
CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

CS660: Intro to Database Systems

Class 4: SQL, The Query Language – Part II

Instructor: Manos Athanassoulis

https://bu-disc.github.io/CS660/

https://bu-disc.github.io/CS660/

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Nested Queries

WHERE clause can itself contain an SQL query!

SELECT S.sname
FROM Sailors S
WHERE S.sid IN (SELECT R.sid
 FROM Reserves R
 WHERE R.bid=103)

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Nested Queries with Correlation

Subquery must be recomputed for each Sailors tuple.

 Think of subquery as a function call that runs a query!

SELECT S.sname
FROM Sailors S
WHERE EXISTS (SELECT *
 FROM Reserves R
 WHERE R.bid=103 AND S.sid=R.sid)

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Let’s revisit Query #3

3. Find all sailors who have not reserved a red boat

SELECT S.sid
FROM Sailors S
EXCEPT
SELECT R.sid
FROM Boats B,Reserves R
WHERE R.bid=B.bid
 AND B.color=‘red’

Reserves (sid, bid, day) Sailors (sid, sname, rating, age)

Boats (bid, bname, color)

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Set-Difference using NOT IN

Find all sailors who have not reserved a red boat

SELECT S.sid
FROM Sailors S
WHERE S.sid NOT IN
 (SELECT R.sid
 FROM Reserves R, Boats B
 WHERE R.bid = B.bid
 AND B.color = ‘red’)

Nested – NO correlation!
Reserves (sid, bid, day) Sailors (sid, sname, rating, age)

Boats (bid, bname, color)

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Set-Difference using NOT EXISTS

Find all sailors who have not reserved a red boat

SELECT S.sid
FROM Sailors S
WHERE NOT EXISTS
 (SELECT *
 FROM Reserves R, Boats B
 WHERE R.sid = S.sid
 AND R.bid = B.bid
 AND B.color = ‘red’)

Reserves (sid, bid, day) Sailors (sid, sname, rating, age)

Boats (bid, bname, color)
Nested – correlation!

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Set Operations

SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid
 AND B.color=‘red’
UNION
SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid
 AND B.color=‘green’

SELECT S.sid
FROM Sailors S, Boats B,

Reserves R
WHERE S.sid=R.sid
 AND R.bid=B.bid
 AND B.color=‘red’
INTERSECT
SELECT S.sid
FROM Sailors S, Boats B,

Reserves R
WHERE S.sid=R.sid
 AND R.bid=B.bid
 AND B.color=‘green’

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Let’s revisit UNION

SELECT R.sid
FROM Boats B,Reserves R
WHERE R.bid=B.bid AND
(B.color=‘red’ OR B.color=‘green’)

SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid AND B.color=‘red’
UNION SELECT R.sid
 FROM Boats B, Reserves R
 WHERE R.bid=B.bid AND
 B.color=‘green’

VS.

we said they are equivalent

but do they always
give the same result?

example

example

http://sqlfiddle.com/
http://sqlfiddle.com/

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

ANY and ALL Set-Comparison Operators

Find sailors with rating greater than the rating of at least one sailor called ‘Horatio’:

Find sailors with rating greater than the rating of all 20-year old sailors:

SELECT *
FROM Sailors S
WHERE S.rating > ANY (SELECT S2.rating
 FROM Sailors S2
 WHERE S2.sname=‘Horatio’)

SELECT *
FROM Sailors S
WHERE S.rating > ALL (SELECT S2.rating
 FROM Sailors S2
 WHERE S2.age = 20)

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Division (“for all”) in SQL

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS (SELECT B.bid
 FROM Boats B
 WHERE NOT EXISTS (SELECT R.bid
 FROM Reserves R
 WHERE R.bid=B.bid
 AND R.sid=S.sid))

Sailors S for which ...

there is no boat B without …

a Reserves tuple
showing S reserved B

Find sailors who have reserved all boats.

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Division (“for all”) in SQL - alternative

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS (SELECT B.bid
 FROM Boats B
 EXCEPT (SELECT R.bid
 FROM Reserves R
 WHERE R.bid=B.bid
 AND R.sid=S.sid))

Sailors S for which ...

there is no boat B without …

a Reserves tuple
showing S reserved B

Find sailors who have reserved all boats.

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Aggregate Operators

Significant extension of relational algebra.

