
CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

CS660: Grad Intro to Database Systems

Class 22: More on Concurrency Control
(Timestamp-Based, Optimistic, and Multi-version)

Instructor: Manos Athanassoulis

https://bu-disc.github.io/CS660/

slides based on Andy Pavlo’s CS15-445/645 class

https://bu-disc.github.io/CS460/

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

External Guest Lecture

2

LeanStore: In-Memory Data
Management Beyond Main Memory

Viktor Leis, TU Munich

When: 11/27 @ 11:30am
Where: CDS 950

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Concurrency Control Approaches

• Two-Phase Locking (2PL)
– Determine serializability order of conflicting

operations at runtime while Xacts execute.

• Timestamp Ordering (T/O)
– A serialization mechanism using timestamps.

• Optimistic Concurrency Control (OCC)
– Run then check for serialization violations.

Last time

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Concurrency Control Approaches

• Two-Phase Locking (2PL)
– Determine serializability order of conflicting

operations at runtime while Xacts execute.

• Timestamp Ordering (T/O)
– A serialization mechanism using timestamps.

• Optimistic Concurrency Control (OCC)
– Run then check for serialization violations.

Pessimistic

Optimistic

4

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

T/O Concurrency Control
• Use timestamps to determine the serializability order of Xacts.

• If TS(Ti) < TS(Tj), then the DBMS must ensure that the
execution schedule is equivalent to the serial schedule where
Ti appears before Tj.

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Timestap Allocation
• Each Xact Ti is assigned a unique fixed timestamp that is

monotonically increasing.
– Let TS(Ti) be the timestamp allocated to Xact Ti.
– Different schemes assign timestamps at different times during the Xact.

• Multiple implementation strategies:
– System/Wall Clock.
– Logical Counter.
– Hybrid.

6

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Today’s Agenda

• Basic Timestamp Ordering (T/O) Protocol

• Optimistic Concurrency Control

• Multi-Version Concurrency Control

7

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Basic T/O
• Xacts read and write objects without locks.

• Every object X is tagged with timestamp of the last Xact
that successfully did read/write:
– W-TS(X) – Write timestamp on X
– R-TS(X) – Read timestamp on X

• Check timestamps for every operation:
– If Xact tries to access an object “from the future”, it aborts and restarts.

8

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Basic T/O – Reads

• Action: Transaction Ti wants to read object X.

• If TS(Ti) < W-TS(X), this violates the timestamp
order of Ti with regard to the writer of X.
– Abort Ti and restart it with a new TS.

• Else:
– Allow Ti to read X.
– Update R-TS(X) to max(R-TS(X), TS(Ti))
– Make a local copy of X to ensure repeatable reads for Ti.

9

Don’t read stuff from the “future.”

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Basic T/O – Writes

• Action: Transaction Ti wants to write object X.

• If TS(Ti) < R-TS(X) or TS(Ti) < W-TS(X)
– Abort and restart Ti.

• Else:
– Allow Ti to write X and update W-TS(X)
– Also, make a local copy of X to ensure repeatable reads.

10

Can’t write if a future transaction has read or written to the object.

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Object R-TS W-TS
A 0 0
B 0 0

Schedule
T1 T2

Basic T/O – Example #1

BEGIN
R(B)

R(A)

R(A)

COMMIT

BEGIN
R(B)
W(B)

R(A)

W(A)
COMMIT

TS(T2)=2 1
12 2
2 2

Database
TS(T1) < TS(T2)

TI
M
E

TS(T1)=1

No violations so both
Xacts are safe to

commit.

11

Reads on X fail if we get:
TS(Ti) < W-TS(X)

Writes on X fail if we get:
TS(Ti) < W-TS(X) or TS(Ti) < W-TS(X)

Reminder

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Object R-TS W-TS
A 0 0
B 0 0

DatabaseSchedule
T1 T2

Basic T/O – Example #2

BEGIN
R(A)

W(A)
R(A)
COMMIT

BEGIN
W(A)
COMMIT

1 2

Violation:
TS(T1) < W-TS(A)

T1 cannot overwrite update
by T2, so the DBMS must

abort it!

TI
M
E

12

Reads on X fail if we get:
TS(Ti) < W-TS(X)

Writes on X fail if we get:
TS(Ti) < W-TS(X) or TS(Ti) < W-TS(X)

Reminder

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Thomas Write Rule
• If TS(Ti) < R-TS(X):

– Abort and restart Ti.

