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Concurrency Control Approaches

e Two-Phase Locking (2PL)

— Determine serializability order of conflicting La$t time
operations at runtime while Xacts execute.

e Timestamp Ordering (T/O)

— A serialization mechanism using timestamps.

e Optimistic Concurrency Control (OCC)

— Run then check for serialization violations.
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Concurrency Control Approaches

e Two-Phase Locking (2PL)

— Determine serializability order of conflicting PESSIMIStIC
operations at runtime while Xacts execute.

e Timestamp Ordering (T/O)

— A serialization mechanism using timestamps.

e Optimistic Concurrency Control (OCC) Optimistic

— Run then check for serialization violations.
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T/O Concurrency Control

e Use timestamps to determine the serializability order of Xacts.

o If TS(T;) <TS(T,), then the DBMS must ensure that the
execution schedule is equivalent to the serial schedule where
T; appears before T..
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Timestap Allocation

e Each Xact T, is assigned a unique fixed timestamp that is
monotonically increasing.

— Let TS(T,) be the timestamp allocated to Xact T..
— Different schemes assign timestamps at different times during the Xact.

e Multiple implementation strategies:

— System/Wall Clock.
— Logical Counter.
— Hybrid.
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Today’s Agenda

e Basic Timestamp Ordering (T/O) Protocol
e Optimistic Concurrency Control

e Multi-Version Concurrency Control
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Basic T/O

e Xacts read and write objects without locks.

e Every object X is tagged with timestamp of the last Xact
that successfully did read/write:
- W-TS(X) — Write timestamp on X
- R-TS(X) — Read timestamp on X

e Check timestamps for every operation:

— |If Xact tries to access an object “from the future”, it aborts and restarts.
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Basic T/O — Reads

Don’t read stuff from the “future.”

e Action: Transaction T, wants to read object X.

o If TS(T.) <W-TS(X), this violates the timestamp
order of T, with regard to the writer of X.

— Abort T; and restart it with a new TS.

e Else:

— Allow T; to read X.
— Update R-TS(X) tomax(R-TS(X), TS(T,))
— Make a local copy of X to ensure repeatable reads for T..
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Basic T/O — Writes

Can’t write if a future transaction has read or written to the object.

e Action: Transaction T, wants to write object X.

¢ IfTS(T,) <R-TS(X) or TS(T.) <W-TS(X)
— Abort and restart T;.

e Else:

— Allow T, to write X and update W-TS(X)
— Also, make a local copy of X to ensure repeatable reads.



CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Basic T/O — Example #1

Schedule Database
TS(T,)=1 | n L TS(T,) < TS(T,) | \
BEGIN '_ ' :
@ =2 i
I I l I
I I l I
I I l I
! : L )
mpR(A) No violations so both |
! Xacts are sdfe to
R (A) commit.
] W(A) \ y,
| [COMMIT | COMMIT 7/ )
i i Reminder
i i Reads on X fail if we get:
|\ II TS(T;) <W-TS(X)

N o o o o e o o o -’ Writes on X fail if we get:
TS(T;) <W-TS(X) or TS(T;) <W-TS(X)
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Basic T/O — Example #2

Schedule Database
------------------- l~\ S NN N NN NN NN N NN NN NN SN N S N N S S S
T, } I' 1
l M object R-TS W-TS |
I I I
I (A 1 2 I
: l \ :
BEGIN i 1 5 : : .
Vgéﬁan i L _____ [ Violation:
| TS(T,) < W-TS(A)
|
T, cannot overwrite update
by T,, so the DBMS must
] ]
abort it: y Reminder
: Reads on X fail if we get:
I TS(T,) <W-TS(X)
___________________ ! Writes on X fail if we get:
TS(T;) <W-TS(X) or TS(T;) <W-TS(X)
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Thomas Write Rule

¢ If TS(T.) <R-TS(X):
— Abort and restart T;.
¢ If TS(T.) <W-TS(X):

— Thomas Write Rule: Ignore the write to allow the Xact to continue executing
without aborting.

— This violates timestamp order of T..

e Else:
— Allow T to write X and update W-TS(X)


https://en.wikipedia.org/wiki/Thomas_write_rule
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Creeper and Reaper

From Wikipedia, the free encyclopedia
(Redirected from Creeper (programy)

Creeper was the first computer worm, while Reaper was the first antivirus software, designed to eliminate Creeper.

