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LeanStore: In-Memory Data 
Management Beyond Main Memory

Viktor Leis, TU Munich

When: 11/27 @ 11:30am
Where: CDS 950
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Concurrency Control Approaches

• Two-Phase Locking (2PL)
– Determine serializability order of conflicting

operations at runtime while Xacts execute.

• Timestamp Ordering (T/O)
– A serialization mechanism using timestamps.

• Optimistic Concurrency Control (OCC)
– Run then check for serialization violations.

Last time
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Concurrency Control Approaches

• Two-Phase Locking (2PL)
– Determine serializability order of conflicting

operations at runtime while Xacts execute.

• Timestamp Ordering (T/O)
– A serialization mechanism using timestamps.

• Optimistic Concurrency Control (OCC)
– Run then check for serialization violations.

Pessimistic

Optimistic

4
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T/O Concurrency Control
• Use timestamps to determine the serializability order of Xacts.

• If TS(Ti) < TS(Tj), then the DBMS must ensure that the 
execution schedule is equivalent to the serial schedule where 
Ti appears before Tj.
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Timestap Allocation
• Each Xact Ti is assigned a unique fixed timestamp that is 

monotonically increasing.
– Let TS(Ti) be the timestamp allocated to Xact Ti.
– Different schemes assign timestamps at different times during the Xact.

• Multiple implementation strategies:
– System/Wall Clock.
– Logical Counter.
– Hybrid.

6
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Today’s Agenda

• Basic Timestamp Ordering (T/O) Protocol

• Optimistic Concurrency Control

• Multi-Version Concurrency Control

7
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Basic T/O
• Xacts read and write objects without locks.

• Every object X is tagged with timestamp of the last Xact 
that successfully did read/write:
– W-TS(X) – Write timestamp on X
– R-TS(X) – Read timestamp on X

• Check timestamps for every operation:
– If Xact tries to access an object “from the future”, it aborts and restarts.

8
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Basic T/O – Reads

• Action: Transaction Ti wants to read object X.

• If TS(Ti) < W-TS(X), this violates the timestamp 
order of Ti with regard to the writer of X.
– Abort Ti and restart it with a new TS.

• Else:
– Allow Ti to read X.
– Update R-TS(X) to max(R-TS(X), TS(Ti))
– Make a local copy of X to ensure repeatable reads for Ti.

9

Don’t read stuff from the “future.”
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Basic T/O – Writes

• Action: Transaction Ti wants to write object X.

• If TS(Ti) < R-TS(X) or TS(Ti) < W-TS(X)
– Abort and restart Ti.

• Else:
– Allow Ti to write X and update W-TS(X)
– Also, make a local copy of X to ensure repeatable reads.

10

Can’t write if a future transaction has read or written to the object.
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Object R-TS W-TS
A 0 0
B 0 0

Schedule
T1 T2

Basic T/O – Example #1

BEGIN
R(B)

R(A)

R(A)

COMMIT

BEGIN
R(B)
W(B)

R(A)

W(A)
COMMIT

TS(T2 )=2 1
12 2
2 2

Database
TS(T1 ) < TS(T2 )

TI
M
E

TS(T1 )=1

No violations so both 
Xacts are safe to 

commit.

11

Reads on X fail if we get:
TS(Ti) < W-TS(X)

Writes on X fail if we get:
TS(Ti) < W-TS(X) or TS(Ti) < W-TS(X)

Reminder
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Object R-TS W-TS
A 0 0
B 0 0

DatabaseSchedule
T1 T2

Basic T/O – Example #2

BEGIN
R(A)

W(A)
R(A)
COMMIT

BEGIN
W(A)
COMMIT

1 2

Violation:
TS(T1 ) < W-TS(A)

T1 cannot overwrite update 
by T2, so the DBMS must 

abort it!

TI
M
E

12

Reads on X fail if we get:
TS(Ti) < W-TS(X)

Writes on X fail if we get:
TS(Ti) < W-TS(X) or TS(Ti) < W-TS(X)

Reminder
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Thomas Write Rule
• If TS(Ti) < R-TS(X):

– Abort and restart Ti.

