
CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

CS660: Intro to Database Systems

Class 15: Query Processing with Relational Operations

Instructor: Manos Athanassoulis

https://bu-disc.github.io/CS660/

https://midas.bu.edu/classes/CS460/

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Units

Query Processing

Overview

Selections

Projections

Nested loop joins

Sort-merge and hash joins

General joins and aggregates
2

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Units

Query Processing

Overview

Selections

Projections

Nested loop joins

Sort-merge and hash joins

General joins and aggregates

Readings: Chapter 12

3

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

DBMS Layer-Cake

4

SQL Query à

DB

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

SINGLE-TABLE QUERIES

5

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Basic Single-Table Queries
SELECT [DISTINCT] <column expression list>
FROM <single table>
[WHERE <predicate>]
[GROUP BY <column list>
[HAVING <predicate>]]
[ORDER BY <column list>]

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Basic Single-Table Queries
SELECT [DISTINCT] <column expression list>
FROM <single table>
[WHERE <predicate>]
[GROUP BY <column list>
[HAVING <predicate>]]
[ORDER BY <column list>]

Simplest version is straightforward:
• Produce all tuples in the table that satisfy the predicate
• Output the expressions in the SELECT list

Ø Expression can be a column reference, or an arithmetic expression over column references

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Basic Single-Table Queries
SELECT S.name, S.gpa
FROM Students S
WHERE S.dept=“CS”
[GROUP BY <column list>
[HAVING <predicate>]]
[ORDER BY <column list>]

Simplest version is straightforward:
• Produce all tuples in the table that satisfy the predicate
• Output the expressions in the SELECT list

Ø Expression can be a column reference, or an arithmetic expression over column references

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

SELECT DISTINCT
SELECT DISTINCT S.name, S.gpa
FROM Students S
WHERE S.dept=“CS”
[GROUP BY <column list>
[HAVING <predicate>]]
[ORDER BY <column list>]

The DISTINCT flag specifies removal of duplicates before output

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

ORDER BY
SELECT DISTINCT S.name, S.gpa, 2023-S.age AS YOB
FROM Students S
WHERE S.dept=“CS”
[GROUP BY <column list>
[HAVING <predicate>]]
ORDER BY S.gpa, S.name, YOB

ORDER BY clause specifies that output should be sorted
• Lexicographic ordering again!

Obviously must refer to columns in the output (SELECT clause)
• Note the AS clause for naming output columns!

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

ORDER BY
SELECT DISTINCT S.name, S.gpa
FROM Students S
WHERE S.dept=“CS”
[GROUP BY <column list>
[HAVING <predicate>]]
ORDER BY S.gpa DESC, S.name ASC

Ascending order by default, but can be overridden
• DESC flag for descending, ASC for ascending
• Can mix and match, lexicographically

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

ORDER BY
SELECT [DISTINCT] AVERAGE(S.gpa)
FROM Students S
WHERE S.dept=“CS”
[GROUP BY <column list>
[HAVING <predicate>]]
[ORDER BY <column list>]

Before producing output, compute a summary (a.k.a. an aggregate) of some arithmetic expression
• Produces 1 row of output

Ø with one column in this case
• Other aggregates: SUM, COUNT, MAX, MIN

Note: can use DISTINCT inside the aggregate function (what is the difference?)
o SELECT COUNT(DISTINCT S.name) FROM Students S
o vs. SELECT DISTINCT COUNT (S.name) FROM Students S;

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

GROUP BY
SELECT [DISTINCT] AVERAGE(S.gpa), S.dept
FROM Students S
[WHERE <predicate>]
GROUP BY S.dept
[HAVING <predicate>]]
[ORDER BY <column list>]

Partition the table into groups that have the same value on GROUP BY columns
• Can group by a list of columns

Produce an aggregate result per group
• Cardinality of output = # of distinct group values

Note: can put grouping columns in SELECT list
• For aggregate queries, SELECT list can contain aggs and GROUP BY columns only!
Ø What would it mean if we said SELECT S.name, AVERAGE(S.gpa) above?