Contents [hide]

1 Creeper

2 Reaper

3 Cultural impact
4 References

Creeper |[edi ]

Creeper was an experimental Computer program written by Bob Thomas

Creeper
at BBN in 1971.[2] |5 original iteration was designed to move between
) ) ) Type Computer
DEC PDP-10 mainframe computers running the TENEX opeérating system worm[d
using the ARPANET, with a later version by Ray Tomllns[;n designed to Isolation 1971
. P | . i If-
copy itself between computers rather than Simply move.53l This self Author(s) Bob Thomas
replicating version of Creeperis generally accepted to be the first .
Operating system(s) TENEX
computer worm.[U4l Creeper was a test created to demonstrate the affected

possibility of a self—replicating computer program that could Spread to
other computers.

The program was hot actively malicious software as it caused no damage to data, the only effect being a message it
output to the teletype reading "I'M THE CREEPER. CATCH ME IF YOU CAN5I4]

- Notlogged in Talk Contributions Create account Log in
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Basic T/O — Example #2

----_I

Schedule Database
"""""""""" S ST ——————
15 | i Object R-TS  W-TS
i LA 1 N
: BEGIN i i B 0 0
|
E -’géﬁﬂn i e We do not
@ \L update W-TS(A)
COMMIT ( )

Skip doing the actual write and allow
T, to commit. (Do write to the local
_copy if repeatable read is required.) y

’_------
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Basic T/O — Example #2

Schedule Database
’/ -------------------- \‘ g \I
: T; 15 | Wobiect R-TS W-TS I
| | BEGIN | N 1 ; i
| ROA) : e 0 0 :
| BEGIN | | i
! W(CA) ! i I
i COMMIT ! N ——————————— /!
| W(A :
| RC(A)
| |COMMIT | Note that skipping W(A) is view-equivalent to
I the serial schedule {T,->T,} (due to local copies)
i i
| |
| |
| |
| I
\ J
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Basic T/O

e Generates a schedule that is conflict serializable if you do not
use the Thomas Write Rule.

— No deadlocks because no Xact ever waits.

— Possibility of starvation for long Xacts if short Xacts keep causing conflicts.

e Not aware of any DBMS that uses the basic T/O protocol
described here.
— It provides the building blocks for OCC / MVCC.


https://en.wikipedia.org/wiki/Thomas_write_rule
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Recoverable Schedules

e A schedule is recoverable if Xacts commit only after all Xacts
whose changes they read, commit.

e Otherwise, the DBMS cannot guarantee that Xacts read data
that will be restored after recovering from a crash.
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Recoverable Schedules

Schedule
T1 T2 i
BEGIN :
WCA :
: BEGIN 1,
\F;ggg-é—ﬂ T, can read the writes of T,. ]
I

COMMIg\L{ J

This is not recoverable

ABORT
because we cannot restart T,.

Nl

T, aborts after T, has
committed.

I_-----K--------‘
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Ensuring Recoverable Schedules

e Basic T/O can be modified to allow only recoverable schedules:

— Buffer all writes until writer commits (but update W-TS for allowed writes)
— Block readers T when TS(T) > W-TS(X), until writer of X commits

e Similar to writers holding exclusive locks until commit

— Still allows for higher concurrency!

20
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Basic T/O — Performance Issues

e High overhead from copying data to Xact’s workspace and
from updating timestamps.

— Every read requires the Xact to write to the database.

e Long running Xacts can get starved.

— The likelihood that a Xact will read something from a newer Xact increases.
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@ Observation

e |f you assume that conflicts between Xacts are rare and that
most Xacts are short-lived, then forcing Xacts to acquire locks
or update timestamps adds unnecessary overhead.

e A better approach is to optimize for the no-conflict case.
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Optimistic Concurrency Control

e The DBMS creates a private workspace for
e a C h Xa Ct . (C:)gn?r;;tllmnstlc Methods for Concurrency

H.T. KUNG and JOHN T. ROBINSON

Carnegie-Mellon University

— Any object read is copied into workspace.

as a control mechanism. In this paper, two families of nonlocking concurrency controls are presented.
The methods used are “optimistic” in the sense that they rely mainly on transaction backup as a
control mechanism, “hoping” that conflicts between transactions will not occur. Applications for
which these methods should be more efficient than locking are discussed.

