
CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

CS460: Intro to Database Systems

Class 3: SQL, The Query Language – Part I

Instructor: Manos Athanassoulis

https://bu-disc.github.io/CS660/

https://bu-disc.github.io/CS660/

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Reminder
Project 0 deadline is 9/15 (this Friday)

No grading

Self-assessment assignment

Come to OH (and Labs) if you have questions

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Today’s course

intuitive way to ask queries

unlike procedural languages (C/C++, java)
[which specify how to solve a problem (or answer a question)]

SQL is a declarative query language
[we ask what we want and the DBMS is going to deliver]

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Introduction to SQL
SQL is a relational query language

supports simple yet powerful querying of data
It has two parts:

DDL: Data Definition Language (define and modify schema)

DML: Data Manipulation Language (intuitively query data)

CREATE TABLE

INSERT/UPDATE/DELETE

SELECT …
FROM …
WHERE …

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Reiterate some terminology
Students

Relation (or table)

Row (or tuple)

Column (or attribute)

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@ee 18 3.2

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@ee 18 3.2

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@ee 18 3.2

name
schema

data
(instance)

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Reiterate some terminology
Primary Key (PK)

The PK of a relation is the column (or the group of
columns) that can uniquely define a row.

 In other words:

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@ee 18 3.2

Two rows cannot have the same PK.

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

DDL – Create Table
CREATE TABLE table_name
({ column_name data_type [DEFAULT def_expr] [col_constraint [, ...]] | table_constraint }
 [, { column_name data_type [DEFAULT def_expr] [col_constraint [, ...]] | table_constraint }]
 [, …])

7

CREATE TABLE Students
 (sid CHAR(20),
 name CHAR(20),
 login CHAR(10),
 age INTEGER,
 gpa FLOAT)

optional optional optional

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

DDL – Create Table
CREATE TABLE table_name
({ column_name data_type [DEFAULT def_expr] [col_constraint [, ...]] | table_constraint }
 [, { column_name data_type [DEFAULT def_expr] [col_constraint [, ...]] | table_constraint }]
 [, …])

Data Types include:
fixed-length character string: CHAR(n)
variable-length character string: VARCHAR(n)
smallint, integer, bigint, numeric, real, double precision
date, time, timestamp, …
serial - unique ID for indexing and cross reference
…
You can also define your own type!! (SQL:1999)

8

CREATE TABLE Students
 (sid CHAR(20),
 name CHAR(20),
 login CHAR(10),
 age INTEGER,
 gpa FLOAT)

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Create Table (w/column constraints)
CREATE TABLE table_name
({ column_name data_type [DEFAULT def_expr] [col_constraint [, ...]] | table_constraint }
 [, { column_name data_type [DEFAULT def_expr] [col_constraint [, ...]] | table_constraint }]
 [, …])

Column Constraints:
[CONSTRAINT constraint_name] { NOT NULL | NULL | UNIQUE | PRIMARY KEY | CHECK
(expression) | REFERENCES reftable [(refcolumn)] [ON DELETE action] [ON UPDATE
action] }

expression: must produce a boolean result based on the related column’s value only
action: NO ACTION, CASCADE, SET NULL, SET DEFAULT

9

can remove

value should exist in <reftable.refcolumn>
propagate (or not)
deletes/updates

check for every row

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Create Table (w/table constraints)
CREATE TABLE table_name
({ column_name data_type [DEFAULT def_expr] [col_constraint [, ...]] | table_constraint }
 [, { column_name data_type [DEFAULT def_expr] [col_constraint [, ...]] | table_constraint }]
 [, …])

Table Constraints:
[CONSTRAINT constraint_name]
 { UNIQUE (column_name [, ...]) |
 PRIMARY KEY (column_name [, ...]) |
 CHECK (expression) |
 FOREIGN KEY (column_name [, ...]) REFERENCES reftable [(refcolumn [, ...])] [ON
 DELETE action] [ON UPDATE action] }

10

every constraint can include multiple columns
can remove

specify which column

can involve multiple columns

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Examples

CREATE TABLE Enrolled
 (sid CHAR(20),
 cid CHAR(20),
 semester CHAR(20),
 grade CHAR(2))

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Examples

CREATE TABLE Enrolled
 (sid CHAR(20),
 cid CHAR(20),
 semester CHAR(20) NOT NULL,
 grade CHAR(2))

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Primary Keys in SQL
possibly many candidate keys (can be specified using UNIQUE), one of

which is chosen as the primary key
keys must be defined carefully!