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

HAVING
SELECT [DISTINCT] AVERAGE(S.gpa), S.dept
FROM Students S
[WHERE <predicate>]
GROUP BY S.dept
HAVING COUNT(*)>5
[ORDER BY <column list>]

The HAVING predicate is applied after grouping and aggregation
• Hence can contain anything that could go in the SELECT list
• i.e. aggregates or GROUP BY columns

It is an optional clause

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Putting it All Together
SELECT [DISTINCT] AVERAGE(S.gpa), S.dept
FROM Students S
WHERE S.age = 20
GROUP BY S.dept
HAVING COUNT(*)>5
ORDER BY S.dept;

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Query Processing Overview
• The query parser and optimizer translates SQL to a special internal “language”

– Query Plans
• The query executor is an interpreter for query plans
• Think of query plans as “box-and-arrow” dataflow diagrams

– Each box implements a relational operator
– Edges represent a flow of tuples (columns as specified)
– For single-table queries, these diagrams are straight-line graphs

SELECT DISTINCT name, gpa
 FROM Students

HeapScan

Sort

Distinct

name, gpa

name, gpa

name, gpa
Query Parsing & Optimization

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Query processing
Some database operations are EXPENSIVE

Can greatly improve performance by being ‘smart’
– e.g., can speed up 1,000,000x over naïve approach

Main weapons are:
1. Clever (fast) implementation techniques for operators
2. exploiting ‘equivalencies’ of relational operators
3. using statistics and cost models to choose among these

17

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

A Really Bad Query Optimizer
For each Select-From-Where query block

– Create a plan that:
• Forms the Cartesian product of the FROM clause
• Applies the WHERE clause
• Incredibly inefficient

– Huge intermediate results!

Then, as needed:
– Apply the GROUP BY clause
– Apply the HAVING clause
– Apply any projections and output expressions
– Apply duplicate elimination and/or ORDER BY

18

´
spredicates

tables
…

Correct BUT (very) slow!

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

A (multi-table)Query Plan

19

SELECT sname, bid
FROM R, S
WHERE R.sid=S.sid
ORDER BY sname

R S

⋈!.#$%&'.#$%

𝜋#()*+,	.$%

𝑠𝑜𝑟𝑡	𝑜𝑛	𝑠𝑛𝑎𝑚𝑒

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Query execution

Query Parser

Query Optimizer

Plan
Generator

Plan Cost
Estimator

Query Plan Evaluator

Catalog Manager

Usually there is a
heuristics-based
rewriting step before
the cost-based steps.

Schema Statistics

Select *
From Blah B
Where B.blah = “foo”

Query

21

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

The Query Optimization Game
‘Optimizer’ is a bit of a misnomer
Goal: pick a ‘good’ (i.e., low expected cost) plan

– Involves choosing access methods, physical operators, operator orders, …
– Notion of cost is based on an abstract ‘cost model’

Roadmap for this topic:
– First: basic operators
– Then: joins
– After that: optimizing multiple operators

22

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Relational Operations
We will consider how to implement:

– Selection (s) Selects a subset of rows from relation
– Projection (p) Deletes unwanted columns from relation
– Join (⋈) Allows us to combine two relations
– Set-difference (−) Tuples in relation 1, but not in relation 2
– Union (È) Tuples in relation 1 and in relation 2
– Aggregation (SUM, MIN, etc.) and GROUP BY

Operators can be composed !
Next: optimizing queries by composing them

23

Today

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Common Techniques
Indexing
 use an index to examine tuples satisfying a specific condition

Iteration
 examine all tuples one after the other

Partitioning (e.g., sorting or hashing)
 decompose a problem into a less expensive collection of operations on partitions

24

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Schema for Examples

Similar to old schema; rname added for variations.
Sailors:

– Each tuple is 50 bytes long, 80 tuples per page, 500 pages
– N=500, pS=80, tS=50

Reserves:
– Each tuple is 40 bytes long, 100 tuples per page, 1000 pages
– M=1000, pR=100, tS=40

