CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

CS660: Grad Intro to Database Systems

Class 22: More on Concurrency Control
(Timestamp-Based, Optimistic, and Multi-version)

Instructor: Manos Athanassoulis

https://bu-disc.github.io/CS660/

slides based on Andy Pavlo’s CS15-445/645 class

https://bu-disc.github.io/CS460/

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

External Guest Lecture

LeanStore: In-Memory Data
Management Beyond Main Memory

Viktor Leis, TU Munich

When: 11/27 @ 11:30am
Where: CDS 950

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Concurrency Control Approaches

e Two-Phase Locking (2PL)

— Determine serializability order of conflicting La$t time
operations at runtime while Xacts execute.

e Timestamp Ordering (T/O)

— A serialization mechanism using timestamps.

e Optimistic Concurrency Control (OCC)

— Run then check for serialization violations.

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Concurrency Control Approaches

e Two-Phase Locking (2PL)

— Determine serializability order of conflicting PESSIMIStIC
operations at runtime while Xacts execute.

e Timestamp Ordering (T/O)

— A serialization mechanism using timestamps.

e Optimistic Concurrency Control (OCC) Optimistic

— Run then check for serialization violations.

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

T/O Concurrency Control

e Use timestamps to determine the serializability order of Xacts.

o If TS(T;) <TS(T,), then the DBMS must ensure that the
execution schedule is equivalent to the serial schedule where
T; appears before T..

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Timestap Allocation

e Each Xact T, is assigned a unique fixed timestamp that is
monotonically increasing.

— Let TS(T,) be the timestamp allocated to Xact T..
— Different schemes assign timestamps at different times during the Xact.

e Multiple implementation strategies:

— System/Wall Clock.
— Logical Counter.
— Hybrid.

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Today’s Agenda

e Basic Timestamp Ordering (T/O) Protocol
e Optimistic Concurrency Control

e Multi-Version Concurrency Control

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Basic T/O

e Xacts read and write objects without locks.

e Every object X is tagged with timestamp of the last Xact
that successfully did read/write:
- W-TS(X) — Write timestamp on X
- R-TS(X) — Read timestamp on X

e Check timestamps for every operation:

— |If Xact tries to access an object “from the future”, it aborts and restarts.

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Basic T/O — Reads

Don’t read stuff from the “future.”

e Action: Transaction T, wants to read object X.

o If TS(T.) <W-TS(X), this violates the timestamp
order of T, with regard to the writer of X.

— Abort T; and restart it with a new TS.

e Else:

— Allow T; to read X.
— Update R-TS(X) tomax(R-TS(X), TS(T,))
— Make a local copy of X to ensure repeatable reads for T..

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Basic T/O — Writes

Can’t write if a future transaction has read or written to the object.

e Action: Transaction T, wants to write object X.

¢ IfTS(T,) <R-TS(X) or TS(T.) <W-TS(X)
— Abort and restart T;.

e Else:

— Allow T, to write X and update W-TS(X)
— Also, make a local copy of X to ensure repeatable reads.

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Basic T/O — Example #1

Schedule Database
TS(T,)=1 | n L TS(T,) < TS(T,) | \
BEGIN '_ ' :
@ =2 i
I I l I
I I l I
I I l I
! : L)
mpR(A) No violations so both |
! Xacts are sdfe to
R (A) commit.
] W(A) \ y,
| [COMMIT | COMMIT 7/)
i i Reminder
i i Reads on X fail if we get:
|\ II TS(T;) <W-TS(X)

N o o o o e o o o -’ Writes on X fail if we get:
TS(T;) <W-TS(X) or TS(T;) <W-TS(X)

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Basic T/O — Example #2

Schedule Database
------------------- l~\ S NN N NN NN NN N NN NN NN SN N S N N S S S
T, } I' 1
l M object R-TS W-TS |
I I I
I (A 1 2 I
: l \ :
BEGIN i 1 5 : : .
Vgéﬁan i L _____ [Violation:
| TS(T,) < W-TS(A)
|
T, cannot overwrite update
by T,, so the DBMS must
]]
abort it: y Reminder
: Reads on X fail if we get:
I TS(T,) <W-TS(X)
___________________ ! Writes on X fail if we get:
TS(T;) <W-TS(X) or TS(T;) <W-TS(X)

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Thomas Write Rule

¢ If TS(T.) <R-TS(X):
— Abort and restart T;.
¢ If TS(T.) <W-TS(X):

— Thomas Write Rule: Ignore the write to allow the Xact to continue executing
without aborting.

