
CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Views
CREATE VIEW view_name
AS select_statement

Makes development simpler
Often used for security
Not instantiated - makes updates tricky

CREATE VIEW Reds
AS SELECT B.bid, COUNT (*) AS scount

FROM Boats B, Reserves R
WHERE R.bid=B.bid AND B.color=‘red’
GROUP BY B.bid

49

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

CREATE VIEW Reds
AS SELECT B.bid, COUNT (*) AS scount

FROM Boats B, Reserves R
WHERE R.bid=B.bid AND B.color=‘red’
GROUP BY B.bid

Reds

An illustration

50

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

SELECT bname, scount
FROM Reds R, Boats B
WHERE R.bid=B.bid

AND scount < 10

Views Instead of Relations in Queries

51

CREATE VIEW Reds
AS SELECT B.bid, COUNT (*) AS scount

FROM Boats B, Reserves R
WHERE R.bid=B.bid AND B.color=‘red’
GROUP BY B.bid

Reds

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Views vs INTO

(1) SELECT bname, bcity
FROM branch
INTO branch2

(2) CREATE VIEW branch2 AS
SELECT bname, bcity
FROM branch

vs

(1) creates a new table that gets stored on disk

(2) creates a “virtual table” (materialized when needed)

Therefore: changes in branch are seen in (2) but not in (1)

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

CONSTRAINTS
Assertions and Triggers

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Integrity Constraints
• predicates on the database
• must always be true (checked whenever db gets updated)

There are the following 4 types of IC’s:
Key constraints (1 table)

e.g., 2 accts can’t share the same acct_no

Attribute constraints (1 table)
e.g., 2 accts must have nonnegative balance

Referential Integrity constraints (2 tables)
E.g. bnames associated w/ loans must be names of real branches

Global Constraints (n tables)
E.g., a loan must be carried by at least 1 customer with a svngs acct

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Global Constraints
Idea: two kinds
1) single relation (constraints spans multiple columns)

E.g.: CHECK (total = svngs + check) declared in the CREATE TABLE
2) multiple relations: CREATE ASSERTION

SQL examples:
1) single relation: All BOSTON branches must have assets > 5M

CREATE TABLE branch (
..........
bcity CHAR(15),
assets INT,
CHECK (NOT(bcity = ‘BOS’) OR assets > 5M))

Affects:
insertions into branch
updates of bcity or assets in branch

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Global Constraints
SQL example:
2) Multiple relations: every loan has a borrower with a savings account

CHECK (NOT EXISTS (
SELECT *
FROM loan AS L
WHERE NOT EXISTS(

SELECT *
FROM borrower B, depositor D, account A
WHERE B.cname = D.cname AND

D.acct_no = A.acct_no AND L.lno = B.lno)))

Problem: Where to put this constraint? At depositor? Loan?

Ans: None of the above:
CREATE ASSERTION loan-constraint

CHECK(.....)

Checked with EVERY DB update!
very expensive.....

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Global Constraints
Issues:
1) How does one decide what global constraint to impose?
2) How does one minimize the cost of checking the global

constraints?

Ans: Semantics of application and Functional dependencies.

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Summary: Integrity Constraints
Constraint Type Where declared Affects... Expense

Key Constraints CREATE TABLE

(PRIMARY KEY, UNIQUE)

Insertions, Updates Moderate

Attribute Constraints CREATE TABLE

CREATE DOMAIN
(Not NULL, CHECK)

Insertions, Updates Cheap

Referential Integrity Table Tag

(FOREIGN KEY
REFERENCES)

1.Insertions into
referencing rel’n

2. Updates of
referencing rel’n of
relevant attrs
3. Deletions from
referenced rel’n
4. Update of
referenced rel’n

1,2: like key constraints.
Another reason to
index/sort on the
primary keys
3,4: depends on
a. update/delete policy

chosen
b. existence of indexes
on foreign key

Global Constraints Table Tag (CHECK)

or
outside table
(CREATE ASSERTION)

1. For single rel’n
constraint, with
insertion, deletion of
relevant attrs
2. For assesrtions w/
every db modification

1. cheap

2. very expensive

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Triggers (Active database)
• Trigger: A procedure that starts automatically if specified

changes occur to the DBMS
• Analog to a "daemon" that monitors a database for certain

events to occur
• Three parts:

– Event (activates the trigger)
– Condition (tests whether the triggers should run) [Optional]
– Action (what happens if the trigger runs)

• Semantics:
– When event occurs, and condition is satisfied, the action is performed.

60

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

An example of Trigger

61

CREATE TRIGGER minSalary BEFORE INSERT ON Professor
FOR EACH ROW
WHEN (new.salary < 100,000)
BEGIN

RAISE_APPLICATION_ERROR (-20004, ‘Violation of Minimum Professor Salary’);
END;

Conditions can refer to old/new values of tuples modified by the statement activating the trigger.