25

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

S: N=500, ps=80, ts=50b
R: M=1000, pR=100, ts=40b

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Units

Query Processing

Overview

Selections

Projections

Nested loop joins

Sort-merge and hash joins

General joins and aggregates

Readings: Chapters 14.1-14.2

26

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Simple Selections

Of the form: 𝜎!.#$$%	𝒐𝒑)#*+, 𝑅
Question: how best to perform? Depends on:

– available indexes/access paths
– expected size of the result (# of tuples and/or # of pages)

Size of result approximated as
 size of R * reduction factor

– “reduction factor” is usually called selectivity
– estimate of selectivity is based on statistics

27

SELECT *
FROM Reserves R
WHERE R.rname < ‘C%’

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Alternatives for Simple Selections
With no index, unsorted:

– Must essentially scan the whole relation
– cost is M (#pages in R); for “reserves” = 1000 I/Os

With no index, sorted:
– cost of binary search + number of pages containing results.
– For reserves = log2(1000) = 10 I/Os + éselectivity*#pagesù

With an index on selection attribute:
1. Use index to find qualifying data entries,
2. then retrieve corresponding data records

• Note: Hash index useful only for equality selections

28

R: M=1000, pR=100, ts=40b

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Simple Selections – Explained

29

R: M=1000, pR=100, ts=40b

1) no index, unsorted scan everything
cost=1000 I/O

2) no index, sorted binary search: log!𝑀
qualifying pages: 𝑓 ' 𝑀

3) index

data entries:

data records:

index search: log"𝑀

what is the cost to access
the qualifying pages?

selectivity

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Using an Index for Selections
Cost ~ #qualifying tuples, clustering

– Cost factors:
• find qualifying data entries (typically small)
• retrieve records (could be large w/o clustering)

– Our example, “reserves” relation:
if 10% of tuples qualify (100 pages, 10000 tuples)

• clustered index à a bit more than 100 I/Os
• unclustered à could be up to 10000 I/Os!

31

R: M=1000, pR=100, ts=40b

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Selections using Index– Explained R: M=1000, pR=100, ts=40b

A) clustered

data entries:

data records:

index search: log"𝑀

𝑓 0 𝑀 =
= 10% 0 1000 = 100

B) unclustered

data entries:

data records:

index search: log"𝑀

𝑓 0 𝑀 0 𝑝! =
= 10% 0 1000 0 100 = 10000

Can we do better?

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Selections using Index -- Refinement R: M=1000, pR=100, ts=40b

A) clustered

data entries:

data records:

B) unclustered

data entries:

data records:

Important refinement
(for unclustered):

1. Find qualifying data entries

2. Sort the rid’s of the data
 records to be retrieved

3. Fetch rids in order
 Each data page is accessed once

No need for clustered!

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

General Selection Conditions

First converted to conjunctive normal form (CNF)
– (day<8/9/94 OR bid=5 OR sid=3) AND (rname=‘Paul’ OR bid=5 OR sid=3)

We assume no ORs (conjunction of <attr op value>)

A B-tree index matches (a conjunction of) terms that involve only
attributes in a prefix of the search key

– Index on <a, b, c> matches a=5 AND b=3, but not b=3

Hash indexes must have all attributes in search key
Hash indexes support only…?

36

Ø (day<8/9/94 AND rname=‘Paul’) OR bid=5 OR sid=3

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Selections – 1st approach
1. Find the cheapest access path
2. Retrieve tuples using it
3. Apply the terms that don’t match the index (if any):

– Cheapest access path
An index or file scan with the fewest estimated page I/Os

– Terms that match this index reduce the # of tuples retrieved
– Other terms are used to discard some retrieved tuples, but do not affect number

of tuples/pages fetched

37

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Cheapest Access Path - Example
Consider day < 8/9/94 AND bid=5 AND sid=3
A B+ tree index on day can be used;

– then, bid=5 and sid=3 must be checked for each retrieved tuple

Similarly, a hash index on <bid, sid> could be used;
– Then, day<8/9/94 must be checked

How about a B+tree on <rname,day>?
How about a B+tree on <day, rname>?
How about a Hash index on <day, rname>?

