free Free

Free Free Free

Free Free Free

E F G

H A’ B’

C’ D’ M’

N’ O’ P’

Block N…

Writes in SSD

43

What if there is no space?

Garbage Collection!

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Block 0

Q’ R’ Free

Free Free Free

Free Free Free

Free Free Free

E F G

H A’ B’

C’ D’ M’

N’ O’ P’

Block N…

Higher average update cost (due to GC) → Read/Write asymmetry

Writes in SSD

44

What if there is no space?

Garbage Collection!

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Read/Write Asymmetry Examples

45

Device Advertised Rand
Read IOPS

Advertised Rand
Write IOPS

Asymmetry

PCIe D5-P4320 427k 36k 11.9

PCIe DC-P4500 626k 51k 12.3

PCIe P4510 465k 145k 3.2

SATA D3-S4610 92k 28k 3.3

Optane P4800X 550k 500k 1.1

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Read Access Parallelism

Parallelism at different levels (channel, chip, die, plane block, page)

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Accessing a flash page

Access time depends on
– Device organization (internal parallelism)

– Software efficiency (driver)

– Bandwidth of flash packages (bus speed)

Flash Translation Layer (FTL)
– Complex device driver (firmware)

– Tunes performance and device lifetime

47

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Flash disks vs HDD

HDD

✓ Large – inexpensive capacity

x Inefficient random reads

Flash disks

x Small – expensive capacity

✓ Very efficient random reads

48

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Units

The Storage Layer

DBMS layers and storage hierarchy

Disks

Flash disks

Buffer Management
Readings: Chapter 9.3, 9.4

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Recall the BIG Picture

50

next

Queries

DB

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Buffer Management in a DBMS

Data must be in RAM for DBMS to operate on it!

Buffer Manager hides the fact that not all data is in RAM

(just like hardware cache policies hide the fact that not all data is in the caches)
51

DB

MAIN MEMORY

DISK

disk page

free frame

Page Requests from Higher Levels

BUFFER POOL

choice of frame dictated
by replacement policy

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

When a Page is Requested ...

Buffer pool information table contains:
<frame#, pageid, pin_count, dirty>

If requested page is not in pool & buffer pool is full:
– Choose a frame for replacement (only un-pinned pages are candidates)

– If frame is “dirty”, write it to disk

– Read requested page into chosen frame

Pin the page and return its address.

52

* If requests can be predicted (e.g., sequential scans)

 pages can be pre-fetched several pages at a time!

how many queries still need the page

has the page been updated

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

More on Buffer Management

The page requestor (e.g., query, transaction) must unpin it, and
indicate whether page has been modified:

– dirty bit is used for this.

Page in pool may be requested many times,
– a pin count is used. A page is a candidate for replacement iff pin count = 0

(“unpinned”)

Note: CC & recovery may entail additional I/O when a frame is
chosen for replacement. (Write-Ahead Log protocol; more later.)

53

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Buffer Replacement Policy

Frame is chosen for replacement by a replacement policy:
– Least-recently-used (LRU), MRU, Clock, etc.

Policy can have big impact on # of I/O’s;

 depends on the access pattern.

54

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

LRU Replacement Policy

Least Recently Used (LRU)
– for each page in buffer pool, keep track of time last unpinned

– replace the frame which has the oldest (earliest) time

– very common policy: intuitive and simple

Problems?

Problem: Sequential flooding
– LRU + repeated sequential scans.

– # buffer frames < # pages in file means each page request causes an I/O.
MRU much better in this situation (but not in all situations, of course).

55

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Sequential Flooding – Illustration

56

1 2 3 4 5 6 7 8

BUFFER POOL

LRU:

MRU:

Repeated scan of file …

BUFFER POOL

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Sequential Flooding – Illustration

57

1 2 3 4 5 6 7 8

BUFFER POOL

LRU:

MRU:

Repeated scan of file …

BUFFER POOL

1 2 3 4

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Sequential Flooding – Illustration

58

1 2 3 4 5 6 7 8

BUFFER POOL

LRU:

MRU:

Repeated scan of file …

BUFFER POOL

5 2 3 4

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Sequential Flooding – Illustration

59

1 2 3 4 5 6 7 8

BUFFER POOL

LRU:

MRU:

Repeated scan of file …

BUFFER POOL

5 6 3 4

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Sequential Flooding – Illustration

60

1 2 3 4 5 6 7 8

BUFFER POOL

LRU:

MRU:

Repeated scan of file …

BUFFER POOL

5 6 7 4

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Sequential Flooding – Illustration

61

1 2 3 4 5 6 7 8

BUFFER POOL

LRU:

MRU:

Repeated scan of file …

BUFFER POOL

5 6 7 8

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Sequential Flooding – Illustration

62

1 2 3 4 5 6 7 8

BUFFER POOL

LRU:

MRU:

Repeated scan of file …

BUFFER POOL

1 6 7 8

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Sequential Flooding – Illustration