“for a given student and course, there is a single grade”

CREATE TABLE Enrolled
 (sid CHAR(20)
 cid CHAR(20),
 semester CHAR(20) NOT NULL,
 grade CHAR(2),
 PRIMARY KEY (sid,cid))

CREATE TABLE Enrolled
 (sid CHAR(20)
 cid CHAR(20),
 semester CHAR(20) NOT NULL
 grade CHAR(2),
 PRIMARY KEY (sid),
 UNIQUE (cid, grade))

vs.

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

CREATE TABLE Enrolled
 (sid CHAR(20)
 cid CHAR(20),
 semester CHAR(20) NOT NULL,
 grade CHAR(2),
 PRIMARY KEY (sid,cid))

CREATE TABLE Enrolled
 (sid CHAR(20)
 cid CHAR(20),
 semester CHAR(20) NOT NULL
 grade CHAR(2),
 PRIMARY KEY (sid),
 UNIQUE (cid, grade))

vs.

Primary Keys in SQL

keys must be defined carefully!
“for a given student and course, there is a single grade”

“students can take only one course, and no two
students in a course receive the same grade”

anything else?

possibly many candidate keys (can be specified using UNIQUE), one of
which is chosen as the primary key

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

CREATE TABLE Enrolled
 (sid CHAR(20)
 cid CHAR(20),
 semester CHAR(20) NOT NULL,
 grade CHAR(2),
 PRIMARY KEY (sid,cid))

Primary Keys in SQL

keys must be defined carefully!
“for a given student and course, there is a single grade”

“a student cannot take a course again

(in a new semester) even if they failed it”

solution?
PRIMARY KEY (sid,cid,semester))

possibly many candidate keys (can be specified using UNIQUE), one of
which is chosen as the primary key

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Foreign Keys in SQL
Example: Only students listed in the Students relation should be
allowed to enroll for courses.
 sid is a foreign key referring to Students

CREATE TABLE Enrolled
 (sid CHAR(20),cid CHAR(20),semester CHAR(20), grade CHAR(2),
 PRIMARY KEY (sid,cid),
 FOREIGN KEY (sid) REFERENCES Students)

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@cs 18 3.2

53650 Smith smith@math 19 3.8

sid cid semester grade
53666 15-101 F21 C
53666 18-203 S22 B
53650 15-112 F23 A
53666 15-105 S23 B

Enrolled
Students

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Examples

CREATE TABLE Enrolled
 (sid CHAR(20),
 cid CHAR(20),
 semester CHAR(20) NOT NULL,
 grade CHAR(2),
 PRIMARY KEY (sid,cid,semester),
 FOREIGN KEY (sid) REFERENCES Students)

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Examples (General Constraints)

CREATE TABLE Enrolled
 (sid CHAR(20),
 cid CHAR(20),
 semester CHAR(20) NOT NULL,
 grade CHAR(2),
 PRIMARY KEY (sid,cid,semester),
 FOREIGN KEY (sid) REFERENCES Students,
 CHECK grade LIKE ‘A’ OR grade LIKE ‘B’
 OR grade LIKE ‘C’ OR grade LIKE ‘D’)

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Examples (General Constraints)

CREATE TABLE Enrolled
 (sid CHAR(20),
 cid CHAR(20),
 semester CHAR(20) NOT NULL,
 grade CHAR(2),
 PRIMARY KEY (sid,cid,semester),
 FOREIGN KEY (sid) REFERENCES Students,
 CONSTRAINT checkGrade
 CHECK (grade LIKE ‘A’ OR grade LIKE ‘B’
 OR grade LIKE ‘C’ OR grade LIKE ‘D’))

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Examples (General Constraints)

CREATE TABLE Enrolled
 (sid CHAR(20),
 cid CHAR(20),
 semester CHAR(20) NOT NULL,
 grade CHAR(2),
 PRIMARY KEY (sid,cid,semester),
 FOREIGN KEY (sid) REFERENCES Students,
 CONSTRAINT checkNumber
 CHECK ((SELECT COUNT (sid) FROM Students)
 +
 (SELECT COUNT DISTINCT (cid) FROM Enrolled)
 < 1000))

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

More Examples
CREATE TABLE films (
 code CHAR(5) PRIMARY KEY,

 title VARCHAR(40),

 did DECIMAL(3),

 date_prod DATE,

 kind VARCHAR(10),
 CONSTRAINT production UNIQUE(date_prod)

 FOREIGN KEY did REFERENCES distributors ON DELETE NO ACTION);