— This violates timestamp order of T..

e Else:
— Allow T to write X and update W-TS(X)

https://en.wikipedia.org/wiki/Thomas_write_rule

o If TS(T,) <
— Abort and

o If TS(T,)

— Thomas

without a
— This violat

e Else:
— Allow Ti"

Main page
Contents
Current events
Random article
About Wikipedia
Contact us
Donate

Contribute

Help

Learn to edit
Community portal
Recent changes
Upload file

Tools

What links here
Related changes
Special pages
Permanent link
Page information
Cite this page
Wikidata item

Print/export

sac cccon [Eall 2023] -

Article Talk

-

WIKIPEDIA

The Free Encyclopedia

https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Read Edit View history = | Search Wikipedia

Creeper and Reaper

From Wikipedia, the free encyclopedia
(Redirected from Creeper (programy)

Creeper was the first computer worm, while Reaper was the first antivirus software, designed to eliminate Creeper.

Contents [hide]

1 Creeper

2 Reaper

3 Cultural impact
4 References

Creeper |[edi]

Creeper was an experimental Computer program written by Bob Thomas

Creeper
at BBN in 1971.[2] |5 original iteration was designed to move between
))) Type Computer
DEC PDP-10 mainframe computers running the TENEX opeérating system worm[d
using the ARPANET, with a later version by Ray Tomllns[;n designed to Isolation 1971
. P | . i If-
copy itself between computers rather than Simply move.53l This self Author(s) Bob Thomas
replicating version of Creeperis generally accepted to be the first .
Operating system(s) TENEX
computer worm.[U4l Creeper was a test created to demonstrate the affected

possibility of a self—replicating computer program that could Spread to
other computers.

The program was hot actively malicious software as it caused no damage to data, the only effect being a message it
output to the teletype reading "I'M THE CREEPER. CATCH ME IF YOU CAN5I4]

- Notlogged in Talk Contributions Create account Log in

https://en.wikipedia.org/wiki/Thomas_write_rule

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Basic T/O — Example #2

----_I

Schedule Database
"""""""""" S ST ——————
15 | i Object R-TS W-TS
i LA 1 N
: BEGIN i i B 0 0
|
E -’géﬁﬂn i e We do not
@ \L update W-TS(A)
COMMIT ()

Skip doing the actual write and allow
T, to commit. (Do write to the local
_copy if repeatable read is required.) y

’_------

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Basic T/O — Example #2

Schedule Database
’/ -------------------- \‘ g \I
: T; 15 | Wobiect R-TS W-TS I
| | BEGIN | N 1 ; i
| ROA) : e 0 0 :
| BEGIN | | i
! W(CA) ! i I
i COMMIT ! N ——————————— /!
| W(A :
| RC(A)
| |COMMIT | Note that skipping W(A) is view-equivalent to
I the serial schedule {T,->T,} (due to local copies)
i i
| |
| |
| |
| I
\ J

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Basic T/O

e Generates a schedule that is conflict serializable if you do not
use the Thomas Write Rule.

— No deadlocks because no Xact ever waits.

— Possibility of starvation for long Xacts if short Xacts keep causing conflicts.

e Not aware of any DBMS that uses the basic T/O protocol
described here.
— It provides the building blocks for OCC / MVCC.

https://en.wikipedia.org/wiki/Thomas_write_rule

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassou lis

Recoverable Schedules

e A schedule is recoverable if Xacts commit only after all Xacts
whose changes they read, commit.

e Otherwise, the DBMS cannot guarantee that Xacts read data
that will be restored after recovering from a crash.

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Recoverable Schedules

Schedule
T1 T2 i
BEGIN :
WCA :
: BEGIN 1,
\F;ggg-é—ﬂ T, can read the writes of T,.]
I

COMMIg\L{ J

This is not recoverable

ABORT
because we cannot restart T,.

Nl

T, aborts after T, has
committed.

I_-----K--------‘

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Ensuring Recoverable Schedules

e Basic T/O can be modified to allow only recoverable schedules:

— Buffer all writes until writer commits (but update W-TS for allowed writes)
— Block readers T when TS(T) > W-TS(X), until writer of X commits

e Similar to writers holding exclusive locks until commit

— Still allows for higher concurrency!

20

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Basic T/O — Performance Issues

e High overhead from copying data to Xact’s workspace and
from updating timestamps.

— Every read requires the Xact to write to the database.

e Long running Xacts can get starved.

— The likelihood that a Xact will read something from a newer Xact increases.