COUNT (*)
COUNT ([DISTINCT] A)
SUM ([DISTINCT] A)
AVG ([DISTINCT] A)
MAX (A)
MIN (A)

SELECT AVG (S.age)
FROM Sailors S
WHERE S.rating=10

SELECT COUNT (*)
FROM Sailors S

single column

SELECT COUNT (DISTINCT S.rating)
FROM Sailors S
WHERE S.sname=‘Bob’

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Aggregate Operators

SELECT AVG (DISTINCT S.age)
FROM Sailors S
WHERE S.rating=10

SELECT S.sname
FROM Sailors S
WHERE S.rating = (SELECT MAX(S2.rating)
 FROM Sailors S2)

COUNT (*)
COUNT ([DISTINCT] A)
SUM ([DISTINCT] A)
AVG ([DISTINCT] A)
MAX (A)
MIN (A)

single column

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Find name and age of the oldest sailor(s)

The first query is incorrect!

Third query equivalent to second query

allowed in SQL/92 standard, but not
supported in some systems.

SELECT S.sname, MAX (S.age)
FROM Sailors S

SELECT S.sname, S.age
FROM Sailors S
WHERE S.age =
 (SELECT MAX (S2.age)
 FROM Sailors S2)

SELECT S.sname, S.age
FROM Sailors S
WHERE (SELECT MAX (S2.age)
 FROM Sailors S2)
 = S.age

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

ARGMAX?

The Sailor with the highest rating
What about ties for highest?

SELECT *
FROM Sailors S
WHERE S.rating >= ALL
 (SELECT S2.rating
 FROM Sailors S2)

SELECT *
FROM Sailors S
WHERE S.rating =
(SELECT MAX(S2.rating)
 FROM Sailors S2)

SELECT *
FROM Sailors S
ORDER BY rating DESC
LIMIT 1;

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

JOINS

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Joins

SELECT (column_list)
FROM table_name
 [INNER | NATURAL | {LEFT | RIGHT | FULL} | {OUTER}]
JOIN table_name
 ON qualification_list
WHERE …

INNER is default

SELECT sname FROM sailors S JOIN reserves R ON S.sid=R.sid;

SELECT sname FROM sailors S NATURAL JOIN reserves R

WHERE R.bid = 102;

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Inner Joins

 SELECT s.sid, s.sname, r.bid

 FROM Sailors s, Reserves r

 WHERE s.sid = r.sid

 SELECT s.sid, s.sname, r.bid

 FROM Sailors s INNER JOIN Reserves r

 ON s.sid = r.sid

They are
equivalent!

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Left Outer Join
Returns all matched rows, plus all unmatched rows from the table on the left of the
join clause

(use nulls in fields of non-matching tuples)

SELECT s.sid, s.sname, r.bid

 FROM Sailors s LEFT OUTER JOIN

 Reserves r

 ON s.sid = r.sid;

Returns all sailors & bid for boat in any of their reservations

Note: no match for s.sid? r.sid IS NULL!

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

SELECT s.sid, s.sname, r.bid
 FROM Sailors s LEFT OUTER JOIN Reserves r
 ON s.sid = r.sid;

sid sname rating age

22 Dustin 7 45.0

31 Lubber 8 55.5

95 Bob 3 63.5

sid bid day

22 101 10/10/96

95 103 11/12/96

NULL

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Right Outer Join
Returns all matched rows, plus all unmatched rows from the table on the right of the
join clause

(use nulls in fields of non-matching tuples)

SELECT r.sid, b.bid, b.bname

 FROM Reserves r RIGHT OUTER JOIN

 Boats b

 ON r.bid = b.bid;

Returns all boats & information on which ones are reserved

Note: no match for b.bid? r.bid IS NULL!

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Full Outer Join
Full Outer Join returns all (matched or unmatched) rows from the tables on both sides
of the join clause

SELECT r.sid, b.bid, b.bname

 FROM Reserves2 r FULL OUTER JOIN

 Boats2 b

 ON r.bid = b.bid;

Returns all boats & all information on reservations

No match for r.bid?

– b.bid IS NULL AND b.bname is NULL

No match for b.bid?

– r.sid is NULL

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

GROUP BY AND HAVING

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

GROUP BY and HAVING

So far, we’ve applied aggregate operators to all (qualifying) tuples.
Sometimes, we want to apply them to each of several groups of tuples.

Consider: Find the age of the youngest sailor for each rating level.
In general, we don’t know how many rating levels exist, and what the rating values
for these levels are!