— Modifications are applied to workspace.

1. INTRODUCTION

Consider the problem of providing shared access to a database organized as a
collection of objects. We assume that certain distinguished objects, called the

L roots, are always present and access to any object other than a root is gained only
. by first accessing a root and then following pointers to that object. Any sequence
of accesses to the database that preserves the integrity constraints of the data is

’ called a transaction (see, e.g., [4]).

If our goal is to maximize the throughput of accesses to the database, then
there are at least two cases where highly concurrent access is desirable.

[ o
(1) The amount of data is sufficiently great that at any given time only a fraction
of the database can be present in primary memory, so that it is necessary to
swap parts of the database from secondary memory as needed.

(2) Even if the entire database can be present in primary memory, there may be
multiple processors.

[ o
In both cases the hardware will be underutilized if the degree of concurrency
ConNTIICTS WIth other AacCts
[}

However, as is well known, unrestricted concurrent access to a shared database
will, in general, cause the integrity of the database to be lost. Most current

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.

[ L L This research was supported in part by the National Science Foundation under Grant MCS 78-236.76
. and the Office of Naval Research under Contract N00014-76-C-0370.
Authors’ address: Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA
15213.
, © 1981 ACM 0362-5915/81/0600-0213 $00.75
\

ACM Transactions on Database Systems, Vol. 6, No. 2, June 1981, Pages 213-226.

|H
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OCC Phases

e #1 — Read Phase:

— Track the read/write sets of Xacts and store their writes in a private
workspace.

e #2 — Validation Phase:

— When a Xact commits, check whether it conflicts with other Xacts.

e #3 — Write Phase:

— |If validation succeeds, apply private changes to database. Otherwise
abort and restart the Xact.
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OCC — Example

Schedule Database

\----l

T2 Workspace

1

ObJect Value :
A 456 | :
|

|

!

VALIDAT

1
I
I
123 |0 :
I
I
!

,----

COMMIT

’_---
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OCC — Read Phase

e Track the read/write sets of Xacts and store their writes in a
private workspace.

e The DBMS copies every tuple that the Xact accesses from the
shared database to its workspace to ensure repeatable reads.

— this means no RW conflicts!
— We can ignore for now what happens if a Xact reads/writes tuples via indexes.
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OCC: Three Phases

When to assigh the transaction number? At the end of the read phase.

T, «

o0 W °

oo— \/

R

00—

® O—

Time — >

1. READ Phase: Read and write objects, making local copies.

2. VALIDATION Phase: Check for serializable schedule-related anomalies.

3. WRITE Phase: If it is safe, write the local objects, making them permanent.
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Anomalies with Interleaved Execution

' I
Reminder! RW conflict (Unrepeatable Reads):
P N
T1: (R(A) R(A)) W(A), C
T2: R(A)'@’ C
N—r7"

WR conflict (Dirty Reads) :
7~ N\

T1: R(A),@, R(B), W(B)@
T2: @ W(A), C

N—r
WW conflict (Overwriting Uncommitted Data):

/7~ N\
T1:  W(A), W(B), C
T2: U @, W(B), C

28
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OCC: Validation (T, < TJ-) and no overlap!

Case 1. T, completes its write phase before T, starts its read phase.

Ti ® R o0 \V o0 W ®

Time — >

* No conflict as all of T;'s actions happen before T;'s.
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OCC: Validation (Ti < TJ-) and write-read phases may overlap!

Case 2: T, completes its write phase before T, starts its write phase.

Tio R ®o— \/ —o0 W @

Time — >

e Check that the write set of T, does not intersect the
read set of T;, namely: WriteSet(T;) nReadSet(T;) =

No RW conflicts trivially. | [No WW because of the condition of the case.| |Does T, read dirty data (WR conflict)?

Tid assignment! Maybe ...



CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

OCC: Validation (Ti < TJ-) and write-write phases may overlap!

Case 3: T, completes its read phase before T, completes its read phase.

T, —F

T o

Vv

R

W

J

® 00—

Time — >

e Check that the write set of T, does not intersect the

read or write sets of T, namely: WriteSet(T;) n
ReadSet(T;) =@ AND WriteSet(T;) nWriteSet(T,) =0

No RW conflicts trivially.

WW conflicts?

T, may overwrite T, data |WR conflicts?