CREATE TABLE distributors (

 did DECIMAL(3) PRIMARY KEY,
 name VARCHAR(40)

 CONSTRAINT con1 CHECK (did > 100 AND name <> ‘ ’));

21

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Introduction to SQL
SQL is a relational query language

supports simple yet powerful querying of data
It has two parts:

DDL: Data Definition Language (define and modify schema)

DML: Data Manipulation Language (intuitively query data)

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

The simplest SQL query
“find all contents of a table”
in this example: “Find all info for all students”

SELECT *
 FROM Students S

to find just names and logins, replace the first line:
SELECT S.name, S.login

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@ee 18 3.2
53777 White white@cs 19 4.0

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Show specific columns
“find name and login for all students”

SELECT S.name, S.login
 FROM Students S

name login
Jones jones@cs
Smith smith@ee
White white@cs

this is called: “project name and login from table Students”

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Show specific rows
“find all 18 year old students”

SELECT *
 FROM Students S
 WHERE S.age=18

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@ee 18 3.2

this is called: “select students with age 18.”

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Querying Multiple Relations
can specify a join over two tables as follows:

SELECT Students.name, Enrolled.cid
 FROM Students, Enrolled
 WHERE Students.sid=Enrolled.sid
 AND Enrolled.grade=‘B'

result =

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@ee 18 3.2

sid cid grade
53831 Carnatic101 C
53831 Reggae203 B
53650 Topology112 A
53666 History105 B

Studetns.name Enrolled.cid
 Jones History105

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Basic SQL Query

relation-list : a list of relations
target-list : a list of attributes of tables in relation-list
qualification : comparisons using AND, OR and NOT
comparisons are: <attr> <op> <const> or <attr1> <op> <attr2>, where op is:

DISTINCT: optional, removes duplicates
By default SQL SELECT does not eliminate duplicates! (“multiset”)

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification

¹³£=>< ,,,,,

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Query Semantics
Conceptually, a SQL query can be computed:

probably the least efficient way to compute a query!
Query Optimization finds the same answer more efficiently

(1) FROM : compute cross-product
of tables

(e.g., Students and Enrolled)

(2) WHERE : Check conditions,
discard tuples that fail

(applying “selection” condition)

(3) SELECT : Delete unwanted fields
(applying “projection”)

(4) if DISTINCT specified, eliminate
duplicate rows

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Remember the query and the data

SELECT Students.name, Enrolled.cid
 FROM Students, Enrolled
 WHERE Students.sid=Enrolled.sid
 AND Enrolled.grade=‘B'

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@ee 18 3.2

sid cid grade
53831 Carnatic101 C
53831 Reggae203 B
53650 Topology112 A
53666 History105 B

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Step 1 – Cross Product

SELECT Students.name, Enrolled.cid
 FROM Students, Enrolled
 WHERE Students.sid=Enrolled.sid
 AND Enrolled.grade=‘B'

Combine with cross-product all tables of the FROM clause.

S.sid S.name S.login S.age S.gpa E.sid E.cid E.grade
53666 Jones jones@cs 18 3.4 53831 Carnatic101 C
53666 Jones jones@cs 18 3.4 53832 Reggae203 B
53666 Jones jones@cs 18 3.4 53650 Topology112 A
53666 Jones jones@cs 18 3.4 53666 History105 B
53688 Smith smith@ee 18 3.2 53831 Carnatic101 C
53688 Smith smith@ee 18 3.2 53831 Reggae203 B
53688 Smith smith@ee 18 3.2 53650 Topology112 A
53688 Smith smith@ee 18 3.2 53666 History105 B

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Step 2 - Discard tuples that fail predicate
Make sure the WHERE clause is true!

SELECT Students.name, Enrolled.cid
 FROM Students, Enrolled
 WHERE Students.sid=Enrolled.sid
 AND Enrolled.grade=‘B'

S.sid S.name S.login S.age S.gpa E.sid E.cid E.grade
53666 Jones jones@cs 18 3.4 53831 Carnatic101 C
53666 Jones jones@cs 18 3.4 53832 Reggae203 B
53666 Jones jones@cs 18 3.4 53650 Topology112 A
53666 Jones jones@cs 18 3.4 53666 History105 B
53688 Smith smith@ee 18 3.2 53831 Carnatic101 C
53688 Smith smith@ee 18 3.2 53831 Reggae203 B
53688 Smith smith@ee 18 3.2 53650 Topology112 A
53688 Smith smith@ee 18 3.2 53666 History105 B

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Step 3 - Discard Unwanted Columns
Show only what is on the SELECT clause.