38

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Selections – 2nd approach: Intersecting RIDs

If we have 2 or more matching indexes (w/Alt. (2) or (3) for data entries):
1. Get sets of rids of data records using each matching index
2. Then intersect these sets of rids
3. Retrieve the records and apply any remaining terms

EXAMPLE: Consider day<8/9/94 AND bid=5 AND sid=3
– With (i) a B+ tree index on day and (ii) an index on sid:
1. a) Retrieve rids of records satisfying day<8/9/94 using the first

b) Retrieve rids of records satisfying sid=3 using the second
2. Intersect
3. Retrieve records and check bid=5

39

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Selections: summary
Simple selections

– On sorted or unsorted data, with or without index

General selections
– Expressed in conjunctive normal form (expr1 AND expr2 AND …)
– Retrieve tuples and then filter them through other conditions
– Intersect RIDs of matching tuples for non-clustered indexes

Choices depend on selectivity of each access method

40

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Break: The Halloween Problem
Story from the early days of System R.

While testing the optimizer on 10/31/76(?), the following update was
run:

UPDATE payroll
SET salary = salary*1.1
WHERE salary < 25K;

AND IT STOPPED WHEN ALL HAD salary ≥ 25K!

Can you guess why? (hint: it was an optimizer bug…)
41

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Units

Query Processing

Overview

Selections

Projections

Nested loop joins

Sort-merge and hash joins

General joins and aggregates

Readings: Chapter 14.3

42

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

The Projection Operation
Issue is removing duplicates

Basic approach is to use sorting
– 1. Scan R, extract only the needed attributes (why do this first?)
– 2. Sort the resulting set
– 3. Remove adjacent duplicates

– Cost: Reserves with size ratio 0.25 = 250 pages
With 20 buffer pages can sort in 2 passes (1 + 𝑙𝑜𝑔!" ⁄#$%

#%), so:
1000 +250 + 2 * 2 * 250 + 250 = 2500 I/Os

43

SELECT DISTINCT
 R.sid, R.bid
FROM Reserves R

Reserves (sid: integer, bid: integer, day: dates, rname: string) R: M=1000, pR=100, ts=40b

output tuple size: 10b

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Projection - Sorting (explained)

44

R: M=1000, pR=100, ts=40b

1000 pages
on disk

Remember the streaming paradigm?

output tuple size: 10b

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Projection - Sorting (explained)

45

R: M=1000, pR=100, ts=40b

1000 pages
on disk

input buffer output buffer

extract
attributes

250 pages
on disk

B=20

Sorting to remove duplicates

Pass 0: !#$
!$

= 13 runs

Pass 1: final merge

Remove adjacent
duplicates in final pass

Total cost:

1000+250+2*2*250+250=2500

Can we do better?

output tuple size: 10b

Note: if 𝐵 < 𝑀
1000+250+#passes*2*250+250

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Projection: Yes, we can do better!

Modify external sort algorithm (see chapter 13):

– Modify Pass 0 of external sort to eliminate unwanted fields

– Modify merging passes to eliminate duplicates

– Cost for above case:
read 1000 pages, write out 250 in runs of 40 pages,
merge runs = 1000 + 250 +250 = 1500

47

SELECT DISTINCT
 R.sid, R.bid
FROM Reserves R

R: M=1000, pR=100, ts=40b

output tuple size: 10b

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Projection - Sorting (explained)

48

R: M=1000, pR=100, ts=40b

1000 pages
on disk

heapsort with B=20
avg run: 2 0 𝐵 − 2 = 36	pages

extract attributes

250 pages on disk,
organized in 7 sorted runs

Total cost:

1000+250+250=1500

output tuple size: 10b

Pass 0: !#$%& = 7 runs

Pass 0

… …

eliminate duplicates

Pass 1: final merge

…

merge with B=20

250 final
pages on disk

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Projection Based on Hashing

Partitioning phase:
– Read R using one input buffer
– For each tuple:

• Discard unwanted fields
• Apply hash function h1 to choose one of B-1 output buffers

– Result is B-1 partitions (of tuples with no unwanted fields)
• 2 tuples from different partitions guaranteed to be distinct

51

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Projection Based on Hashing

Duplicate elimination phase:
– For each partition

• Read it and build an in-memory hash table
– using hash function h2 (<> h1) on all desired fields