T, may read dirty data
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OCC: Validation (T; < T))

WriteSet(T,)
N

ReadSet(T;)

...............................................................................................................................................................................................................................................................................................................................................................................................

WriteSet(T;)
N

ReadSet(T;)
=@

...............................................................................................................................................................................................................................................................................................................................................................................................

WriteSet(T;)
N
WriteSet(T;)
=@
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OCC — Validation Phase
To validate Xact T (testing cases 1, 2, 3):

S < set of Xacts that committed after Begin(T) /*tests Case 1%/
valid = true;
//The following is done in critical section

"
g

< foreach T.inSdo{
if (ReadSet(T) N WriteSet(Ts) # B) OR (WriteSet(T) N WriteSet(T.) # @)

then valid = false;

_1> -
if valid then { install updates; /* Write phase */
Commit T }

else Restart T

N
Critical section
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OCC — Validation Phase

To validate Xact T (serial validation -- testing cases 1, 2):

S < set of Xacts that committed after Begin(T) /*tests Case 1%/

valid = true;

//The following is done in critical section B B

< foreach T.in S do { )

if (ReadSet(T) N WriteSet(Ts) # 0)
then valid = false;

1>
if valid then { install updates; /* Write phase */
Commit T} _ »

" else Restart T B \

Critical section
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OCC — Serial Validation Observation

e Tests for Case 2: T as T; and each Xact in T (in turn) as T;.

e Xact id assighnment, validation, write inside a critical section!

— Nothing else goes on concurrently.
— So, no need to test Case 3 --- cannot happen.

— If Write phase is long, major drawback.

e Optimization for Read-only Xacts:

— No need for critical section (because there is no Write phase).
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OCC — Write Phase

e Propagate changes in the Xact’s write set to database to make
them visible to other Xacts.

¢ Serial Commits:

— Use a global latch to limit a single Xact to be in the Validation/Write phases at a
time.

e Parallel Commits:
— Use fine-grained write latches to support parallel Validation/Write phases.
— Xacts acquire latches in primary key order to avoid deadlocks.
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OCC — Observations

e OCC works well when the # of conflicts is low:

— All Xacts are read-only (ideal).
— Xacts access disjoint subsets of data.

e If the database is large and the workload is not skewed, then
there is a low probability of conflict, so again locking is
wasteful.
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OCC — Performance Issues

e High overhead for copying data locally.
e Validation/Write phase bottlenecks.

e Aborts are more wasteful than in 2PL because they only occur
after a Xact has already executed.
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Do we need to update data (and thus, cause conflicts) all the time?

MULTI-VERSION CONCURRENCY CONTROL

40
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Multi-Version Concurrency Control (MVCC)

e The DBMS maintains multiple physical versions of a single
logical object in the database:

—>When a Xact writes to an object, the DBMS creates a new version of that object.

—>When a Xact reads an object, it reads the newest version that existed when the
Xact started.
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Multi-Version Concurrency Control

e Writers do not block readers.
Readers do not block writers.

e Read-only Xacts can read a consistent snapshot without
acquiring locks.

— Use timestamps to determine visibility.

e Easily support time-travel queries.
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MVCC — Example #1

(7s(1y)=1 Pedul{ 7s(7,)=2 ] Database

t N

i\ T, T, E i l

|

: BEGIN : : :
g R(A) : : - |
I BEGIN i : lﬁ_____iii___i_______. i
"W i |

R(A) h : S - - v

[ T, reads version A,

T, creates version A,| __ Xact Status Table
and sets A, End-TS.

XactIld Timestamp Status

T, 1 Active
T, 2 Active

—-----

’_-----
‘_________
‘_-----_I
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MVCC — Example #2

(Ts(1)-1 ]ffl}ll_ TS(T,)=2 ) Database

7 T i L ————————— ¥

Jmt - : =

o e o

=W(A) BEGIN : - 2 |
R(A) i ! A, 789 |2 - !
W(A) -\ T /

T, reads version A,

VvV N

because T, has not :

) COMMEL ¥ i

, committed yet. . i

T, reads version A, \—— — 7 (1 Commi tted| i
that it wrote earlier. Now T, can create |2 Active i
! the new version. !

\ 7 N o= o = e e »
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Snapshot Isolation (SI)

e When a Xact starts, it sees a consistent snapshot of the
database that existed when that the Xact started.

— No torn writes from active Xacts.