SELECT Students.name, Enrolled.cid
 FROM Students, Enrolled
 WHERE Students.sid=Enrolled.sid
 AND Enrolled.grade=‘B'

S.sid S.name S.login S.age S.gpa E.sid E.cid E.grade
53666 Jones jones@cs 18 3.4 53831 Carnatic101 C
53666 Jones jones@cs 18 3.4 53832 Reggae203 B
53666 Jones jones@cs 18 3.4 53650 Topology112 A
53666 Jones jones@cs 18 3.4 53666 History105 B
53688 Smith smith@ee 18 3.2 53831 Carnatic101 C
53688 Smith smith@ee 18 3.2 53831 Reggae203 B
53688 Smith smith@ee 18 3.2 53650 Topology112 A
53688 Smith smith@ee 18 3.2 53666 History105 B

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Now the Details…
We will use these instances of
relations in our examples. sid sname rating age

22 Dustin 7 45.0
31 Lubber 8 55.5
95 Bob 3 63.5

bid bname color
101 Interlake blue
102 Interlake red
103 Clipper green
104 Marine red

sid bid day
22 101 10/10/16
95 103 11/12/16

Reserves

Sailors

Boats

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Another Join Query

(sid) sname rating age (sid) bid day
22 dustin 7 45.0 22 101 10/10/16
22 dustin 7 45.0 95 103 11/12/16
31 lubber 8 55.5 22 101 10/10/16
31 lubber 8 55.5 95 103 11/12/16
95 Bob 3 63.5 22 101 10/10/16
95 Bob 3 63.5 95 103 11/12/16

SELECT sname
FROM Sailors, Reserves
WHERE Sailors.sid=Reserves.sid AND bid=103

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Range Variables
can associate “range variables” with the tables in the FROM clause

a shorthand, like the rename operator from relational algebra
saves writing, makes queries easier to understand
“FROM Sailors, Reserves”

“FROM Sailors S, Reserves R”

needed when ambiguity could arise
for example, if same table used multiple times in same FROM (called a “self-join”)
“FROM Sailors S1, Sailors S2”

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Range Variables

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND bid=103

SELECT sname
FROM Sailors,Reserves
WHERE Sailors.sid=Reserves.sid AND bid=103

can be
rewritten using
range variables as:

SELECT Sailors.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND bid=103

you cannot use the full
table name anymore!

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Range Variables

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND bid=103

SELECT sname
FROM Sailors,Reserves
WHERE Sailors.sid=Reserves.sid AND bid=103

can be
rewritten using
range variables as:

SELECT sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND bid=103

skipping table name if
the attribute exists in
one table is correct:

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Range Variables
an example requiring range variables (self-join)

another one: “*” if you don’t want a projection:

SELECT S1.sname, S1.age, S2.sname, S2.age
FROM Sailors S1, Sailors S2
WHERE S1.age > S2.age

SELECT *
FROM Sailors S
WHERE S.age > 20

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Find sailors who have reserved at least one boat

does DISTINCT makes a difference?

what is the effect of replacing S.sid by S.sname in the SELECT clause?
Would adding DISTINCT to this variant of the query make a difference?

SELECT S.sid
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Expressions
Can use arithmetic expressions in SELECT clause

(plus other operations we’ll discuss later)

Use AS to provide column names

Can also have expressions in WHERE clause:

SELECT S.age, S.age-5 AS age1, 2*S.age AS age2
FROM Sailors S
WHERE S.sname = ‘dustin’

SELECT S1.sname AS name1, S2.sname AS name2
FROM Sailors S1, Sailors S2
WHERE 2*S1.rating = S2.rating - 1

age2=2*S.age

equivalent

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

String operations
SQL also supports some string operations

“LIKE” is used for string matching.

’_’ stands for any one character
’%’ stands for 0 or more arbitrary characters

SELECT S.age, age1=S.age-5, 2*S.age AS age2
FROM Sailors S
WHERE S.sname LIKE ‘B_%B’

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

More Operations
SQL queries produce new tables

If the results of two queries are union-compatible
(same number and types of columns)
then we can apply logical operations

UNION
INTERSECTION

SET DIFFERENCE (called EXCEPT or MINUS)

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Find sids of sailors who have reserved a red or a green boat

UNION: Can be used to compute the union of any two
union-compatible sets of tuples (which are themselves
the result of SQL queries)

SELECT R.sid
FROM Boats B,Reserves R
WHERE R.bid=B.bid AND
(B.color=‘red’ OR B.color=‘green’)

SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid AND B.color=‘red’
UNION SELECT R.sid
 FROM Boats B, Reserves R
 WHERE R.bid=B.bid AND
 B.color=‘green’

VS.