• while discarding duplicates

– If partition does not fit in memory
• Apply hash-based projection algorithm recursively to this partition

52

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Projection - Hashing (explained)

53

R: M=1000, pR=100, ts=40b

1000 pages
on disk

hash partitioning with B=20

250 pages on disk,
in B-1 partitions

Total cost:

1000+250+250=1500

output tuple size: 10b

…

…
…

duplicate elimination with B=20

250 pages
on disk

…

if all partitions fit in
B pages, i.e., 𝐵 ≥ 𝑀

(any duplicates will be
in the same partitions)

2

2

5

5

(if not apply the hash partitioning
algorithm recursively)

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Discussion of Projection (1/2)
Sort-based approach is standard

– Better handling of skew, and result is sorted

If there are enough buffers, both have same I/O cost:
 M + 2T
where:

– M is #pages in R,
– T is #pages of R with unneeded attributes removed

Although many systems don’t use the specialized sort

55

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Discussion of Projection (2/2)
If all wanted attributes are indexed
à index-only scan

– Apply projection techniques to data entries (much smaller!)

If all wanted attributes are indexed as prefix of the search key
à even better:

– Retrieve data entries in order (index-only scan)
– Discard unwanted fields
– Compare adjacent tuples to check for duplicates

56

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Projections using Index– Explained R: M=1000, pR=100, ts=40b

A) indexed

data entries:
no need to access the base data!

apply sort-based or hash-based projection only on the desired attributes

A) indexed in prefix order

data entries:
retrieve entries sorted

discard unwanted fields & duplicates on the fly

Index on <sid, day, bid>

SELECT DISTINCT
 R.sid, R.bid
FROM Reserves R

Index on <sid, bid, day >

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Projections: summary

Projection based on sorting

Projection based on hashing

Can use indexes if they cover relevant attributes

58

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Units

Query Processing

Overview

Selections

Projections

Nested loop joins

Sort-merge and hash joins

General joins and aggregates

Readings: Chapters 14.4-14.4.1

59

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Joins…
…are very common.
…can be very expensive (cross product in the worst case).

è Many approaches to reduce join cost!

Join techniques we will cover:
1. Nested-loops join
2. Index-nested loops join
3. Sort-merge join
4. Hash join

60

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Equality Joins With One Join Column

In algebra: R S. Common! Must be carefully optimized. R X S is
large; so, R X S followed by a selection is inefficient
Remember, join is associative and commutative
Assume:

– M pages in R, pR tuples per page
– N pages in S, pS tuples per page
– In our examples, R is Reserves and S is Sailors

We will consider more complex join conditions later
Cost metric : # of I/Os
We will ignore output costs

61

SELECT *
FROM Reserves R1, Sailors S1
WHERE R1.sid=S1.sid

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Simple Nested Loops Join

For each tuple in the outer relation R, we scan the entire inner
relation S
How much does this Cost?
(pR * M) * N + M = 100*1000*500 + 1000 I/Os

– At 10ms/IO, Total: ???
What if smaller relation (S) was outer?

What assumptions are being made here?

62

foreach tuple r in R do
 foreach tuple s in S do
 if ri == sj then add <r, s> to result

Q: What is cost if one relation can fit entirely in memory?

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Page-Oriented Nested Loops Join

For each page of R
– get each page of S
– write out matching pairs of tuples <r, s>, where r is in R-page and S is in S-page

What is the cost of this approach?

M*N + M= 1000*500 + 1000
– If smaller relation (S) is outer, cost = 500*1000 + 500

63

foreach page bR in R do
 foreach page bS in S do
 foreach tuple r in bR do
 foreach tuple s in bSdo
 if ri == sj then add <r, s> to result

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Index Nested Loops Join

If there is an index on the join column of one relation (say S), can
make it the inner and exploit the index

– Cost: M + ((M*pR) * cost of finding matching S tuples)

For each R tuple, cost of probing S index is about 1.2 for hash index,
2-4 for B+ tree. Cost of then finding S tuples (assuming Alt. (2) or (3)
for data entries) depends on clustering
Clustered index: 1 I/O per page of matching S tuples
Unclustered: up to 1 I/O per matching S tuple