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

@ Observation

e |f you assume that conflicts between Xacts are rare and that
most Xacts are short-lived, then forcing Xacts to acquire locks
or update timestamps adds unnecessary overhead.

e A better approach is to optimize for the no-conflict case.

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Optimistic Concurrency Control

e The DBMS creates a private workspace for
e a C h Xa Ct . (C:)gn?r;;tllmnstlc Methods for Concurrency

H.T. KUNG and JOHN T. ROBINSON

Carnegie-Mellon University

— Any object read is copied into workspace.

as a control mechanism. In this paper, two families of nonlocking concurrency controls are presented.
The methods used are “optimistic” in the sense that they rely mainly on transaction backup as a
control mechanism, “hoping” that conflicts between transactions will not occur. Applications for
which these methods should be more efficient than locking are discussed.

— Modifications are applied to workspace.

1. INTRODUCTION

Consider the problem of providing shared access to a database organized as a
collection of objects. We assume that certain distinguished objects, called the

L roots, are always present and access to any object other than a root is gained only
. by first accessing a root and then following pointers to that object. Any sequence
of accesses to the database that preserves the integrity constraints of the data is

’ called a transaction (see, e.g., [4]).

If our goal is to maximize the throughput of accesses to the database, then
there are at least two cases where highly concurrent access is desirable.

[o
(1) The amount of data is sufficiently great that at any given time only a fraction
of the database can be present in primary memory, so that it is necessary to
swap parts of the database from secondary memory as needed.

(2) Even if the entire database can be present in primary memory, there may be
multiple processors.

[o
In both cases the hardware will be underutilized if the degree of concurrency
ConNTIICTS WIth other AacCts
[}

However, as is well known, unrestricted concurrent access to a shared database
will, in general, cause the integrity of the database to be lost. Most current

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.

[L L This research was supported in part by the National Science Foundation under Grant MCS 78-236.76
. and the Office of Naval Research under Contract N00014-76-C-0370.
Authors’ address: Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA
15213.
, © 1981 ACM 0362-5915/81/0600-0213 $00.75
\

ACM Transactions on Database Systems, Vol. 6, No. 2, June 1981, Pages 213-226.

|H

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

OCC Phases

e #1 — Read Phase:

— Track the read/write sets of Xacts and store their writes in a private
workspace.

e #2 — Validation Phase:

— When a Xact commits, check whether it conflicts with other Xacts.

e #3 — Write Phase:

— |If validation succeeds, apply private changes to database. Otherwise
abort and restart the Xact.

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

OCC — Example

Schedule Database

\----l

T2 Workspace

1

ObJect Value :
A 456 | :
|

|

!

VALIDAT

1
I
I
123 |0 :
I
I
!

,----

COMMIT

’_---

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

OCC — Read Phase

e Track the read/write sets of Xacts and store their writes in a
private workspace.

e The DBMS copies every tuple that the Xact accesses from the
shared database to its workspace to ensure repeatable reads.

— this means no RW conflicts!
— We can ignore for now what happens if a Xact reads/writes tuples via indexes.

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

OCC: Three Phases

When to assigh the transaction number? At the end of the read phase.

T, «

o0 W °

oo— \/

R

00—

® O—

Time — >

1. READ Phase: Read and write objects, making local copies.

2. VALIDATION Phase: Check for serializable schedule-related anomalies.

3. WRITE Phase: If it is safe, write the local objects, making them permanent.

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Anomalies with Interleaved Execution

' I
Reminder! RW conflict (Unrepeatable Reads):
P N
T1: (R(A) R(A)) W(A), C
T2: R(A)'@’ C
N—r7"

WR conflict (Dirty Reads) :
7~ N\

T1: R(A),@, R(B), W(B)@
T2: @ W(A), C

N—r
WW conflict (Overwriting Uncommitted Data):

/7~ N\
T1: W(A), W(B), C
T2: U @, W(B), C

28

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

OCC: Validation (T, < TJ-) and no overlap!

Case 1. T, completes its write phase before T, starts its read phase.

Ti ® R o0 \V o0 W ®

Time — >

* No conflict as all of T;'s actions happen before T;'s.

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

OCC: Validation (Ti < TJ-) and write-read phases may overlap!

Case 2: T, completes its write phase before T, starts its write phase.

Tio R ®o— \/ —o0 W @

Time — >

e Check that the write set of T, does not intersect the
read set of T;, namely: WriteSet(T;) nReadSet(T;) =

No RW conflicts trivially. | [No WW because of the condition of the case.| |Does T, read dirty data (WR conflict)?

Tid assignment! Maybe ...