• If TS(Ti) < W-TS(X):
– Thomas Write Rule: Ignore the write to allow the Xact to continue executing

without aborting.
– This violates timestamp order of Ti.

• Else:
– Allow Ti to write X and update W-TS(X)

13

https://en.wikipedia.org/wiki/Thomas_write_rule

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Thomas Write Rule
• If TS(Ti) < R-TS(X):

– Abort and restart Ti.

• If TS(Ti) < W-TS(X):
– Thomas Write Rule: Ignore the write to allow the Xact to continue executing

without aborting.
– This violates timestamp order of Ti.

• Else:
– Allow Ti to write X and update W-TS(X)

14

https://en.wikipedia.org/wiki/Thomas_write_rule

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Object R-TS W-TS
A 0 0
B 0 0

DatabaseSchedule
T1 T2

Basic T/O – Example #2

BEGIN
R(A)

W(A)
R(A)
COMMIT

BEGIN
W(A)
COMMIT

1 2

We do not
update W-TS(A)

Skip doing the actual write and allow
T1 to commit. (Do write to the local
copy if repeatable read is required.)

TI
M
E

15

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Object R-TS W-TS
A 0 0
B 0 0

DatabaseSchedule
T1 T2

Basic T/O – Example #2

BEGIN
R(A)

W(A)
R(A)
COMMIT

BEGIN
W(A)
COMMIT

1 2

TI
M
E

16

Note that skipping W(A) is view-equivalent to
the serial schedule {T1->T2} (due to local copies)

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Basic T/O
• Generates a schedule that is conflict serializable if you do not

use the Thomas Write Rule.
– No deadlocks because no Xact ever waits.
– Possibility of starvation for long Xacts if short Xacts keep causing conflicts.

• Not aware of any DBMS that uses the basic T/O protocol
described here.
– It provides the building blocks for OCC / MVCC.

17

https://en.wikipedia.org/wiki/Thomas_write_rule

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Recoverable Schedules
• A schedule is recoverable if Xacts commit only after all Xacts

whose changes they read, commit.

• Otherwise, the DBMS cannot guarantee that Xacts read data
that will be restored after recovering from a crash.

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Schedule
T1 T2

Recoverable Schedules

BEGIN
W(A)
 ⋮ BEGIN

R(A)
W(B)
COMMIT

T2 can read the writes of T1.

This is not recoverable
because we cannot restart T1.

T1 aborts after T2 has
committed.

ABORT

TI
M
E

19

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Ensuring Recoverable Schedules
• Basic T/O can be modified to allow only recoverable schedules:

– Buffer all writes until writer commits (but update W-TS for allowed writes)
– Block readers T when TS(T) > W-TS(X), until writer of X commits

• Similar to writers holding exclusive locks until commit
– Still allows for higher concurrency!

20

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Basic T/O – Performance Issues
• High overhead from copying data to Xact’s workspace and

from updating timestamps.
– Every read requires the Xact to write to the database.

• Long running Xacts can get starved.
– The likelihood that a Xact will read something from a newer Xact increases.

21

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Observation
• If you assume that conflicts between Xacts are rare and that

most Xacts are short-lived, then forcing Xacts to acquire locks
or update timestamps adds unnecessary overhead.

• A better approach is to optimize for the no-conflict case.

22

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Optimistic Concurrency Control
• The DBMS creates a private workspace for

each Xact.
– Any object read is copied into workspace.
– Modifications are applied to workspace.

• When a Xact commits, the DBMS compares
workspace write set to see whether it
conflicts with other Xacts.

• If there are no conflicts, the write set is
installed into the “global” database.

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

OCC Phases
• #1 – Read Phase:

– Track the read/write sets of Xacts and store their writes in a private
workspace.

• #2 – Validation Phase:
– When a Xact commits, check whether it conflicts with other Xacts.

• #3 – Write Phase:
– If validation succeeds, apply private changes to database. Otherwise

abort and restart the Xact.