64

foreach tuple r in R do
 foreach tuple s in S where ri == sj do
 add <r, s> to result

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Examples of Index Nested Loops (1/2)

Hash-index (Alt. 2) on sid of Sailors (inner):

– Scan Reserves: 1000 page I/Os, 100*1000 tuples

– For each Reserves tuple:
• 1.2 I/Os to get data entry in index,
• plus 1 I/O to get (the exactly one) matching Sailors tuple

65

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Examples of Index Nested Loops (2/2)

Hash-index (Alt. 2) on sid of Reserves (inner):
– Scan Sailors: 500 page I/Os, 80*500 tuples
– For each Sailors tuple:

• 1.2 I/Os to find index page with data entries,
• plus cost of retrieving matching Reserves tuples
• Assuming uniform distribution, 2.5 reservations per sailor (100,000 / 40,000). Cost of

retrieving them is 1 or 2.5 I/Os depending on whether the index is clustered

66

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Block Nested Loops Join
Page-oriented NL doesn't exploit extra buffers
Alternative approach: Use one page as an input buffer for scanning
the inner S, one page as the output buffer, and use all remaining
pages to hold ‘block’ of outer R
For each matching tuple r in R-block, s in S-page, add <r, s> to result.
Then read next R-block, scan S, etc

67

. . .

. . .

R & S
block of R tuples
(k < B-1 pages)

Input buffer for S Output buffer

. . .

Join Result

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Examples of Block Nested Loops
Cost: Scan of outer + #outer blocks * scan of inner

– #outer blocks =

With Reserves (R) as outer, and 100 pages of R:
– Cost of scanning R is 1000 I/Os; a total of 10 blocks
– Per block of R, we scan Sailors (S); 10*500 I/Os

With 100-page block of Sailors as outer:
– Cost of scanning S is 500 I/Os; a total of 5 blocks
– Per block of S, we scan Reserves; 5*1000 I/Os

With sequential reads considered, analysis changes: may be best to
divide buffers evenly between R and S

68

é ù# /of pages of outer blocksize

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Nested loop joins: summary
Simple nested loops

– Optimized by page-oriented access

Index nested loops
– Costs depend on the type of index

Block nested loops
– Optimization of page nested loops which uses memory buffers

69

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Units

Query Processing

Overview

Selections

Projections

Nested loop joins

Sort-merge and hash joins

General joins and aggregates
Readings: Chapters 14.4.2-14.4.3

70

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Sort-Merge Join (R S)
Sort R and S on the join column, then scan them to do a ‘merge’ (on
join column), and output result tuples
Useful if

– one or both inputs are already sorted on join attribute(s)
– output is required to be sorted on join attributes(s)

‘Merge’ phase can require some back tracking if duplicate values
appear in join column
R is scanned once; each S group is scanned once per matching R
tuple. Note: Multiple scans of an S group will probably find needed
pages in buffer

71

i=j

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Example of Sort-Merge Join

Cost: Sort R +Sort S + (M+N)
– The cost of scanning, M+N, could be M*N (very unlikely!)

With 35, 100 or 300 buffer pages, both Reserves and Sailors can be
sorted in 2 passes; total join cost: 2*#passes*(M+N)+(M+N)=7500

72

sid sname rating age
22 dustin 7 45.0
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day rname
28 103 12/4/96 guppy
28 103 11/3/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
31 101 10/11/96 lubber
58 103 11/12/96 dustin

(BNL cost: 2500 to 15000 I/Os)

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Refinement of Sort-Merge Join
We can combine the merging phases in the sorting of R and S
with the merging required for the join

– Allocate 1 page per run of each relation, and ‘merge’ while checking the join
condition

– With B > , where L is the size of the larger relation, using the sorting
refinement that produces runs of length 2B in Pass 0, #runs of each relation is <
B/2

– Cost: read+write each relation in Pass 0 + read each relation in (only) merging
pass (+ writing of result tuples)

– In example, cost goes down from 7500 to 4500 I/Os

73

L

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Hash-Join
Partition both relations using
hash funtion h: R tuples in
partition i will only match S
tuples in partition i

Read in a partition of R, hash it
using h2 (<> h!). Scan matching
partition of S, probe hash table
for matches

74

Partitions
of R & S

Input buffer
for Si

Hash table for partition
Ri (k < B-1 pages)

B main memory buffersDisk

Output
 buffer

Disk

Join Result

hash
fn
h2

h2

B main memory buffers DiskDisk

Original
Relation OUTPUT

2INPUT

1

hashfunction
h B-1

Partitions

1

2

B-1

. . .