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

OCC: Validation (Ti < TJ-) and write-write phases may overlap!

Case 3: T, completes its read phase before T, completes its read phase.

T, —F

T o

Vv

R

W

J

® 00—

Time — >

e Check that the write set of T, does not intersect the

read or write sets of T, namely: WriteSet(T;) n
ReadSet(T;) =@ AND WriteSet(T;) nWriteSet(T,) =0

No RW conflicts trivially.

WW conflicts?

T, may overwrite T, data |WR conflicts?

T, may read dirty data

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

OCC: Validation (T; < T))

WriteSet(T,)
N

ReadSet(T;)

...

WriteSet(T;)
N

ReadSet(T;)
=@

...

WriteSet(T;)
N
WriteSet(T;)
=@

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

OCC — Validation Phase
To validate Xact T (testing cases 1, 2, 3):

S < set of Xacts that committed after Begin(T) /*tests Case 1%/
valid = true;
//The following is done in critical section

"
g

< foreach T.inSdo{
if (ReadSet(T) N WriteSet(Ts) # B) OR (WriteSet(T) N WriteSet(T.) # @)

then valid = false;

_1> -
if valid then { install updates; /* Write phase */
Commit T }

else Restart T

N
Critical section

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

OCC — Validation Phase

To validate Xact T (serial validation -- testing cases 1, 2):

S < set of Xacts that committed after Begin(T) /*tests Case 1%/

valid = true;

//The following is done in critical section B B

< foreach T.in S do {)

if (ReadSet(T) N WriteSet(Ts) # 0)
then valid = false;

1>
if valid then { install updates; /* Write phase */
Commit T} _ »

" else Restart T B \

Critical section

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

OCC — Serial Validation Observation

e Tests for Case 2: T as T; and each Xact in T (in turn) as T;.

e Xact id assighnment, validation, write inside a critical section!

— Nothing else goes on concurrently.
— So, no need to test Case 3 --- cannot happen.

— If Write phase is long, major drawback.

e Optimization for Read-only Xacts:

— No need for critical section (because there is no Write phase).

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

OCC — Write Phase

e Propagate changes in the Xact’s write set to database to make
them visible to other Xacts.

¢ Serial Commits:

— Use a global latch to limit a single Xact to be in the Validation/Write phases at a
time.

e Parallel Commits:
— Use fine-grained write latches to support parallel Validation/Write phases.
— Xacts acquire latches in primary key order to avoid deadlocks.

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

OCC — Observations

e OCC works well when the # of conflicts is low:

— All Xacts are read-only (ideal).
— Xacts access disjoint subsets of data.

e If the database is large and the workload is not skewed, then
there is a low probability of conflict, so again locking is
wasteful.

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

OCC — Performance Issues

e High overhead for copying data locally.
e Validation/Write phase bottlenecks.

e Aborts are more wasteful than in 2PL because they only occur
after a Xact has already executed.

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Do we need to update data (and thus, cause conflicts) all the time?

MULTI-VERSION CONCURRENCY CONTROL

40

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Multi-Version Concurrency Control (MVCC)

e The DBMS maintains multiple physical versions of a single
logical object in the database:

—>When a Xact writes to an object, the DBMS creates a new version of that object.

—>When a Xact reads an object, it reads the newest version that existed when the
Xact started.

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Multi-Version Concurrency Control

e Writers do not block readers.
Readers do not block writers.

e Read-only Xacts can read a consistent snapshot without
acquiring locks.

— Use timestamps to determine visibility.

e Easily support time-travel queries.

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

MVCC — Example #1

(7s(1y)=1 Pedul{ 7s(7,)=2] Database

t N

i\ T, T, E i l

|

: BEGIN : : :
g R(A) : : - |
I BEGIN i : lﬁ_____iii___i_______. i
"W i |

R(A) h : S - - v

[T, reads version A,

T, creates version A,| __ Xact Status Table
and sets A, End-TS.

XactIld Timestamp Status

T, 1 Active
T, 2 Active

—-----

’_-----
‘_________
‘_-----_I

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

MVCC — Example #2

(Ts(1)-1]ffl}ll_ TS(T,)=2) Database

7 T i L ————————— ¥

Jmt - : =

o e o

=W(A) BEGIN : - 2 |
R(A) i ! A, 789 |2 - !
W(A) -\ T /

T, reads version A,

VvV N

because T, has not :

) COMMEL ¥ i

, committed yet. . i

T, reads version A, \—— — 7 (1 Commi tted| i
that it wrote earlier. Now T, can create |2 Active i
! the new version. !