• If TS(Ti) < W-TS(X):
– Thomas Write Rule: Ignore the write to allow the Xact to continue executing 

without aborting.
– This violates timestamp order of Ti.

• Else:
– Allow Ti to write X and update W-TS(X)

13

https://en.wikipedia.org/wiki/Thomas_write_rule
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Thomas Write Rule
• If TS(Ti) < R-TS(X):

– Abort and restart Ti.

• If TS(Ti) < W-TS(X):
– Thomas Write Rule: Ignore the write to allow the Xact to continue executing 

without aborting.
– This violates timestamp order of Ti.

• Else:
– Allow Ti to write X and update W-TS(X)

14

https://en.wikipedia.org/wiki/Thomas_write_rule
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Object R-TS W-TS
A 0 0
B 0 0

DatabaseSchedule
T1 T2

Basic T/O – Example #2

BEGIN
R(A)

W(A)
R(A)
COMMIT

BEGIN
W(A)
COMMIT

1 2

We do not 
update W-TS(A)

Skip doing the actual write and allow 
T1 to commit. (Do write to the local 
copy if repeatable read is required.)

TI
M
E

15
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Object R-TS W-TS
A 0 0
B 0 0

DatabaseSchedule
T1 T2

Basic T/O – Example #2

BEGIN
R(A)

W(A)
R(A)
COMMIT

BEGIN
W(A)
COMMIT

1 2

TI
M
E

16

Note that skipping W(A) is view-equivalent to 
the serial schedule {T1->T2} (due to local copies)
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Basic T/O
• Generates a schedule that is conflict serializable if you do not

use the Thomas Write Rule.
– No deadlocks because no Xact ever waits.
– Possibility of starvation for long Xacts if short Xacts keep causing conflicts.

• Not aware of any DBMS that uses the basic T/O protocol 
described here.
– It provides the building blocks for OCC / MVCC.

17

https://en.wikipedia.org/wiki/Thomas_write_rule
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Recoverable Schedules
• A schedule is recoverable if Xacts commit only after all Xacts

whose changes they read, commit.

• Otherwise, the DBMS cannot guarantee that Xacts read data 
that will be restored after recovering from a crash.
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Schedule
T1 T2

Recoverable Schedules

BEGIN
W(A)
  ⋮ BEGIN

R(A)
W(B)
COMMIT
  

T2 can read the writes of T1.

This is not recoverable 
because we cannot restart T1.

T1 aborts after T2 has 
committed.

ABORT

TI
M
E

19
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Ensuring Recoverable Schedules
• Basic T/O can be modified to allow only recoverable schedules:

– Buffer all writes until writer commits (but update W-TS for allowed writes)
– Block readers T when TS(T) > W-TS(X), until writer of X commits

• Similar to writers holding exclusive locks until commit
– Still allows for higher concurrency!

20
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Basic T/O – Performance Issues
• High overhead from copying data to Xact’s workspace and 

from updating timestamps.
– Every read requires the Xact to write to the database.

• Long running Xacts can get starved.
– The likelihood that a Xact will read something from a newer Xact increases.

21
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Observation
• If you assume that conflicts between Xacts are rare and that 

most Xacts are short-lived, then forcing Xacts to acquire locks 
or update timestamps adds unnecessary overhead.

• A better approach is to optimize for the no-conflict case.

22



CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Optimistic Concurrency Control
• The DBMS creates a private workspace for 

each Xact.
– Any object read is copied into workspace. 
– Modifications are applied to workspace.

• When a Xact commits, the DBMS compares 
workspace write set to see whether it 
conflicts with other Xacts.

• If there are no conflicts, the write set is 
installed into the “global” database.
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OCC Phases
• #1 – Read Phase:

– Track the read/write sets of Xacts and store their writes in a private 
workspace.

• #2 – Validation Phase:
– When a Xact commits, check whether it conflicts with other Xacts.