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Observations on Hash-Join

First pass creates B-1 partitions, each of size Si = N/(B-1)

Need each Si ≤ B-2 in order to fit in memory for 2nd pass

àNeed N/(B-1) ≤ B-2
 … or, roughly: B > 𝑁 (we consider a fudge factor, 𝑓, so: 	B > 𝑓 𝑁)
 where N is size of smaller relation

75

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

More Observations on Hash-Join
Since we build an in-memory hash table to speed up the
matching of tuples in the second phase, a little more memory is
needed

If the hash function does not partition uniformly, one or more R
partitions may not fit in memory. We can apply hash-join
technique recursively to do the join of this R-partition with
corresponding S-partition

76

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Cost of Hash-Join

In partitioning phase, read and write both relations; 2(M+N)

In matching phase, read both relations; M+N I/Os

In our running example, this is a total of 4500 I/Os

77

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Sort-Merge Join vs. Hash Join
Given a minimum amount of memory (what is this, for each?) both
have a cost of 3(M+N) I/Os

Hash Join Pros:
– Superior if relation sizes differ greatly
– Shown to be highly parallelizable (beyond scope of class)

Sort-Merge Join Pros:
– Less sensitive to data skew
– Result is sorted (may help “upstream” operators)
– Goes faster if one or both inputs already sorted

78

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Hash-Join
Let B = 5

Buckets:
 b1: h Î [1,25]
 b2: h Î [26,50]
 b3: h Î [51,75]
 b4: h Î [76,100]

If |F| ≤ |M|, in second phase
build in-memory hash table
on F partitions, and stream M
partitions through memory

79

Partitions
of R & S

Input buffer
for Si

Hash table for partition
Ri (k < B-1 pages)

B main memory buffersDisk

Output
 buffer

Disk

Join Result

B main memory buffers DiskDisk

Original
Relation OUTPUT

2
INPUT

1

partition

4

Partitions

b1
b2

b4

. . . b3
3

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Hash Join Phase 2: Matching
h(1)=0

h(1)=0

h(2)=0

h(3)=1

h(3)=1

h(4)=1

h(5)=2

h(6)=2

h(6)=2

h(1) h(1) h(2) h(2) h(3) h(4) h(5) h(6) h(6)

R.A
hashed
values

S.A hashed values

R ⋈ 𝑆	𝑜𝑛	𝐴

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Hash Join Phase 2: Matching
h(1)=0

h(1)=0

h(2)=0

h(3)=1

h(3)=1

h(4)=1

h(5)=2

h(6)=2

h(6)=2

h(1) h(1) h(2) h(2) h(3) h(4) h(5) h(6) h(6)

R.A
hashed
values

S.A hashed values

A=1

A=2

A=3

A=3
A=5

A=6

To perform the join,
we ideally just need
to explore the dark blue
regions

= the tuples with same
values of the join key A

R ⋈ 𝑆	𝑜𝑛	𝐴

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Hash Join Phase 2: Matching
h(1)=0

h(1)=0

h(2)=0

h(3)=1

h(3)=1

h(4)=1

h(5)=2

h(6)=2

h(6)=2

h(1) h(1) h(2) h(2) h(3) h(4) h(5) h(6) h(6)

R.A
hashed
values

S.A hashed values

With a join algorithm
like BNLJ that
doesn’t take
advantage of
equijoin structure,
we’d have to explore
this whole grid!