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

If we simply replace OR by AND in the previous query, we get the wrong
answer. (Why?)
Instead, could use a self-join:

Find sids of sailors who have reserved a red and a green boat

SELECT R.sid
FROM Boats B,Reserves R
WHERE R.bid=B.bid AND
(B.color=‘red’ AND B.color=‘green’)

SELECT R1.sid
FROM Boats B1, Reserves R1,
 Boats B2, Reserves R2
WHERE R1.sid=R2.sid
 AND R1.bid=B1.bid
 AND R2.bid=B2.bid
 AND (B1.color=‘red’ AND B2.color=‘green’)

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

AND Continued…

INTERSECT: discussed in the book. Can be
used to compute the intersection of any
two union-compatible sets of tuples

Also in text: EXCEPT
(sometimes called MINUS)

Included in the SQL/92 standard, but
some systems do not support them

SELECT S.sid
FROM Sailors S, Boats B,

Reserves R
WHERE S.sid=R.sid
 AND R.bid=B.bid
 AND B.color=‘red’
INTERSECT
SELECT S.sid
FROM Sailors S, Boats B,

Reserves R
WHERE S.sid=R.sid
 AND R.bid=B.bid
 AND B.color=‘green’

Key field!

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Your turn …
1. Find (the names of) all sailors who are over 50 years old
2. Find (the names of) all boats that have been reserved at least

once
3. Find all sailors who have not reserved a red boat (hint: use

“EXCEPT”)
4. Find all pairs of same-color boats
5. Find all pairs of sailors in which the older sailor has a lower

rating

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

1. Find (the names of) all sailors who are over 50 years old

SELECT S.sname
FROM Sailors S
WHERE S.age > 50

Reserves (sid, bid, day) Sailors (sid, sname, rating, age)
Boats (bid, bname, color)

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

2. Find (the names of) all boats that have been reserved at least
once

SELECT DISTINCT B.bname
FROM Boats B, Reserves R
WHERE R.bid=B.bid

Reserves (sid, bid, day) Sailors (sid, sname, rating, age)
Boats (bid, bname, color)

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

3. Find all sailors who have not reserved a red boat

SELECT S.sid
FROM Sailors S
EXCEPT
SELECT R.sid
FROM Boats B,Reserves R
WHERE R.bid=B.bid
 AND B.color=‘red’

Reserves (sid, bid, day) Sailors (sid, sname, rating, age)
Boats (bid, bname, color)

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

4. Find all pairs of same-color boats

SELECT B1.bname, B2.bname
FROM Boats B1, Boats B2
WHERE B1.color = B2.color
 AND B1.bid < B2.bid

Reserves (sid, bid, day) Sailors (sid, sname, rating, age)
Boats (bid, bname, color)

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

5. Find all pairs of sailors in which the older sailor has a lower
rating

SELECT S1.sname, S2.sname
FROM Sailors S1, Sailors S2
WHERE S1.age > S2.age
 AND S1.rating < S2.rating

Reserves (sid, bid, day) Sailors (sid, sname, rating, age)
Boats (bid, bname, color)

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Nested Queries
powerful feature of SQL:
WHERE clause can itself contain an SQL query!

Actually, so can FROM and HAVING clauses.

SELECT S.sname
FROM Sailors S
WHERE S.sid IN (SELECT R.sid
 FROM Reserves R
 WHERE R.bid=103)

Names of sailors who have reserved boat #103

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Nested Queries

to find sailors who have not reserved #103, use NOT IN.

To understand semantics of nested queries:
think of a nested loops evaluation
for each Sailors tuple
 check the qualification by computing the subquery

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Nested Queries with Correlation

EXISTS is another set operator, like IN (also NOT EXISTS)
If EXISTS UNIQUE is used, and * is replaced by R.bid, finds sailors with at
most one reservation for boat #103.

UNIQUE checks for duplicate tuples in a subquery;
Subquery must be recomputed for each Sailors tuple.

Think of subquery as a function call that runs a query!