63

1 2 3 4 5 6 7 8

BUFFER POOL

LRU:

MRU:

Repeated scan of file …

BUFFER POOL

1 2 7 8

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Sequential Flooding – Illustration

64

1 2 3 4 5 6 7 8

BUFFER POOL

LRU:

MRU:

Repeated scan of file …

BUFFER POOL

1 2 3 8

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Sequential Flooding – Illustration

65

1 2 3 4 5 6 7 8

BUFFER POOL

LRU:

MRU:

Repeated scan of file …

BUFFER POOL

1 2 3 4

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Sequential Flooding – Illustration

66

1 2 3 4 5 6 7 8

BUFFER POOL

LRU:

MRU:

Repeated scan of file …

BUFFER POOL

5 2 3 4

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Sequential Flooding – Illustration

67

1 2 3 4 5 6 7 8

BUFFER POOL

LRU:

MRU:

Repeated scan of file …

BUFFER POOL

5 6 3 4

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Sequential Flooding – Illustration

68

1 2 3 4 5 6 7 8

BUFFER POOL

LRU:

MRU:

Repeated scan of file …

BUFFER POOL

5 6 7 4

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Sequential Flooding – Illustration

69

1 2 3 4 5 6 7 8

BUFFER POOL

LRU:

MRU:

Repeated scan of file …

BUFFER POOL

5 6 7 8
for 2 scans every page access
was a miss (had to go to disk)
2*8=16 disk accesses

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Sequential Flooding – Illustration

70

1 2 3 4 5 6 7 8

BUFFER POOL

LRU:

MRU:

Repeated scan of file …

BUFFER POOL

1 2 3 4

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Sequential Flooding – Illustration

71

1 2 3 4 5 6 7 8

BUFFER POOL

LRU:

MRU:

Repeated scan of file …

BUFFER POOL

1 2 3 5

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Sequential Flooding – Illustration

72

1 2 3 4 5 6 7 8

BUFFER POOL

LRU:

MRU:

Repeated scan of file …

BUFFER POOL

1 2 3 6

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Sequential Flooding – Illustration

73

1 2 3 4 5 6 7 8

BUFFER POOL

LRU:

MRU:

Repeated scan of file …

BUFFER POOL

1 2 3 7

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Sequential Flooding – Illustration

74

1 2 3 4 5 6 7 8

BUFFER POOL

LRU:

MRU:

Repeated scan of file …

BUFFER POOL

1 2 3 8

can re-use those!

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Sequential Flooding – Illustration

75

1 2 3 4 5 6 7 8

BUFFER POOL

LRU:

MRU:

Repeated scan of file …

BUFFER POOL

1 2 4 8

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Sequential Flooding – Illustration

76

1 2 3 4 5 6 7 8

BUFFER POOL

LRU:

MRU:

Repeated scan of file …

BUFFER POOL

1 2 5 8

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Sequential Flooding – Illustration

77

1 2 3 4 5 6 7 8

BUFFER POOL

LRU:

MRU:

Repeated scan of file …

BUFFER POOL

1 2 6 8

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Sequential Flooding – Illustration

78

1 2 3 4 5 6 7 8

BUFFER POOL

LRU:

MRU:

Repeated scan of file …

BUFFER POOL

1 2 7 8
for the 2nd scan we were able
to use 4 pages again, so we
had 4 disk accesses:
8+4 = 12 disk accesses

can re-use this as well!

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Implementing LRU

We need to both:

• support quick access to a page ID

– a hash map for O(1) lookups

• maintain order of pages inserted

– a double linked list (with pointers to the head and the tail)

79

IF page IN hashmap

Move the accessed page to the tail of the linked list
ELSE

IF bufferpool is full (i.e., eviction is needed)

 Remove the head from the list (LRU page)
 Delete its hashmap entry

 END IF
 Add the new page at the tail of the list and in hashmap

END IF

RETURN page

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

“Clock” Replacement Policy

An approximation of LRU.

Arrange frames into a cycle, store

 one “reference bit” per frame

When pin count goes to 0, reference bit set on.

When replacement necessary:
 do {

 if (page is unpinned (pincount == 0) && ref bit is off)

 choose current page for replacement;

 else if (page is unpinned (pincount == 0) && ref bit is on)

 turn off ref bit;

 advance current frame;

 } until a page is chosen for replacement;

80

A(1,u)

B(?,p)

C(1,u)

D(0,u)

- Pinned
 (pincount > 0)
- ref bit does not
matter- Unpinned

 (pincount = 0)
- ref bit = 1

- Unpinned
 (pincount = 0)
- ref bit = 0
- candidate for eviction

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

“Clock” Replacement Policy
do {

 if (pincount == 0 && ref bit is off)

 choose current page for replacement;

 else if (pincount == 0 && ref bit is on)

 turn off ref bit;

 advance current frame;

 } until a page is chosen for replacement;

81

A(1,u)

B(?,p)