Suppose we know that rating values go from 1 to 10; we can write 10 queries that
look like this (!):

SELECT MIN (S.age)
FROM Sailors S
WHERE S.rating = i

For i = 1, 2, ... , 10:

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Queries With GROUP BY and HAVING

Group rows by columns in grouping-list

Every column from target-list mast appear in the grouping-list

HAVING restricts through an aggregate which group-rows are
part of the result

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification
GROUP BY grouping-list
[HAVING group-qualification]

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Conceptual Evaluation

Attributes in target-list must also be in grouping-list.

Expressions in group-qualification must have a single value
per group! That is, attributes in group-qualification must be
part of an aggregate op / must appear in the grouping-list.

(1) Cross-product of
relation-list

(2) Select only tuples that
follow the where clause

qualification)

(3) Partition rows by the value
of attributes in grouping-list

(4) Select only groups that
follow the group-qualification

(5) One answer tuple is
generated per qualifying

group, showing target-list

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Find the age of the youngest sailor with age 18,
for each rating with at least 2 such sailors

SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

rating

7 35.0

rating age

1 33.0

7 45.0

7 35.0

8 55.5

10 35.0

2

rating m-age count

1 33.0 1

7 35.0 2

8 55.0 1

10 35.0 1

3

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

71 zorba 10 16.0

64 horatio 7 35.0

29 brutus 1 33.0

58 rusty 10 35.0

4

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

SELECT S.sname, S.sid

FROM Sailors S, reserves R
WHERE S.sid = R.sid

GROUP BY S.sname, S.sid

HAVING COUNT(DISTINCT R.bid) =
 (Select COUNT (*) FROM Boats)

s.sname s.sid r.sid r.bid

Dustin 22 22 101

Lubber 31 22 101

Bob 95 22 101

Dustin 22 95 102

Lubber 31 95 102

Bob 95 95 102

s.sname s.sid bcount

Dustin 22 1

Bob 95 1

bid bname color

101 Interlake blue

102 Interlake red

103 Clipper green

104 Marine red

Count (*) from boats = 4

Apply having clause to groups

s.sname s.sid

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING S.rating < 9

SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING S.name = ‘Horatio’

can I ask…

what about …
or…

...
GROUP BY S.rating
HAVING MIN (S.age) < 30

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Sorting the Results of a Query

ORDER BY column [ASC | DESC] [, ...]

Extra reporting power obtained by combining with aggregation.

SELECT S.rating, S.sname, S.age
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid
 AND B.color=‘red’
ORDER BY S.rating, S.sname;

SELECT S.sid, COUNT (*) AS redrescnt
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid
 AND B.color=‘red’
GROUP BY S.sid
ORDER BY redrescnt DESC;

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Summary: The SQL Query

SELECT [DISTINCT] target-list

FROM relation-list

WHERE qualification

GROUP BY grouping-list

HAVING group-qualification

ORDER BY attribute-list

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Remember? Division (“for all”) in SQL

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS (SELECT B.bid
 FROM Boats B
 WHERE NOT EXISTS (SELECT R.bid
 FROM Reserves R
 WHERE R.bid=B.bid
 AND R.sid=S.sid))

Sailors S for which ...

there is no boat B without …

a Reserves tuple
showing S reserved B

Find sailors who have reserved all boats.

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Can you do this using Group By and Having?

Find sailors who have reserved all boats.

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid = R.sid
GROUP BY S.sname, S.sid
HAVING COUNT(DISTINCT R.bid) =
 (Select COUNT (*) FROM Boats)

Note: must have both sid and name in the GROUP BY clause. Why?

(1) Attributes in target-list must also be in grouping-list.
(2) Expressions in group-qualification must have a single value per group!
(3) Without sid we are grouping together sailors with the same name!

http://sqlfiddle.com/

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

An Illustration sid sname rating age

1 Frodo 7 22

2 Bilbo 2 39

3 Sam 8 27

Sailors

sid bid day

1 102 9/12

2 102 9/12

2 101 9/14

1 102 9/10

2 103 9/13

Reserves

bid bname color

101 Nina red

102 Pinta blue

103 Santa Maria red

Boats

SELECT S.name
FROM Sailors S, reserves R
WHERE S.sid = R.sid
GROUP BY S.name, S.sid
HAVING COUNT(DISTINCT R.bid) =