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Triggers – Event, Condition, Action
Events could be :

BEFORE|AFTER INSERT|UPDATE|DELETE ON <tableName>

e.g.: BEFORE INSERT ON Professor

Condition is SQL expression or even an SQL query (query with
non-empty result means TRUE)

Action can be many different choices :
– SQL statements, and even DDL and transaction-oriented statements like “commit”.

62

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Example Trigger

Assume our DB has a relation schema :

Professor (pNum, pName, salary)

We want to write a trigger that :

Ensures that any new professor inserted has salary >= 70000

63

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Example Trigger
CREATE TRIGGER minSalary BEFORE INSERT ON Professor

for what context ?

BEGIN

check for violation here ?

END;

64

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Example Trigger
CREATE TRIGGER minSalary BEFORE INSERT ON Professor

 FOR EACH ROW

BEGIN

check for violation here ?

END;

65

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Example Trigger

66

CREATE TRIGGER minSalary BEFORE INSERT ON Professor

 FOR EACH ROW

BEGIN

 IF (:new.salary < 70000)
 THEN RAISE_APPLICATION_ERROR (-20004,
 ‘Violation of Minimum Professor Salary’);

 END IF;

END;

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Details of Trigger Example
BEFORE INSERT ON Professor

– This trigger is checked before the tuple is inserted

FOR EACH ROW
– specifies that trigger is performed for each row inserted

:new
– refers to the new tuple inserted

If (:new.salary < 70000)
– then an application error is raised and hence the row is not inserted; otherwise the

row is inserted.

Use error code: -20004;
– this is in the valid range67

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Example Trigger Using Condition
CREATE TRIGGER minSalary BEFORE INSERT ON Professor

 FOR EACH ROW

WHEN (new.salary < 70000)
BEGIN

RAISE_APPLICATION_ERROR (-20004,
‘Violation of Minimum Professor Salary’);

END;

Conditions can refer to old/new values of tuples modified by the statement activating the trigger.

68

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Triggers: REFERENCING

CREATE TRIGGER minSalary BEFORE INSERT ON Professor

REFERENCING NEW as newTuple

FOR EACH ROW

WHEN (newTuple.salary < 70000)

BEGIN
RAISE_APPLICATION_ERROR (-20004,
‘Violation of Minimum Professor Salary’);

END;

69

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Example Trigger
CREATE TRIGGER updSalary

BEFORE UPDATE ON Professor

REFERENCING OLD AS oldTuple NEW as newTuple
FOR EACH ROW

WHEN (newTuple.salary < oldTuple.salary)

BEGIN
RAISE_APPLICATION_ERROR (-20004, ‘Salary
Decreasing !!’);

END;

Ensure that salary does not decrease

70

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Another Trigger Example (SQL:99)
CREATE TRIGGER youngSailorUpdate

AFTER INSERT ON SAILORS
REFERENCING NEW TABLE AS NewSailors
FOR EACH STATEMENT

INSERT
INTO YoungSailors(sid, name, age, rating)
SELECT sid, name, age, rating
FROM NewSailors N
WHERE N.age <= 18

71

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Row vs Statement Level Trigger
• Row level: activated once per modified tuple
• Statement level: activate once per SQL statement

• Row level triggers can access new data, statement level
triggers cannot always do that (depends on DBMS).

• Statement level triggers will be more efficient if we do not
need to make row-specific decisions

72

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Row vs Statement Level Trigger
Example: Consider a relation schema

Account (num, amount)

where we will allow creation of new accounts
only during normal business hours.

73

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Example: Statement level trigger
CREATE TRIGGER MYTRIG1
BEFORE INSERT ON Account
FOR EACH STATEMENT --- is default
BEGIN

IF (TO_CHAR(SYSDATE,’dy’) IN (‘sat’,’sun’))
OR
(TO_CHAR(SYSDATE,’hh24:mi’) NOT BETWEEN ’08:00’ AND ’17:00’)
THEN

RAISE_APPLICATION_ERROR(-20500,’Cannot create new account now !!’);
END IF;

END;

74

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

When to use BEFORE/AFTER
Based on efficiency considerations or semantics.

Suppose we perform statement-level after insert,
èall the rows are inserted first,
èif the condition fails è all inserts must be “rolled back”

Not very efficient !!