C(1,u)

D(0,u)

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

“Clock” Replacement Policy
do {

 if (pincount == 0 && ref bit is off)

 choose current page for replacement;

 else if (pincount == 0 && ref bit is on)

 turn off ref bit;

 advance current frame;

 } until a page is chosen for replacement;

82

A(1,u)

B(?,p)

C(1,u)

D(0,u)

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

“Clock” Replacement Policy
do {

 if (pincount == 0 && ref bit is off)

 choose current page for replacement;

 else if (pincount == 0 && ref bit is on)

 turn off ref bit;

 advance current frame;

 } until a page is chosen for replacement;

83

A(1,u)

B(?,p)

C(0,u)

D(0,u)

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

“Clock” Replacement Policy
do {

 if (pincount == 0 && ref bit is off)

 choose current page for replacement;

 else if (pincount == 0 && ref bit is on)

 turn off ref bit;

 advance current frame;

 } until a page is chosen for replacement;

84

Evict D

A(1,u)

B(?,p)

C(0,u)

D(0,u)

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

“Clock” Replacement Policy
do {

 if (pincount == 0 && ref bit is off)

 choose current page for replacement;

 else if (pincount == 0 && ref bit is on)

 turn off ref bit;

 advance current frame;

 } until a page is chosen for replacement;

85

Load E
Pin E

A(1,u)

B(?,p)

C(0,u)

E(?,p)

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Summary

Disks provide cheap, non-volatile storage.
– Random access, but cost depends on location of page on disk; important to

arrange data sequentially to minimize seek and rotation delays.

Buffer manager brings pages into RAM.
– Page stays in RAM until released by requestor.

– Written to disk when frame chosen for replacement (which is sometime after
requestor releases the page).

– Choice of frame to replace based on replacement policy.

– Good to pre-fetch several pages at a time.

86

	Slide 1: CS660: Intro to Database Systems Class 6: The Storage Layer
	Slide 2: The Storage Layer
	Slide 3: The Storage Layer
	Slide 4: DBMS Layer-Cake
	Slide 5: DBMS Layer-Cake
	Slide 6: DBMS Layer-Cake
	Slide 7: Why not OS?
	Slide 8: Disks and Files
	Slide 9: Why Not Store It All in Main Memory?
	Slide 10: What about Flash?
	Slide 11: The Storage Hierarchy
	Slide 14: The Storage Layer
	Slide 15: Disks
	Slide 16: Anatomy of a Disk
	Slide 17: Accessing a Disk Page
	Slide 19: Seeking in modern disks
	Slide 20: Rotational Delay
	Slide 21: Seek time & rotational delay dominate
	Slide 22: Arranging Pages on Disk
	Slide 23: Define adjacent blocks
	Slide 24: Rules of thumb…
	Slide 25: Disk Space Management
	Slide 26: Disk Arrays: RAID
	Slide 27: The Storage Layer
	Slide 28
	Slide 29: Flash disks
	Slide 30: The internals of flash disks
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47: Accessing a flash page
	Slide 48: Flash disks vs HDD
	Slide 49: The Storage Layer
	Slide 50: Recall the BIG Picture
	Slide 51: Buffer Management in a DBMS
	Slide 52: When a Page is Requested ...
	Slide 53: More on Buffer Management
	Slide 54: Buffer Replacement Policy
	Slide 55: LRU Replacement Policy
	Slide 56: Sequential Flooding – Illustration
	Slide 57: Sequential Flooding – Illustration
	Slide 58: Sequential Flooding – Illustration
	Slide 59: Sequential Flooding – Illustration
	Slide 60: Sequential Flooding – Illustration
	Slide 61: Sequential Flooding – Illustration
	Slide 62: Sequential Flooding – Illustration
	Slide 63: Sequential Flooding – Illustration
	Slide 64: Sequential Flooding – Illustration
	Slide 65: Sequential Flooding – Illustration
	Slide 66: Sequential Flooding – Illustration
	Slide 67: Sequential Flooding – Illustration
	Slide 68: Sequential Flooding – Illustration
	Slide 69: Sequential Flooding – Illustration
	Slide 70: Sequential Flooding – Illustration
	Slide 71: Sequential Flooding – Illustration
	Slide 72: Sequential Flooding – Illustration
	Slide 73: Sequential Flooding – Illustration
	Slide 74: Sequential Flooding – Illustration
	Slide 75: Sequential Flooding – Illustration
	Slide 76: Sequential Flooding – Illustration
	Slide 77: Sequential Flooding – Illustration
	Slide 78: Sequential Flooding – Illustration
	Slide 79: Implementing LRU
	Slide 80: “Clock” Replacement Policy
	Slide 81: “Clock” Replacement Policy
	Slide 82: “Clock” Replacement Policy
	Slide 83: “Clock” Replacement Policy
	Slide 84: “Clock” Replacement Policy
	Slide 85: “Clock” Replacement Policy
	Slide 86: Summary