SELECT S.sname
FROM Sailors S
WHERE EXISTS (SELECT *
 FROM Reserves R
 WHERE R.bid=103 AND S.sid=R.sid)

Find names of sailors who have reserved boat #103

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

More on Set-Comparison Operators
We’ve already seen IN, EXISTS and UNIQUE. Can also use NOT IN,
NOT EXISTS and NOT UNIQUE.
Also available: op ANY, op ALL

Find sailors whose rating is greater than that of some sailor
called Horatio:

SELECT *
FROM Sailors S
WHERE S.rating > ANY (SELECT S2.rating
 FROM Sailors S2
 WHERE S2.sname=‘Horatio’)

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Rewriting INTERSECT Queries Using IN

Similarly, EXCEPT queries can be re-written using NOT IN.
How would you change this to find names (not sids) of Sailors
who’ve reserved both red and green boats?

Find sids of sailors who have reserved both a red and a green boat

SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid
 AND B.color=‘red’
 AND R.sid IN (SELECT R2.sid
 FROM Boats B2, Reserves R2
 WHERE R2.bid=B2.bid
 AND B2.color=‘green’)

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Query #3 revisited …

3. Find all sailors who have not reserved a red boat
(this time, without using “EXCEPT”)

Reserves (sid, bid, day) Sailors (sid, sname, rating, age)
Boats (bid, bname, color)

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Answer …

3. Find all sailors who have not reserved a red boat

SELECT S.sid
FROM Sailors S
WHERE S.sid NOT IN
 (SELECT R.sid
 FROM Reserves R, Boats B
 WHERE R.bid = B.bid
 AND B.color = ‘red’)

Reserves (sid, bid, day) Sailors (sid, sname, rating, age)
Boats (bid, bname, color)

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Another Correct Answer …

3. Find all sailors who have not reserved a red boat

SELECT S.sid
FROM Sailors S
WHERE NOT EXISTS
 (SELECT *
 FROM Reserves R, Boats B
 WHERE R.sid = S.sid
 AND R.bid = B.bid
 AND B.color = ‘red’)

Reserves (sid, bid, day) Sailors (sid, sname, rating, age)
Boats (bid, bname, color)

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Division (“for all”) in SQL

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS (SELECT B.bid
 FROM Boats B
 WHERE NOT EXISTS (SELECT R.bid
 FROM Reserves R
 WHERE R.bid=B.bid
 AND R.sid=S.sid))

Sailors S for which ...

there is no boat B without …

a Reserves tuple
showing S reserved B

Find sailors who have reserved all boats.

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Division (“for all”) in SQL - alternative

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS (SELECT B.bid
 FROM Boats B
 EXCEPT (SELECT R.bid
 FROM Reserves R
 WHERE R.bid=B.bid
 AND R.sid=S.sid))

Sailors S for which ...

there is no boat B without …

a Reserves tuple
showing S reserved B

Find sailors who have reserved all boats.

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Aggregate Operators
Significant extension of relational algebra.

COUNT (*)
COUNT ([DISTINCT] A)
SUM ([DISTINCT] A)
AVG ([DISTINCT] A)
MAX (A)
MIN (A)

SELECT AVG (S.age)
FROM Sailors S
WHERE S.rating=10

SELECT COUNT (*)
FROM Sailors S

single column

SELECT COUNT (DISTINCT S.rating)
FROM Sailors S
WHERE S.sname=‘Bob’

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Aggregate Operators

SELECT AVG (DISTINCT S.age)
FROM Sailors S
WHERE S.rating=10

SELECT S.sname
FROM Sailors S
WHERE S.rating = (SELECT MAX(S2.rating)
 FROM Sailors S2)

COUNT (*)
COUNT ([DISTINCT] A)
SUM ([DISTINCT] A)
AVG ([DISTINCT] A)
MAX (A)
MIN (A)

single column

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Find name and age of the oldest sailor(s)

The first query is incorrect!

Third query equivalent to second query
allowed in SQL/92 standard, but not
supported in some systems.

SELECT S.sname, MAX (S.age)
FROM Sailors S

SELECT S.sname, S.age
FROM Sailors S
WHERE S.age =
 (SELECT MAX (S2.age)
 FROM Sailors S2)

SELECT S.sname, S.age
FROM Sailors S
WHERE (SELECT MAX (S2.age)
 FROM Sailors S2)
 = S.age

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

ARGMAX?

The Sailor with the highest rating
What about ties for highest?

SELECT *
FROM Sailors S
WHERE S.rating >= ALL
 (SELECT S2.rating
 FROM Sailors S2)

SELECT *
FROM Sailors S
WHERE S.rating =
(SELECT MAX(S2.rating)
 FROM Sailors S2)

SELECT *
FROM Sailors S
ORDER BY rating DESC
LIMIT 1;