75

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Combining multiple events into one trigger
CREATE TRIGGER salaryRestrictions
AFTER INSERT OR UPDATE ON Professor
FOR EACH ROW
BEGIN
IF (INSERTING AND :new.salary < 70000) THEN

RAISE_APPLICATION_ERROR (-20004, 'below min salary');
END IF;
IF (UPDATING AND :new.salary < :old.salary) THEN

RAISE_APPLICATION_ERROR (-20004, ‘Salary Decreasing !!');
END IF;
END;

76

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Summary : Trigger Syntax
CREATE TRIGGER <triggerName>

BEFORE|AFTER INSERT|DELETE|UPDATE

[OF <columnList>] ON <tableName>|<viewName>
[REFERENCING [OLD AS <oldName>] [NEW AS <newName>]]

[FOR EACH ROW] (default is “FOR EACH STATEMENT”)

[WHEN (<condition>)]
<PSM body>;

77

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Constraints versus Triggers
• Constraints are useful for database consistency

– Use IC when sufficient
– More opportunity for optimization
– Not restricted into insert/delete/update

• Triggers are flexible and powerful
– Alerters
– Event logging for auditing
– Security enforcement
– Analysis of table accesses (statistics)
– Workflow and business intelligence …

78

But can be hard to understand ……
- Several triggers (Arbitrary order à unpredictable!)
- Chain triggers (When to stop ?)
- Recursive triggers (Termination?)

CAS CS 660 [Fall 2024] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Links for Examples
Schema is available at:
https://gist.github.com/manathan1984/35b189ae92fd996cce7816e2d7f9e40f

Lightweight online SQL frontend:
http://sqlfiddle.com/

https://gist.github.com/manathan1984/35b189ae92fd996cce7816e2d7f9e40f
http://sqlfiddle.com/

CS660 Fall 2024

Lab 2: SQL

The Movies Database

MotionPicture (id, name, rating, production, budget)

User (email, name, age)

Likes (uemail, mpid)

Movie (mpid, boxoffice_collection)

Series (mpid, season_count)

People (id, name, nationality, dob, gender)

Role (mpid, pid, role_name)

Award (mpid, pid, award_name, award_year)

Genre (mpid, genre_name)

Location (mpid, zip, city, country)

Primary keys are underlined and

foreign keys are in blue

ER Diagram

Exercises

Q1. List all directors who have directed a TV series at
a specific zip code “02215”.

You should list the director's name and TV series name
only, without any duplicates.

Q2. List the people who have played multiple roles in
a motion picture whose rating is more than 8.0.

You should list the person’s name, motion picture name,
and count of roles for that motion picture.

Q3. Find the actors who share the same birthday.

List the actors’ names and their common birthday.

MotionPicture (id, name, rating, production,
budget)

User (email, name, age)

Likes (uemail, mpid)

Movie (mpid, boxoffice_collection)

Series (mpid, season_count)

People (id, name, nationality, dob, gender)

Role (mpid, pid, role_name)

Award (mpid, pid, award_name, award_year)

Genre (mpid, genre_name)

Location (mpid, zip, city, country)

Movies Database

Exercise 1

List all directors who have directed a TV series at a specific zip code “02215”.

You should list the director's name and TV series name only, without any duplicates.

Exercise 1

SELECT DISTINCT P.name, M.name

FROM Location L, MotionPicture M,

Role R, People P, Series S

WHERE L.mpid = M.id

AND M.id = R.mpid

AND R.pid = P.id

AND M.id = S.mpid

AND R.role_name = 'director’

AND L.zipcode = '02215'

List all directors who have directed a TV
series at a specific zip code “02215”.

You should list the director's name and TV
series name only, without any duplicates.

Exercise 2

List the people who have played multiple roles in a motion picture whose rating is more than 8.0.

You should list the person’s name, motion picture name, and count of roles for that motion picture.

Exercise 2

SELECT P.name, M.name, COUNT(*)

FROM MotionPicture M, Role R,

People P

WHERE M.id = R.mpid

AND P.id = R.pid

AND M.rating > 8.0

GROUP BY R.mpid, R.pid, P.name,

M.name HAVING COUNT(*) > 1

List the people who have played
multiple roles in a motion picture
whose rating is more than 8.0.

You should list the person’s name, motion
picture name, and count of roles for that
motion picture.

Exercise 3

Find the actors who share the same birthday.

List the actors’ names and their common birthday.

Exercise 3

SELECT P1.name, P2.name FROM
(SELECT P.id, P.name, P.dob

FROM People P, Role R

WHERE P.id = R.pid

AND
R.role_name='Actor’) P1

INNER JOIN

(SELECT P.id, P.name, P.dob
FROM People P, Role R

WHERE P.id = R.pid AND
R.role_name='Actor') P2

ON P1.dob=P2.dob

WHERE P1.id > P2.id;

Find the actors who share the same
birthday.

List the actors’ names and their common
birthday.

