
CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

CS660: Grad Intro to Database Systems

Final Exam Review
Instructor: Manos Athanassoulis

https://bu-disc.github.io/CS660/

https://midas.bu.edu/classes/CS460/

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Course Evaluation
12:30-12:45 course evaluation

https://tinyurl.com/CS660-F23-CourseEval

if the above does not work:
https://go.blueja.io/inAWTDZkT0CDuuMCUTba5g

2

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

What to study for Final

From the Book (focus on the 2nd half of the semester)
Chapter 4: 4.1-4.2, Relational Algebra
Chapter 12: 12.1-12.6, Overview of Query Evaluation
Chapter 14: 14.1-14.7, Evaluating Relational Operators
Chapter 15: 15.1-15.5, A Typical Relational Optimizer
Chapter 16: 16.1-16.7, Transaction management
Chapter 17: 17.1-17.6, Concurrency control
Chapter 18: 18.1-18.6, Crash recovery

• The 1st half of the semester is assumed knowledge
• Lecture Slides from Oct 24, 2023 until December 7, 2023

– Including in-class guest lectures from 11/30 and 12/5

• Homeworks

3

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Exam Date & Time

Wednesday, December 20, 2023 at noon
12:00pm until 2:00 pm in CAS 313

4

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Relational Algebra: 5 Basic Operations
Selection (σ) Selects a subset of rows from relation (horizontal).
Projection (π) Retains only wanted columns from relation (vertical).
Cross-product (×) Allows us to combine two relations.
Set-difference (−) Tuples in R1, but not in R2.
Union (∪) Tuples in R1 and/or in R2.

each operation returns a relation : composability (Algebra is “closed”)

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Compound Operator: Join
Joins are compound operators : ×, σ, (sometimes) π

frequent type is “natural join” (often called “join”)

R ⋈ S conceptually is:
compute R×S

select rows where attributes in both R, S have equal values
project all unique attributes and one copy of the common ones

Note: Usually done much more efficiently than this
Useful for putting normalized relations back together

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

boat color only available in Boats; need an extra join:

a more efficient solution:

p p p ssname sid bid color red Boats s Sailors(((' ') Re))
=

 

Find names of sailors who have reserved a red boat

Reserves (sid, bid, day) Sailors (sid, sname, rating, age)
Boats (bid, bname, color)

why more efficient?

p ssname color red Boats serves Sailors((' ') Re)
=

 

a query optimizer can find this given the first solution!

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Reserves (sid, bid, day) Sailors (sid, sname, rating, age)
Boats (bid, bname, color)

Find all pairs of sailors with the same rating

)),4,3,2,1((11111 SailorsageratingsnamesidS ¾®¾¾®¾¾®¾¾®¾r

)(, 2

2121

1
21

SsidsidratingratingSsnamesname ¹Ù=
p

)),4,3,2,1((22222 SailorsageratingsnamesidS ¾®¾¾®¾¾®¾¾®¾r

is this ok?
sid1<sid2

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

use division; schemas of the input relations to / must
be carefully chosen (why?)

Reserves (sid, bid, day) Sailors (sid, sname, rating, age)
Boats (bid, bname, color)

Find the names of sailors who have reserved all boats

r p p(, (, Re) / ())Tempsids sid bid serves bid Boats

p sname Tempsids Sailors()

To find sailors who have reserved all ”Interlake” boats:

/ (' ')p sbid bname Interlake Boats=.....

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Query Processing Overview
• The query parser and optimizer translates SQL to a special internal “language”

– Query Plans
• The query executor is an interpreter for query plans
• Think of query plans as “box-and-arrow” dataflow diagrams

– Each box implements a relational operator
– Edges represent a flow of tuples (columns as specified)
– For single-table queries, these diagrams are straight-line graphs

How to evaluate query operators?
– Two general ideas: sorting and hashing

• Used for Group by, aggregates, joins, distinct
• For selection: Linear scan or Index based

– When using Index:
• Important if it is clustered or unclustered R S

⋈!.#$%&'.#$%

𝜋#()*+,	.$%

𝑠𝑜𝑟𝑡	𝑜𝑛	𝑠𝑛𝑎𝑚𝑒

SELECT sname, bid
FROM R, S
WHERE R.sid=S.sid
ORDER BY sname

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Selections using Index– Explained R: M=1000, pR=100,
ts=40b

A) clustered

data entries:

data records:

index search: log!𝑀

𝑓 0 𝑀 =
= 10% 0 1000 = 100

B) unclustered

data entries:

data records:

index search: log!𝑀

𝑓 0 𝑀 0 𝑝! =
= 10% 0 1000 0 100 = 10000

Can we do better?

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Query Evaluation: Join
• A number of different approaches to evaluate join:

– Page Oriented Nested Loop Join
– Indexed Nested Loop Join
– Block Nested Loop Join
– Sort-Merge Join
– Hash Join

• Formulas to estimate the cost of operators!
– Important for query optimization

1
2

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Costs of Join R ⋈ S, R has M pages, S has N pages, buffer B

• PNLJ: M+M*N

• BNLJ: 𝑀 + ⌈ "
#$%

⌉ ∗ 𝑁
• Indexed NL: M + M*pR* cost of index for match
• Sort-Merge: (best case) Sort R + Sort S + M+N

■ If B > 𝑀, if M is larger than N (R larger relation) then 3*(M+N)
• Hash-join: partition until every partition is smaller than B-1.