\ 7 N o= o = e e »

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Snapshot Isolation (SI)

e When a Xact starts, it sees a consistent snapshot of the
database that existed when that the Xact started.

— No torn writes from active Xacts.

— If two Xacts update the same object, then first writer wins.

e Slis susceptible to the Write Skew Anomaly.

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Write Skew Anomaly
Xact #1
Change white
marectoilack. “
Change wh
PP | |

OO0 _ 08
Xczlct,;l;!‘z\A QQ)C(Igﬂ%

Change black m marbles to white.
marbles to white.

—

OO
o0

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Multi-Version Concurrency Control

MVCC is more than just a concurrency control
protocol. It completely affects how the DBMS

manages transactions and the database. _
splice

MACHINE

A L;!BA;F “* vectorwise B o etcd Exasol I nfiniDB
\ INGR=S WIREDTIGER a
ﬂ N) NETEZZA \

TIMESCALE AUO
daffodll
PostgreSQL FOUNDATION DB Microsoft® fw
Q ; . ‘1-' CUBRID SQL Server Hekaton A HyP
oucnbase EZ:!:,
B (3 UMBRA & ﬁfl\/\ . QO SingleStore
aria
C]ustrlx ~ Orlen’rDB® APACHE ORACLE

HBASE
RA\(ENDB no|se | | M ' realm
N page ' "RethinkDB RM[_.]SQL '® Cockroach Lags

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

MVCC Design Decisions

e Concurrency Control Protocol
e Version Storage
e Garbage Collection

e Index Management
e Deletes

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Concurrency Control Protocols

e Approach #1: Timestamp Ordering

— Assign Xacts timestamps that determine serial order.

e Approach #2: Optimistic Concurrency Control

— Three-phase protocol (Read-Validate-Write).
— Use private workspace for new versions.

e Approach #3: Two-Phase Locking

— Xacts acquire appropriate lock on physical version before they can
read/write a logical tuple.

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Version Storage

e The DBMS uses the tuples’ pointer field to create a version
chain per logical tuple.

— This allows the DBMS to find the version that is visible to a particular Xact at
runtime.

— Indexes always point to the “head” of the chain.

e Different storage schemes determine where/what to store for
each version.

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Version Storage

e Approach #1: Append-Only Storage

— New versions are appended to the same table space.

e Approach #2: Time-Travel Storage

— Old versions are copied to separate table space.

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Append-Only Storage

e All the physical versions of a logical
tuple are stored in the same table

space. The versions are inter-mixed.

e On every update, append a new
version of the tuple into an empty
space in the table.

Main Table
A, | 8777 o
» A, | 82221 8
B, $10 | @
A, | $333| o

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Version Chain Ordering
e Approach #1: Oldest-to-Newest (O2N)

— Append new version to end of the chain.
— Must traverse chain on look-ups.

e Approach #2: Newest-to-Oldest (N20)

— Must update index pointers for every new version.
— Do not have to traverse chain on look-ups.

55

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Time-Travel Storage

Main Table

TUPLE POINTER

Time-Travel Table

TUPLE POINTER

On every update, copy the
current version to the time-
travel table. Update
pointers.

Overwrite master version in

the main table and update
pointers.

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Garbage Collection

e The DBMS needs to remove reclaimable physical versions from
the database over time.

— No active Xact in the DBMS can “see” that version (SI).

— The version was created by an aborted Xact.

e Two additional design decisions:
— How to look for expired versions?
— How to decide when it is safe to reclaim memory?

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Garbage Collection

e Approach #1: Tuple-level

— Find old versions by examining tuples directly.
— Background Vacuuming vs. Cooperative Cleaning

e Approach #2: Transaction-level

— Xacts keep track of their old versions so the DBMS does not have to scan tuples to
determine visibility.

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Tuple-Level GC

Xact #1
T.,=12

I

Xact #2

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works

with any storage.

ENC

5,

Cooperative Cleaning:
Worker threads identify
reclaimable versions as they
traverse version chain. Only
works with O2N.

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Transaction-Level GC

e Each Xact keeps track of its read/write set.

e On commit/abort, the Xact provides this information
to a centralized vacuum worker.

e The DBMS periodically determines when all versions
created by a finished Xact are no longer visible.

Xact #1
BEGIN @ 10
COMMIT @ 15

Old Versions

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Transaction-Level GC

UPDATE (A)

i =
UFUVRILC\D)

BEGIN-TS END-TS

_B.

TS<10

A, 7 70
B, 8 70
A 0 | o
B, 70 |

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Next Class

e Logging and recovery!