(Select COUNT (*) FROM
Boats)

count

3

sname sid bid

Frodo 1 102

Bilbo 2 101

Bilbo 2 102

Frodo 1 102

Bilbo 2 103

sname sid bid

Frodo 1 102,102

Bilbo 2 101, 102, 103

sname sid count

Frodo 1 1

Bilbo 2 3

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

REVISITING DDL, NULL, AND MORE

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

INSERT INTO Boats VALUES (105, ‘Clipper’, ‘purple’)

INSERT INTO Boats (bid, color) VALUES (99, ‘yellow’)

You can also do a “bulk insert” of values from one

table into another:

INSERT INTO TEMP(bid)

SELECT r.bid FROM Reserves R WHERE r.sid = 22;

(must be type compatible)

INSERT [INTO] table_name [(column_list)]
VALUES (value_list)

INSERT [INTO] table_name [(column_list)]
<select statement>

43

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

DELETE FROM Boats WHERE color = ‘red’

DELETE FROM Boats b

WHERE b. bid =

(SELECT r.bid FROM Reserves R WHERE r.sid = 22)

Can also modify tuples using UPDATE statement.

UPDATE Boats

SET Color = “green”

WHERE bid = 103;

DELETE [FROM] table_name
[WHERE qualification]

44

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Null Values
Field values in a tuple are sometimes unknown (e.g., a rating has
not been assigned) or inapplicable (e.g., no spouse’s name).

– SQL provides a special value null for such situations.

The presence of null complicates many issues. E.g.:
– Special operators needed to check if value is/is not null. IS NULL/IS NOT NULL

– Is rating>8 true or false when rating is equal to null? What about AND, OR and NOT

connectives?

– We need a 3-valued logic (true, false and unknown).

– Meaning of constructs must be defined carefully. (e.g., WHERE clause eliminates rows
that don’t evaluate to true.)

– New operators (in particular, outer joins) possible/needed.

45

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

NULLs

example

branch2=

What does this mean?

We don’t know Kenmore’s assets?
Kenmore has no assets?
....................

Effect on Queries:

SELECT * FROM branch2 WHERE assets = NULL

SELECT * FROM branch2 WHERE assets IS NULL

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

NULLs
Arithmetic with nulls:

– n <op> null = null

<op> : + , - , *, /, mod, ...

“Booleans” with nulls: One can write:

3-valued logic (true, false, unknown)

SELECT
FROM
WHERE boolexpr IS UNKNOWN

What expressions evaluate to UNKNOWN?
1. Comparisons with NULL (e.g., assets = NULL)
2. FALSE OR UNKNOWN (but: TRUE OR UNKNOWN = TRUE)
3. TRUE AND UNKNOWN
4. UNKNOWN AND/OR UNKNOWN

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

NULLs

branch2=
Aggregate operations:

SELECT SUM(assets)
FROM branch2

returns SUM

11.1M

NULL is ignored
Same for AVG, MIN, MAX

Let branch3 an empty relation
Then: SELECT SUM(assets)

FROM branch3 returns NULL

but SELECT COUNT(*) FROM branch3 returns 0

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Views
CREATE VIEW view_name
AS select_statement

Makes development simpler
Often used for security
Not instantiated - makes updates tricky

CREATE VIEW Reds
AS SELECT B.bid, COUNT (*) AS scount

FROM Boats B, Reserves R
WHERE R.bid=B.bid AND B.color=‘red’
GROUP BY B.bid

49

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

CREATE VIEW Reds
AS SELECT B.bid, COUNT (*) AS scount

FROM Boats B, Reserves R
WHERE R.bid=B.bid AND B.color=‘red’
GROUP BY B.bid

Reds

An illustration

50

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

SELECT bname, scount
FROM Reds R, Boats B
WHERE R.bid=B.bid

AND scount < 10

Views Instead of Relations in Queries

51

CREATE VIEW Reds
AS SELECT B.bid, COUNT (*) AS scount

FROM Boats B, Reserves R
WHERE R.bid=B.bid AND B.color=‘red’
GROUP BY B.bid

Reds

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Views vs INTO

(1) SELECT bname, bcity
FROM branch
INTO branch2

(2) CREATE VIEW branch2 AS
SELECT bname, bcity
FROM branch

vs

(1) creates a new table that gets stored on disk

(2) creates a “virtual table” (materialized when needed)

Therefore: changes in branch are seen in (2) but not in (1)

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Discretionary Access Control

GRANT privileges ON object TO users [WITH GRANT OPTION]

Object can be a Table or a View

Privileges can be:

• Select/Insert/Delete

• References (cols) – to create a foreign key references to <cols>

• All

Can later be REVOKED

Users can be single users or groups

See Chapter 17 for more details.