• #3 – Write Phase:
– If validation succeeds, apply private changes to database. Otherwise 

abort and restart the Xact.

24
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Database

Object Value W-TS

- - -

- - -

Object Value W-TS

- - -

- - -

T1 Workspace

Object Value W-TS
A 123 0
- - -

Schedule
Ti Tj

OCC – Example

BEGIN
READ
R(A)

W(A)
VALIDATE
WRITE

COMMIT

BEGIN
READ
R(A)
VALIDATE
WRITE
COMMIT

T2 Workspace

456 1

456 2

123 0A 123 0A456 ∞

TS(Tj )=1

TS(Ti )=2

TI
M
E

25
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OCC – Read Phase
• Track the read/write sets of Xacts and store their writes in a 

private workspace.

• The DBMS copies every tuple that the Xact accesses from the 
shared database to its workspace to ensure repeatable reads.
– this means no RW conflicts!
– We can ignore for now what happens if a Xact reads/writes tuples via indexes.

26
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OCC: Three Phases

1. READ Phase: Read and write objects, making local copies.

2. VALIDATION Phase: Check for serializable schedule-related anomalies.

3. WRITE Phase: If it is safe, write the local objects, making them permanent.

27

Time
Ti R V W Tj R V W

Tk R V W

When to assign the transaction number? At the end of the read phase.
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Anomalies with Interleaved Execution

WR conflict (Dirty Reads) :

28

T1: R(A), W(A),                  R(B), W(B), Abort
T2:   R(A), W(A), C

Reminder!

T1: R(A),           R(A), W(A), C
T2:  R(A), W(A), C

RW conflict (Unrepeatable Reads):

T1: W(A),       W(B), C
T2:  W(A), W(B), C

WW conflict (Overwriting Uncommitted Data):
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OCC: Validation (Ti < Tj)

• No conflict as all of Ti’s actions happen before Tj’s.

29

Ti R V W

Tj R V W

Case 1:  Ti completes its write phase before Tj starts its read phase.

Time

and no overlap!
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OCC: Validation (Ti < Tj)

• Check that the write set of Ti does not intersect the 
read set of Tj, namely: WriteSet(Ti) ∩ ReadSet(Tj) = Ø

30

Ti R V W

Tj R V W

Case 2:  Ti completes its write phase before Tj starts its write phase.

Time

Does Tj read dirty data (WR conflict)? 

and write-read phases may overlap!

No RW conflicts trivially. No WW because of the condition of the case.

Tid assignment! Maybe … 
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OCC: Validation (Ti < Tj)

• Check that the write set of Ti does not intersect the 
read or write sets of Tj, namely: WriteSet(Ti) ∩ 
ReadSet(Tj) = Ø AND WriteSet(Ti) ∩ WriteSet(Tj) = Ø

31

Case 3:  Ti completes its read phase before Tj completes its read phase.

Time

and write-write phases may overlap!

No RW conflicts trivially. WW conflicts? WR conflicts?Ti may overwrite Tj data Tj may read dirty data

Ti R V W

Tj R V W



CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis 32

OCC: Validation (Ti < Tj)
R à W W à R W à W

R V W
Ti

R V W

Tj

Ca
se

 1

R V W
Ti

W

TjCa
se

 2
Ca

se
 3 R

Ti

R
Tj

✓ ✓ ✓

WriteSet(Ti) 
∩ 

ReadSet(Tj) 
= Ø

✓ ✓

✓
WriteSet(Ti) 

∩ 
ReadSet(Tj) 

= Ø

WriteSet(Ti) 
∩ 

WriteSet(Tj) 
= Ø
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OCC – Validation Phase
34

S ß set of Xacts that committed after Begin(T) /*tests Case 1*/
valid = true;
//The following is done in critical section
< foreach Ts in S do {

if (ReadSet(T) ∩ WriteSet(TS) ≠ Ø) OR (WriteSet(T) ∩ WriteSet(TS) ≠ Ø)
then valid = false;