24

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Database

Object Value W-TS

- - -

- - -

Object Value W-TS

- - -

- - -

T1 Workspace

Object Value W-TS
A 123 0
- - -

Schedule
Ti Tj

OCC – Example

BEGIN
READ
R(A)

W(A)
VALIDATE
WRITE

COMMIT

BEGIN
READ
R(A)
VALIDATE
WRITE
COMMIT

T2 Workspace

456 1

456 2

123 0A 123 0A456 ∞

TS(Tj)=1

TS(Ti)=2

TI
M
E

25

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

OCC – Read Phase
• Track the read/write sets of Xacts and store their writes in a

private workspace.

• The DBMS copies every tuple that the Xact accesses from the
shared database to its workspace to ensure repeatable reads.
– this means no RW conflicts!
– We can ignore for now what happens if a Xact reads/writes tuples via indexes.

26

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

OCC: Three Phases

1. READ Phase: Read and write objects, making local copies.

2. VALIDATION Phase: Check for serializable schedule-related anomalies.

3. WRITE Phase: If it is safe, write the local objects, making them permanent.

27

Time
Ti R V W Tj R V W

Tk R V W

When to assign the transaction number? At the end of the read phase.

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Anomalies with Interleaved Execution

WR conflict (Dirty Reads) :

28

T1: R(A), W(A), R(B), W(B), Abort
T2: R(A), W(A), C

Reminder!

T1: R(A), R(A), W(A), C
T2: R(A), W(A), C

RW conflict (Unrepeatable Reads):

T1: W(A), W(B), C
T2: W(A), W(B), C

WW conflict (Overwriting Uncommitted Data):

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

OCC: Validation (Ti < Tj)

• No conflict as all of Ti’s actions happen before Tj’s.

29

Ti R V W

Tj R V W

Case 1: Ti completes its write phase before Tj starts its read phase.

Time

and no overlap!

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

OCC: Validation (Ti < Tj)

• Check that the write set of Ti does not intersect the
read set of Tj, namely: WriteSet(Ti) ∩ ReadSet(Tj) = Ø

30

Ti R V W

Tj R V W

Case 2: Ti completes its write phase before Tj starts its write phase.

Time

Does Tj read dirty data (WR conflict)?

and write-read phases may overlap!

No RW conflicts trivially. No WW because of the condition of the case.

Tid assignment! Maybe …

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

OCC: Validation (Ti < Tj)

• Check that the write set of Ti does not intersect the
read or write sets of Tj, namely: WriteSet(Ti) ∩
ReadSet(Tj) = Ø AND WriteSet(Ti) ∩ WriteSet(Tj) = Ø

31

Case 3: Ti completes its read phase before Tj completes its read phase.

Time

and write-write phases may overlap!

No RW conflicts trivially. WW conflicts? WR conflicts?Ti may overwrite Tj data Tj may read dirty data

Ti R V W

Tj R V W

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis 32

OCC: Validation (Ti < Tj)
R à W W à R W à W

R V W
Ti

R V W

Tj

Ca
se

 1

R V W
Ti

W

TjCa
se

 2
Ca

se
 3 R

Ti

R
Tj

✓ ✓ ✓

WriteSet(Ti)
∩

ReadSet(Tj)
= Ø

✓ ✓

✓
WriteSet(Ti)

∩
ReadSet(Tj)

= Ø

WriteSet(Ti)
∩

WriteSet(Tj)
= Ø

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

OCC – Validation Phase
34

S ß set of Xacts that committed after Begin(T) /*tests Case 1*/
valid = true;
//The following is done in critical section
< foreach Ts in S do {

if (ReadSet(T) ∩ WriteSet(TS) ≠ Ø) OR (WriteSet(T) ∩ WriteSet(TS) ≠ Ø)
then valid = false;

}>
if valid then { install updates; /* Write phase */

Commit T }
else Restart T

To validate Xact T (testing cases 1, 2, 3):

Critical section

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

OCC – Validation Phase
35

S ß set of Xacts that committed after Begin(T) /*tests Case 1*/
valid = true;
//The following is done in critical section
< foreach Ts in S do {

if (ReadSet(T) ∩ WriteSet(TS) ≠ Ø)
then valid = false;

}>
if valid then { install updates; /* Write phase */

Commit T }
else Restart T

To validate Xact T (serial validation -- testing cases 1, 2):

Critical section

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

OCC – Serial Validation Observation
36

• Tests for Case 2: T as Tj and each Xact in TS (in turn) as Ti.
• Xact id assignment, validation, write inside a critical section!

– Nothing else goes on concurrently.
– So, no need to test Case 3 --- cannot happen.
– If Write phase is long, major drawback.