53

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

CONSTRAINTS

Assertions and Triggers

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Integrity Constraints
• predicates on the database

• must always be true (checked whenever db gets updated)

There are the following 4 types of IC’s:

Key constraints (1 table)
e.g., 2 accts can’t share the same acct_no

Attribute constraints (1 table)
e.g., 2 accts must have nonnegative balance

Referential Integrity constraints (2 tables)
E.g. bnames associated w/ loans must be names of real branches

Global Constraints (n tables)
E.g., a loan must be carried by at least 1 customer with a svngs acct

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Global Constraints
Idea: two kinds

1) single relation (constraints spans multiple columns)

E.g.: CHECK (total = svngs + check) declared in the CREATE TABLE

2) multiple relations: CREATE ASSERTION

SQL examples:
1) single relation: All BOSTON branches must have assets > 5M

CREATE TABLE branch (
..........
bcity CHAR(15),
assets INT,
CHECK (NOT(bcity = ‘BOS’) OR assets > 5M))

Affects:
insertions into branch
updates of bcity or assets in branch

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Global Constraints
SQL example:
2) Multiple relations: every loan has a borrower with a savings account

CHECK (NOT EXISTS (
SELECT *
FROM loan AS L
WHERE NOT EXISTS(

SELECT *
FROM borrower B, depositor D, account A
WHERE B.cname = D.cname AND

D.acct_no = A.acct_no AND L.lno = B.lno)))

Problem: Where to put this constraint? At depositor? Loan?

Ans: None of the above:
CREATE ASSERTION loan-constraint

CHECK(.....)

Checked with EVERY DB update!
very expensive.....

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Global Constraints

Issues:

1) How does one decide what global constraint to impose?

2) How does one minimize the cost of checking the global
constraints?

Ans: Semantics of application and Functional dependencies.

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Summary: Integrity Constraints

Constraint Type Where declared Affects... Expense

Key Constraints CREATE TABLE

(PRIMARY KEY, UNIQUE)

Insertions, Updates Moderate

Attribute Constraints CREATE TABLE

CREATE DOMAIN

(Not NULL, CHECK)

Insertions, Updates Cheap

Referential Integrity Table Tag

(FOREIGN KEY

REFERENCES)

1.Insertions into
referencing rel’n

2. Updates of
referencing rel’n of
relevant attrs

3. Deletions from
referenced rel’n

4. Update of
referenced rel’n

1,2: like key constraints.
Another reason to
index/sort on the
primary keys

3,4: depends on

a. update/delete policy
chosen

b. existence of indexes
on foreign key

Global Constraints Table Tag (CHECK)

or

outside table

(CREATE ASSERTION)

1. For single rel’n
constraint, with
insertion, deletion of
relevant attrs

2. For assesrtions w/
every db modification

1. cheap

2. very expensive

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Triggers (Active database)
• Trigger: A procedure that starts automatically if specified

changes occur to the DBMS

• Analog to a "daemon" that monitors a database for certain
events to occur

• Three parts:
– Event (activates the trigger)

– Condition (tests whether the triggers should run) [Optional]

– Action (what happens if the trigger runs)

• Semantics:
– When event occurs, and condition is satisfied, the action is performed.

60

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

An example of Trigger

61

CREATE TRIGGER minSalary BEFORE INSERT ON Professor

FOR EACH ROW

WHEN (new.salary < 100,000)

BEGIN

RAISE_APPLICATION_ERROR (-20004, ‘Violation of Minimum Professor Salary’);

END;

Conditions can refer to old/new values of tuples modified by the statement activating the trigger.

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Triggers – Event, Condition, Action
Events could be :

BEFORE|AFTER INSERT|UPDATE|DELETE ON <tableName>

e.g.: BEFORE INSERT ON Professor

Condition is SQL expression or even an SQL query (query with
non-empty result means TRUE)

Action can be many different choices :
– SQL statements, and even DDL and transaction-oriented statements like “commit”.

62

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Example Trigger

Assume our DB has a relation schema :

Professor (pNum, pName, salary)

We want to write a trigger that :

Ensures that any new professor inserted has salary >= 70000

63

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Example Trigger
CREATE TRIGGER minSalary BEFORE INSERT ON Professor

for what context ?