}>
if valid then { install updates; /* Write phase */

Commit T } 
else Restart T

To validate Xact T (testing cases 1, 2, 3):  

Critical section
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OCC – Validation Phase
35

S ß set of Xacts that committed after Begin(T) /*tests Case 1*/
valid = true;
//The following is done in critical section
< foreach Ts in S do {

if (ReadSet(T) ∩ WriteSet(TS) ≠ Ø)
then valid = false;

}>
if valid then { install updates; /* Write phase */

Commit T } 
else Restart T

To validate Xact T (serial validation -- testing cases 1, 2):  

Critical section
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OCC – Serial Validation Observation
36

• Tests for Case 2: T as Tj and each Xact in TS (in turn) as Ti.
• Xact id assignment, validation, write inside a critical section!

– Nothing else goes on concurrently.
– So, no need to test Case 3 --- cannot happen.
– If Write phase is long, major drawback.

• Optimization for Read-only Xacts:
– No need for critical section (because there is no Write phase).
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OCC – Write Phase
• Propagate changes in the Xact’s write set to database to make 

them visible to other Xacts.

• Serial Commits:
– Use a global latch to limit a single Xact to be in the Validation/Write phases at a 

time.

• Parallel Commits:
– Use fine-grained write latches to support parallel Validation/Write phases.
– Xacts acquire latches in primary key order to avoid deadlocks.

37
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OCC – Observations
• OCC works well when the # of conflicts is low:

– All Xacts are read-only (ideal).
– Xacts access disjoint subsets of data.

• If the database is large and the workload is not skewed, then 
there is a low probability of conflict, so again locking is 
wasteful.

38
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OCC – Performance Issues
• High overhead for copying data locally.

• Validation/Write phase bottlenecks.

• Aborts are more wasteful than in 2PL because they only occur 
after a Xact has already executed.

39
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MULTI-VERSION CONCURRENCY CONTROL
Do we need to update data (and thus, cause conflicts) all the time?

40
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Multi-Version Concurrency Control (MVCC)

• The DBMS maintains multiple physical versions of a single 
logical object in the database:

→When a Xact writes to an object, the DBMS creates a new version of that object. 
→When a Xact reads an object, it reads the newest version that existed when the 

Xact started.

41
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Multi-Version Concurrency Control
• Writers do not block readers.

Readers do not block writers.

• Read-only Xacts can read a consistent snapshot without 
acquiring locks.
– Use timestamps to determine visibility.

• Easily support time-travel queries.

43
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XactId Timestamp Status

T1 1 Active
T2 2 Active

Xact Status Table

Version Value Begin End
A0 123 0 -

TI
M
E
Schedule

T1 T2

MVCC – Example #1

BEGIN
R(A)

R(A)
COMMIT

BEGIN
W(A)

COMMIT

2

T1 reads version A0.

-2456A1

TS(T1)=1 TS(T2)=2 Database

T2 creates version A1 
and sets A0 End-TS. 

44



CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

XactId Timestamp Status

T1 1 Active

Xact Status Table

Version Value Begin End
A0 123 0

TI
M
E
Schedule

T1 T2

MVCC – Example #2

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

1

T1 reads version A1 
that it wrote earlier.

-1456A1 2
-2789A2

TS(T1)=1 TS(T2)=2 Database

Active2T2
Committed1T1

Now T2 can create 
the new version.

T2 must stall until T1 
commits.

T2 reads version A0 
because T1 has not 

committed yet.

45
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Snapshot Isolation (SI)
• When a Xact starts, it sees a consistent snapshot of the 

database that existed when that the Xact started.
– No torn writes from active Xacts.
– If two Xacts update the same object, then first writer wins.

• SI is susceptible to the Write Skew Anomaly.

46
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Write Skew Anomaly
Xact #1
Change white 
marbles to black.

Xact #2
Change black 
marbles to white.

Xact #1
Change white 
marbles to black.

Xact #2
Change black 
marbles to white.