R ⋈ 𝑆	𝑜𝑛	𝐴

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Hash Join Phase 2: Matching
h(1)=0

h(1)=0

h(2)=0

h(3)=1

h(3)=1

h(4)=1

h(5)=2

h(6)=2

h(6)=2

h(1) h(1) h(2) h(2) h(3) h(4) h(5) h(6) h(6)

R.A
hashed
values

S.A hashed values

With HJ, we only
explore the blue
regions

= the tuples with
same values of
h(A)!

We can apply
BNLJ to each of
these regions

h(A)=0

h(A)=1

h(A)=2

R ⋈ 𝑆	𝑜𝑛	𝐴

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Hash Join Phase 2: Matching
h(1)=0

h(1)=0

h(2)=0

h(3)=1

h(3)=1

h(4)=1

h(5)=2

h(6)=2

h(6)=2

h(1) h(1) h(2) h(2) h(3) h(4) h(5) h(6) h(6)

R.A
hashed
values

S.A hashed values

R ⋈ 𝑆	𝑜𝑛	𝐴
h'(A)=0

h'(A)=2

h'(A)=1

h'(A)=3

h'(A)=4

h'(A)=5

An alternative to
applying BNLJ:

We could also hash
again, and keep
doing passes in
memory to reduce
further!

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Summary
Sort merge join

– Relies on the sorted order of join attributes
– Produces sorted output

Hash join
– Uses little memory
– Great when one relations is much smaller than the other
– Has problems with data skew

85

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Units

Query Processing

Overview

Selections

Projections

Nested loop joins

Sort-merge and hash joins

General joins and aggregates
Readings: Chapters 14.4.5-14.7

86

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

General Join Conditions
Equalities over several attributes
(e.g., R.sid=S.sid AND R.rname=S.sname):

– For Index NL, build index on <sid, sname> (if S is inner); or use existing indexes
on sid or sname

– For Sort-Merge and Hash Join, sort/partition on combination of the two join
columns

Inequality conditions (e.g., R.rname < S.sname):
– For Index NL, need (clustered!) B+ tree index

• Range probes on inner; # matches likely to be much higher than for equality joins

– Hash Join, Sort Merge Join not applicable!
– Block NL quite likely to be the best join method here

87

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Set Operations
Intersection and cross-product special cases of join
Union (Distinct) and Except similar; we’ll do union:
Sorting based approach to union:

– Sort both relations (on combination of all attributes)
– Scan sorted relations and merge them
– Alternative: Merge runs from Pass 0 for both relations

Hash based approach to union:
– Partition R and S using hash function h
– For each S-partition, build in-memory hash table (using h2), scan corresponding

R-partition and add tuples to table while discarding duplicates

88

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Aggregate Operations (AVG, MIN, etc.)
Without grouping:

– In general, requires scanning the relation
– Given index whose search key includes all attributes in the SELECT or WHERE

clauses, can do index-only scan

Example: SELECT avg(salary) FROM EMPLOYEES WHERE age>35

can use an index on <age, salary> without going to the base data

89

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Aggregate Operations (AVG, MIN, etc.)
With grouping:

– (a) sort on group-by attributes
(b) scan relation and compute aggregate for each group
Note: we can improve upon this by combining sorting and aggregation

– Similar approach based on hashing on group-by attributes
– Given tree index whose search key includes all attributes in SELECT, WHERE and

GROUP BY clauses, we can do index-only scan
– If group-by attributes form prefix of the search key, we can retrieve data

entries/tuples in group-by order

90

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Impact of Buffering
If several operations are executing concurrently, estimating the
number of available buffer pages is guesswork

Repeated access patterns interact with buffer replacement policy
– e.g., Inner relation is scanned repeatedly in Simple Nested Loop Join. With enough

buffer pages to hold inner, replacement policy does not matter. Otherwise, MRU
is best, LRU is worst (sequential flooding)

– Does replacement policy matter for Block Nested Loops?
– What about Index Nested Loops?

91

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Summary
A virtue of relational DBMSs: queries are composed of a few basic operators

– Implementation of operators can be carefully tuned
– Important to do this!

Many alternative implementations for each operator
– No universally superior technique for most operators

Must consider alternatives for each operation in a query and choose best one
based on system statistics…

– Part of the broader task of optimizing a query composed of several
operators

92