BEGIN

check for violation here ?

END;

64

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Example Trigger
CREATE TRIGGER minSalary BEFORE INSERT ON Professor

 FOR EACH ROW

BEGIN

check for violation here ?

END;

65

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Example Trigger

66

CREATE TRIGGER minSalary BEFORE INSERT ON Professor

 FOR EACH ROW

BEGIN

 IF (:new.salary < 70000)

 THEN RAISE_APPLICATION_ERROR (-20004,

 ‘Violation of Minimum Professor Salary’);

 END IF;

END;

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Details of Trigger Example

BEFORE INSERT ON Professor
– This trigger is checked before the tuple is inserted

FOR EACH ROW
– specifies that trigger is performed for each row inserted

:new
– refers to the new tuple inserted

If (:new.salary < 70000)
– then an application error is raised and hence the row is not inserted; otherwise the

row is inserted.

Use error code: -20004;
– this is in the valid range67

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Example Trigger Using Condition
CREATE TRIGGER minSalary BEFORE INSERT ON Professor

 FOR EACH ROW

WHEN (new.salary < 70000)

BEGIN

RAISE_APPLICATION_ERROR (-20004,

‘Violation of Minimum Professor Salary’);

END;

Conditions can refer to old/new values of tuples modified by the statement activating the trigger.

68

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Triggers: REFERENCING

CREATE TRIGGER minSalary BEFORE INSERT ON Professor

REFERENCING NEW as newTuple

FOR EACH ROW

WHEN (newTuple.salary < 70000)

BEGIN

RAISE_APPLICATION_ERROR (-20004,

‘Violation of Minimum Professor Salary’);

END;

69

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Example Trigger

CREATE TRIGGER updSalary

BEFORE UPDATE ON Professor

REFERENCING OLD AS oldTuple NEW as newTuple

FOR EACH ROW

WHEN (newTuple.salary < oldTuple.salary)

BEGIN

RAISE_APPLICATION_ERROR (-20004, ‘Salary

Decreasing !!’);

END;

Ensure that salary does not decrease

70

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos AthanassoulisAnother Trigger Example
(SQL:99)

CREATE TRIGGER youngSailorUpdate

AFTER INSERT ON SAILORS

REFERENCING NEW TABLE AS NewSailors

FOR EACH STATEMENT

INSERT

INTO YoungSailors(sid, name, age, rating)

SELECT sid, name, age, rating

FROM NewSailors N

WHERE N.age <= 18
71

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Row vs Statement Level Trigger

• Row level: activated once per modified tuple

• Statement level: activate once per SQL statement

• Row level triggers can access new data, statement level
triggers cannot always do that (depends on DBMS).

• Statement level triggers will be more efficient if we do not
need to make row-specific decisions

72

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Row vs Statement Level Trigger

Example: Consider a relation schema

Account (num, amount)

where we will allow creation of new accounts

only during normal business hours.

73

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Example: Statement level trigger
CREATE TRIGGER MYTRIG1

BEFORE INSERT ON Account

FOR EACH STATEMENT --- is default

BEGIN

IF (TO_CHAR(SYSDATE,’dy’) IN (‘sat’,’sun’))

OR

(TO_CHAR(SYSDATE,’hh24:mi’) NOT BETWEEN ’08:00’ AND ’17:00’)

THEN

RAISE_APPLICATION_ERROR(-20500,’Cannot create new account now !!’);

END IF;

END;

74

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

When to use BEFORE/AFTER

Based on efficiency considerations or semantics.

Suppose we perform statement-level after insert,

➔all the rows are inserted first,

➔if the condition fails ➔ all inserts must be “rolled back”

Not very efficient !!

