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Disk-Based Database Systems [SIGMOD’08]
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Figure 1. Breakdown of instruction count for various DBMS
components for the New Order transaction from TPC-C. The
top of the bar-graph is the original Shore performance with a

main memory resident database and no thread contention.
The bottom dashed line is the useful work, measured by exe-

cuting the transaction on a no-overhead kernel.
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• “no single high pole in the tent”
• disk-based systems are hopeless
• only in-memory DBMS can be fast
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The Problem With In-Memory Systems [Haas et al. CIDR’20]
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DRAM stagnation + flash scalability =
need for flash-optimized DBMS
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LeanStore Overview

optimized for
• multi-cores CPUs
• in-memory performance
• out-of-memory NVMe

performance
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Pointer Swizzling [Leis et al. ICDE’18]

• page-based storage (4 KB) + pointer swizzling
• very low in-memory overhead for cached pages
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Virtual Memory Assisted Buffer Management [Leis et al. SIGMOD’23]
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DBMS controls everything:
• allocation: mmap(NULL, ssdSize, ..., MAP_ANONYMOUS ...)
• faulting: pread(fd, virtMem + offset, pageSize, offset)
• eviction: madvise(virtMem + offset, pageSize, MADV_DONTNEED)

(optional exmap Linux kernel module makes this fast and scalable)
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Page Replacement Algorithm

• original algorithm: 10% of all cached pages are unswizzled and in a FIFO list
• similar to Second Chance

+ fast
+ scalable on multi-core CPUs
− replacement effectiveness
− not write aware
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Write-Aware Timestamp Tracking [Vöhringer et al. VLDB’23]

1. track per-page access timestamps:
i 1 2 3
ti 15 8 0

⇒ i 1 2 3 4
ti 42 15 8 0

2. compute sub-frequencies SFi(tnow) :=
i

tnow−ti
e.g., at tnow = 50:
i 1 2 3 4
ti 42 15 8 0
SFi 1/8 ≈ 0.13 2/35 ≈ 0.06 3/42 ≈ 0.07 4/50 ≈ 0.08

3. compute page value by aggregating sub-frequencies:
PV∗

access(tnow) := maxi SFi(tnow)
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Replacement Effectiveness (Simulation) [Vöhringer et al. VLDB’23]
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Making WATT Practical [Vöhringer et al. VLDB’23]

• write awareness: PV(tnow) := PV∗
access(tnow) + write_weight · PV∗

write(tnow)

• scalability: increment global time only every k evictions
• space: limit tracking to 8+4 timestamps per in-memory page
• speed: sample random pages, computes PV for each and evict worst 10%
• speed: compute PV using SIMD (330 cycles vs. 130 cycles)
• speed: hide cache misses with software prefetching (130 cycles vs. 100 cycles)
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B-tree [Alhomssi et al. BTW’23]

• B+-tree with variable-size keys/values using slotted page layout
• optimizations:

• prefix: extract the common key prefix (Bayer and Unterauer, 1977)
• heads: 4-byte key in slot (“poor man normalized keys”, Graefe and Larson, 2001)
• hints: store 16 heads redundantly

Keys:

Hints:

separators
Lower Fence Higher Fence

Heads:

copy first 
4 bytes
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Synchronization Framework [DEB’19, BTW’23, SiMoD’23]

• each page has
atomic<uint64_t> and
pthread_rwlock

• three page access modes:
optimistic, shared, exclusive

• enables Optimistic Lock Coupling
• additional memory reclamation

mechanism (e.g., epochs, hazard
pointers) not needed

• fast, scalable, easy-to-use

read version

validate
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Scalable and Robust Snapshot Isolation [Alhomassi and Leis VLDB’23]

• snapshot isolation through multi-version concurrency control
• scalable, arbitrarily-large transactions, robust:

• Ordered Snapshot and Instant Commit (OSIC) protocol
• Graveyard Index: move logically-deleted tuples from index to separate structure
• Adaptive Version Storage: Delta Index (default) and FatTuple (hot tuples only)
• Garbage Collection: purge Delta and Graveyard Index using watermarks, prune long

chains during processing, covert FatTuple to Delta Index on eviction
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TPC-C Evaluation [Alhomassi and Leis VLDB’23]

in-memory
out-of-memory
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I/O Management [Haas and Leis VLDB’23]

• worker threads = # hardware threads
• user-space scheduling, asynchronous I/O with libaio, uring, or SPDK
• Boost fcontext to switch between: user tasks, submission, polling, eviction
• highly-optimized I/O path: no global latches, no dynamic memory allocations
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Out-Of-Memory Performance (400 GB buffer pool) [Haas and Leis VLDB’23]
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Out-Of-Memory Performance (16 GB buffer pool, 160 GB data) [Haas and
Leis VLDB’23]
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Conclusions

outlook:
• Switch to vmcache, integration work, out-of-place writes
• Move to cloud, Unikernel co-design
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Commit Protocols [VLDB’23]

trad. DBMS∗ in-mem.DBMS∗∗ OSIC (LeanStore)

post-commit Θ(1) Θ(write set) Θ(1)
snapshotting Θ(T) Θ(1) Ω(1),O(T logT)
visibility check Ω(1),O(T) Θ(1) Θ(1)
memory usage Θ(T2) Θ(T) Θ(T2)

(*) PostgreSQL/InnoDB/WiredTiger (**) Hekaton/HANA/Hyper
T = #Threads or #Concurrent Transactions
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Logging [SIGMOD’20, BTW’23]

1. Write WAL Logs 2. Harden Logs 3. Commit Wrien Transactions
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