— If two Xacts update the same object, then first writer wins.

e Slis susceptible to the Write Skew Anomaly.
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Write Skew Anomaly
Xact #1
Change white
marectoilack. “
Change wh
PP | |

OO0 _ 08
Xczlct,;l;!‘z\A QQ )C(Igﬂ%

Change black m marbles to white.
marbles to white.

—

OO
o0
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Multi-Version Concurrency Control

MVCC is more than just a concurrency control
protocol. It completely affects how the DBMS

manages transactions and the database. _
splice

MACHINE

A L;!BA;F “* vectorwise B o etcd Exasol I nfiniDB
\ INGR=S WIREDTIGER a
ﬂ N ) NETEZZA \

TIMESCALE AUO
daffodll
PostgreSQL FOUNDATION DB Microsoft® fw
Q ; . ‘1-' CUBRID SQL Server Hekaton A HyP
oucnbase EZ:!:,
B (3 UMBRA & ﬁfl\/\ . QO SingleStore
aria
C]ustrlx ~ Orlen’rDB® APACHE ORACLE

HBASE
RA\(ENDB no|se | | M ' realm
N page ' "RethinkDB RM[_.]SQL '® Cockroach Lags
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MVCC Design Decisions

e Concurrency Control Protocol
e Version Storage
e Garbage Collection

e Index Management
e Deletes
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Concurrency Control Protocols

e Approach #1: Timestamp Ordering

— Assign Xacts timestamps that determine serial order.

e Approach #2: Optimistic Concurrency Control

— Three-phase protocol (Read-Validate-Write).
— Use private workspace for new versions.

e Approach #3: Two-Phase Locking

— Xacts acquire appropriate lock on physical version before they can
read/write a logical tuple.
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Version Storage

e The DBMS uses the tuples’ pointer field to create a version
chain per logical tuple.

— This allows the DBMS to find the version that is visible to a particular Xact at
runtime.

— Indexes always point to the “head” of the chain.

e Different storage schemes determine where/what to store for
each version.
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Version Storage

e Approach #1: Append-Only Storage

— New versions are appended to the same table space.

e Approach #2: Time-Travel Storage

— Old versions are copied to separate table space.
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Append-Only Storage

e All the physical versions of a logical
tuple are stored in the same table

space. The versions are inter-mixed.

e On every update, append a new
version of the tuple into an empty
space in the table.

Main Table
A, | 8777 o
» A, | 82221 8
B, $10 | @
A, | $333| o
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Version Chain Ordering
e Approach #1: Oldest-to-Newest (O2N)

— Append new version to end of the chain.
— Must traverse chain on look-ups.

e Approach #2: Newest-to-Oldest (N20)

— Must update index pointers for every new version.
— Do not have to traverse chain on look-ups.

55
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Time-Travel Storage

Main Table

TUPLE POINTER

Time-Travel Table

TUPLE POINTER

On every update, copy the
current version to the time-
travel table. Update
pointers.

Overwrite master version in

the main table and update
pointers.
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Garbage Collection

e The DBMS needs to remove reclaimable physical versions from
the database over time.

— No active Xact in the DBMS can “see” that version (SI).

— The version was created by an aborted Xact.

e Two additional design decisions:
— How to look for expired versions?
— How to decide when it is safe to reclaim memory?
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Garbage Collection

e Approach #1: Tuple-level

— Find old versions by examining tuples directly.
— Background Vacuuming vs. Cooperative Cleaning

e Approach #2: Transaction-level

— Xacts keep track of their old versions so the DBMS does not have to scan tuples to
determine visibility.
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Tuple-Level GC

Xact #1
T.,=12

I

Xact #2

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works

with any storage.

ENC

5,

Cooperative Cleaning:
Worker threads identify
reclaimable versions as they
traverse version chain. Only
works with O2N.
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Transaction-Level GC

e Each Xact keeps track of its read/write set.

e On commit/abort, the Xact provides this information
to a centralized vacuum worker.

e The DBMS periodically determines when all versions
created by a finished Xact are no longer visible.



Xact #1
BEGIN @ 10
COMMIT @ 15

Old Versions
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Transaction-Level GC

UPDATE (A)

i =
UFUVRILC\D)

BEGIN-TS END-TS

_B.

TS<10

A, 7 70
B, 8 70
A 0 | o
B, 70 |
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Next Class

e Logging and recovery!