75

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Combining multiple events into one trigger

CREATE TRIGGER salaryRestrictions

AFTER INSERT OR UPDATE ON Professor

FOR EACH ROW

BEGIN

IF (INSERTING AND :new.salary < 70000) THEN

RAISE_APPLICATION_ERROR (-20004, 'below min salary');

END IF;

IF (UPDATING AND :new.salary < :old.salary) THEN

RAISE_APPLICATION_ERROR (-20004, ‘Salary Decreasing !!');

END IF;

END;

76

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Summary : Trigger Syntax
CREATE TRIGGER <triggerName>

BEFORE|AFTER INSERT|DELETE|UPDATE

[OF <columnList>] ON <tableName>|<viewName>

[REFERENCING [OLD AS <oldName>] [NEW AS <newName>]]

[FOR EACH ROW] (default is “FOR EACH STATEMENT”)

[WHEN (<condition>)]

<PSM body>;

77

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Constraints versus Triggers

• Constraints are useful for database consistency

– Use IC when sufficient

– More opportunity for optimization

– Not restricted into insert/delete/update

• Triggers are flexible and powerful

– Alerters

– Event logging for auditing

– Security enforcement

– Analysis of table accesses (statistics)

– Workflow and business intelligence …

78

But can be hard to understand ……
- Several triggers (Arbitrary order → unpredictable!)
- Chain triggers (When to stop ?)
- Recursive triggers (Termination?)

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Links for Examples

Schema is available at:
https://gist.github.com/manathan1984/35b189ae92fd996cce7816e2d7f9e40f

Lightweight online SQL frontend:
http://sqlfiddle.com/

https://gist.github.com/manathan1984/35b189ae92fd996cce7816e2d7f9e40f
http://sqlfiddle.com/

	Slide 1: CS660: Intro to Database Systems Class 4: SQL, The Query Language – Part II
	Slide 9: Nested Queries
	Slide 10: Nested Queries with Correlation
	Slide 11: Let’s revisit Query #3
	Slide 12: Set-Difference using NOT IN
	Slide 13: Set-Difference using NOT EXISTS
	Slide 14: Set Operations
	Slide 15: Let’s revisit UNION
	Slide 16: ANY and ALL Set-Comparison Operators
	Slide 17: Division (“for all”) in SQL
	Slide 18: Division (“for all”) in SQL - alternative
	Slide 19: Aggregate Operators
	Slide 20: Aggregate Operators
	Slide 21: Find name and age of the oldest sailor(s)
	Slide 22: ARGMAX?
	Slide 23: Joins
	Slide 24: Joins
	Slide 25: Inner Joins
	Slide 26: Left Outer Join
	Slide 27
	Slide 28: Right Outer Join
	Slide 29: Full Outer Join
	Slide 30: Group by and having
	Slide 31: GROUP BY and HAVING
	Slide 32: Queries With GROUP BY and HAVING
	Slide 33: Conceptual Evaluation
	Slide 34: Find the age of the youngest sailor with age 18, for each rating with at least 2 such sailors
	Slide 35: SELECT S.sname, S.sid FROM Sailors S, reserves R WHERE S.sid = R.sid GROUP BY S.sname, S.sid HAVING COUNT(DISTINCT R.bid) = (Select COUNT (*) FROM Boats)
	Slide 36
	Slide 37: Sorting the Results of a Query
	Slide 38: Summary: The SQL Query
	Slide 39: Remember? Division (“for all”) in SQL
	Slide 40: Can you do this using Group By and Having?
	Slide 41: An Illustration
	Slide 42: Revisiting DDL, NULL, and more
	Slide 43
	Slide 44
	Slide 45: Null Values
	Slide 46: NULLs
	Slide 47: NULLs
	Slide 48: NULLs
	Slide 49: Views
	Slide 50:
	Slide 51:
	Slide 52: Views vs INTO
	Slide 53: Discretionary Access Control
	Slide 54: Constraints
	Slide 55: Integrity Constraints
	Slide 56: Global Constraints
	Slide 57: Global Constraints
	Slide 58: Global Constraints
	Slide 59: Summary: Integrity Constraints
	Slide 60: Triggers (Active database)
	Slide 61: An example of Trigger
	Slide 62: Triggers – Event, Condition, Action
	Slide 63: Example Trigger
	Slide 64: Example Trigger
	Slide 65: Example Trigger
	Slide 66: Example Trigger
	Slide 67: Details of Trigger Example
	Slide 68: Example Trigger Using Condition
	Slide 69: Triggers: REFERENCING
	Slide 70: Example Trigger
	Slide 71: Another Trigger Example (SQL:99)
	Slide 72: Row vs Statement Level Trigger
	Slide 73: Row vs Statement Level Trigger
	Slide 74: Example: Statement level trigger
	Slide 75: When to use BEFORE/AFTER
	Slide 76: Combining multiple events into one trigger
	Slide 77: Summary : Trigger Syntax
	Slide 78: Constraints versus Triggers
	Slide 79
	Slide 80: Links for Examples