■ if B > 𝑁, if N is smaller than M (S smaller relation) then 3*(M+N)
■ Otherwise, re-partition until each partition fits in memory

■ Each partition or repartition divides the previous partitions in B-1 equal new partitions

1
3

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Recall: Query Optimization Overview
1. Query first broken into “blocks”
2. Each block converted to relational algebra
3. Then, for each block, several alternative query plans are considered
4. Plan with lowest estimated cost is selected (ops can be pushed)

14

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid AND
 R.bid=100 AND S.rating>5

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

p(sname)s(bid=100 Ù rating > 5) (Reserves  Sailors)

π
s

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Example of a plan:

sid=sid

snameπ

(Page-Oriented
Nested loops)

(on-the-fly)

(on-the-fly)

Sailors

Reserves

bid=100
(on-the-fly)

rating > 5s

Reserves Sailors

sid=sid

rating > 5

snameπ

(Page-Oriented
Nested loops)

(Scan S & write to temp T2)

(on-the-fly)

bid=100 s
(on-the-fly)

s
s

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Query Optimization
Query Plan: Tree of R.A. ops (and others) with choice of algo.

– `pull’ interface: when we `pull’ for next tuple, op `pulls’ on its inputs

Two Main Issues
1. For a given query, what plans are considered?

Algorithm to search plan space for cheapest (estimated) plan.

2. How is the cost of a plan estimated?

Ideally: Want to find best plan.
Reality: Avoid worst plans!

16

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Cost-based Query Sub-System

17

Query Parser

Query Optimizer

Plan
Generator

Plan Cost
Estimator

Query Plan Evaluator

Catalog Manager

Usually there is a
heuristics-based
rewriting step before
the cost-based steps.

Select *
From Blah B
Where B.blah = “foo”

Query

Schema Statistics

Steps 3 & 4

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Highlights of System R Optimizer
Impact:

– Most widely used currently; works well for < 10 joins

Cost estimation:
– Very inexact, but works okay in practice
– Statistics, maintained in system catalogs, used to estimate cost of operations and

result sizes
– Considers combination of CPU and I/O costs
– More sophisticated techniques known now

Plan Space: Too large, must be pruned
– Only the space of left-deep plans is considered
– Cross products are avoided

19

BA

C

D

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

System R Strategy
Shared sub-plan observation suggests a better strategy:
Enumerate plans using N passes (N = # relations joined):

– Pass 1: Find best 1-relation plans for each relation
– Pass 2: Find best ways to join result of each 1-relation plan as outer to another relation

(All 2-relation plans.)
– Pass N: Find best ways to join result of a (N-1)-relation plan as outer to the Nth relation

(All N-relation plans.)

For each subset of relations, retain only:
– Cheapest subplan overall (possibly unordered), plus
– Cheapest subplan for each interesting order of the tuples

For each subplan retained, remember cost and result size estimates

20

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

A Note on ”Interesting Orders”
An intermediate result has an “interesting order” if it is sorted by any of:

– ORDER BY attributes
– GROUP BY attributes
– Join attributes of other joins

21

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Transactions and Concurrency control

2
2

an atomic sequence of database actions (reads/writes)

takes DB from one consistent state to another

transaction - DBMS’s abstract view of a user program:
– a sequence of reads and writes.

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Correctness: The ACID properties
A tomicity: All actions in the transaction happen, or none happen
C onsistency: If each transaction is consistent, and the DB starts
consistent, it ends up consistent
I solation: Execution of one transaction is isolated from that of other
transactions
D urability: If a transaction commits, its effects persist

23

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Concurrency Control
• We first attack Isolation, then address the rest
• Schedule, equivalent schedule, serializable schedule

• We can use locking to guarantee conflict serializable schedule
– Conflict equivalent to a serial schedule
– We can check if a schedule is c.s.

• 2PL and Strict 2PL
• Optimistic CC

– Kung-Robinson Model (Read, Validate, Write phases)
– Timestamp based
– MVCC

2
4

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Crash recovery - Motivation

• Atomicity:
– Transactions may abort (“Rollback”).

• Durability:
– What if DBMS stops running? (Causes?)

crash!
v Desired state after system

restarts:
– T1 & T3 should be durable.
– T2, T4 & T5 should be aborted

(effects not seen).

T1
T2
T3
T4
T5

Abort
Commit

Commit

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Buffer Management summary

Force

No Force

No Steal Steal

No REDO
No UNDO UNDO

No REDO

UNDO
REDO

No UNDO
REDO

Force

No Force

No Steal Steal

Slowest

Fastest

Performance
Implications

Logging/Recovery
Implications

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Crash Recovery: What’s Stored Where

Data pages
each with a pageLSN

Xact Table
 lastLSN
 status

Dirty Page Table
 recLSN

flushedLSN

RAM

prevLSN
XID
type

length
pageID

offset
before-image
after-image

LogRecords

LOG

master record
LSN of most recent checkpoint

update
commit
abort
checkpoint
CLR
end

DB

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Crash Recovery: Big Picture
• Start from a checkpoint (found via master

record).
• Three phases. Need to do:

– Analysis - Figure out which transactions
committed since checkpoint, which failed.

– REDO all actions.
(repeat history)

– UNDO effects of failed transactions.

Oldest log rec.
of Xact active
at crash

Smallest recLSN
in dirty page
table after
Analysis

Last chkpt

CRASH

A R U

“Repeats History” in order to simplify the logic of
recovery.

Must handle arbitrary failures
Even during recovery!