47
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Multi-Version Concurrency Control
MVCC is more than just a concurrency control 
protocol. It completely affects how the DBMS 
manages transactions and the database.

48
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MVCC Design Decisions
• Concurrency Control Protocol
• Version Storage
• Garbage Collection
• Index Management
• Deletes

49
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Concurrency Control Protocols
• Approach #1: Timestamp Ordering

– Assign Xacts timestamps that determine serial order.

• Approach #2: Optimistic Concurrency Control
– Three-phase protocol (Read-Validate-Write).
– Use private workspace for new versions.

• Approach #3: Two-Phase Locking
– Xacts acquire appropriate lock on physical version before they can 

read/write a logical tuple.

50
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Version Storage
• The DBMS uses the tuples’ pointer field to create a version 

chain per logical tuple.
– This allows the DBMS to find the version that is visible to a particular Xact at 

runtime.
– Indexes always point to the “head” of the chain.

• Different storage schemes determine where/what to store for 
each version.

51
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Version Storage

• Approach #1: Append-Only Storage
– New versions are appended to the same table space.

• Approach #2: Time-Travel Storage
– Old versions are copied to separate table space.

53
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Append-Only Storage
• All the physical versions of a logical 

tuple are stored in the same table 
space. The versions are inter-mixed.

• On every update, append a new 
version of the tuple into an empty 
space in the table.

Main Table

TUPLE

A0 $111
POINTER

A1 $222 Ø

A2 $333 Ø
B1 $10 Ø

54
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Version Chain Ordering
• Approach #1: Oldest-to-Newest (O2N)

– Append new version to end of the chain.
– Must traverse chain on look-ups. 

• Approach #2: Newest-to-Oldest (N2O)
– Must update index pointers for every new version.
– Do not have to traverse chain on look-ups. 

55
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Time-Travel Storage

Overwrite master version in 
the main table and update 
pointers.

Main Table

TUPLE

A2 $222
POINTER

B1 $10
A3 $333

Time-Travel Table

TUPLE

A1 $111
POINTER

A2 $222
Ø

On every update, copy the 
current version to the time-
travel table. Update 
pointers.

56
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Garbage Collection
• The DBMS needs to remove reclaimable physical versions from 

the database over time.
– No active Xact in the DBMS can “see” that version (SI).
– The version was created by an aborted Xact.

• Two additional design decisions:
– How to look for expired versions?
– How to decide when it is safe to reclaim memory?

58
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Garbage Collection
• Approach #1: Tuple-level

– Find old versions by examining tuples directly.
– Background Vacuuming vs. Cooperative Cleaning

• Approach #2: Transaction-level
– Xacts keep track of their old versions so the DBMS does not have to scan tuples to 

determine visibility.

59
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Xact #1
Tid=12

Xact #2
Tid=25

BEGIN-TS END-TS

A100 1 9
B100 1 9
B101 10 20

Tuple-Level GC

Background Vacuuming:
Separate thread(s) periodically 
scan the table and look for 
reclaimable versions. Works 
with any storage.

Vacuum

Cooperative Cleaning:
Worker threads identify 
reclaimable versions as they 
traverse version chain. Only 
works with O2N.

Dirty Block BitM
ap

A2 A3

B0 B1 B2 B3

INDEX
A0 A1GET(A)

60
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Transaction-Level GC

• Each Xact keeps track of its read/write set.
• On commit/abort, the Xact provides this information 

to a centralized vacuum worker. 

• The DBMS periodically determines when all versions 
created by a finished Xact are no longer visible.

61
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Transaction-Level GC

UPDATE(B)

Xact #1
UPDATE(A)

BEGIN @ 10

Vacuum

Old Versions
A2
B6

A2
B6

BEGIN-TS END-TS

1 ∞
8 ∞

DATA

-
-

A3 10 ∞ -
B7 10 ∞ -

10
10

TS<10

COMMIT @ 15 10
10

10
10

62
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Next Class
• Logging and recovery!

74