• Optimization for Read-only Xacts:
– No need for critical section (because there is no Write phase).

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

OCC – Write Phase
• Propagate changes in the Xact’s write set to database to make

them visible to other Xacts.

• Serial Commits:
– Use a global latch to limit a single Xact to be in the Validation/Write phases at a

time.

• Parallel Commits:
– Use fine-grained write latches to support parallel Validation/Write phases.
– Xacts acquire latches in primary key order to avoid deadlocks.

37

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

OCC – Observations
• OCC works well when the # of conflicts is low:

– All Xacts are read-only (ideal).
– Xacts access disjoint subsets of data.

• If the database is large and the workload is not skewed, then
there is a low probability of conflict, so again locking is
wasteful.

38

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

OCC – Performance Issues
• High overhead for copying data locally.

• Validation/Write phase bottlenecks.

• Aborts are more wasteful than in 2PL because they only occur
after a Xact has already executed.

39

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

MULTI-VERSION CONCURRENCY CONTROL
Do we need to update data (and thus, cause conflicts) all the time?

40

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Multi-Version Concurrency Control (MVCC)

• The DBMS maintains multiple physical versions of a single
logical object in the database:

→When a Xact writes to an object, the DBMS creates a new version of that object.
→When a Xact reads an object, it reads the newest version that existed when the

Xact started.

41

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Multi-Version Concurrency Control
• Writers do not block readers.

Readers do not block writers.

• Read-only Xacts can read a consistent snapshot without
acquiring locks.
– Use timestamps to determine visibility.

• Easily support time-travel queries.

43

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

XactId Timestamp Status

T1 1 Active
T2 2 Active

Xact Status Table

Version Value Begin End
A0 123 0 -

TI
M
E
Schedule

T1 T2

MVCC – Example #1

BEGIN
R(A)

R(A)
COMMIT

BEGIN
W(A)

COMMIT

2

T1 reads version A0.

-2456A1

TS(T1)=1 TS(T2)=2 Database

T2 creates version A1
and sets A0 End-TS.

44

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

XactId Timestamp Status

T1 1 Active

Xact Status Table

Version Value Begin End
A0 123 0

TI
M
E
Schedule

T1 T2

MVCC – Example #2

BEGIN
R(A)
W(A)

R(A)
COMMIT

BEGIN
R(A)
W(A)

COMMIT

1

T1 reads version A1
that it wrote earlier.

-1456A1 2
-2789A2

TS(T1)=1 TS(T2)=2 Database

Active2T2
Committed1T1

Now T2 can create
the new version.

T2 must stall until T1
commits.

T2 reads version A0
because T1 has not

committed yet.

45

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Snapshot Isolation (SI)
• When a Xact starts, it sees a consistent snapshot of the

database that existed when that the Xact started.
– No torn writes from active Xacts.
– If two Xacts update the same object, then first writer wins.

• SI is susceptible to the Write Skew Anomaly.

46

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Write Skew Anomaly
Xact #1
Change white
marbles to black.

Xact #2
Change black
marbles to white.

Xact #1
Change white
marbles to black.

Xact #2
Change black
marbles to white.

47

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Multi-Version Concurrency Control
MVCC is more than just a concurrency control
protocol. It completely affects how the DBMS
manages transactions and the database.

48

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

MVCC Design Decisions
• Concurrency Control Protocol
• Version Storage
• Garbage Collection
• Index Management
• Deletes

49

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Concurrency Control Protocols
• Approach #1: Timestamp Ordering

– Assign Xacts timestamps that determine serial order.

• Approach #2: Optimistic Concurrency Control
– Three-phase protocol (Read-Validate-Write).
– Use private workspace for new versions.

• Approach #3: Two-Phase Locking
– Xacts acquire appropriate lock on physical version before they can

read/write a logical tuple.

50

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Version Storage
• The DBMS uses the tuples’ pointer field to create a version

chain per logical tuple.
– This allows the DBMS to find the version that is visible to a particular Xact at

runtime.
– Indexes always point to the “head” of the chain.

• Different storage schemes determine where/what to store for
each version.

51

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Version Storage

• Approach #1: Append-Only Storage
– New versions are appended to the same table space.

• Approach #2: Time-Travel Storage
– Old versions are copied to separate table space.

53

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Append-Only Storage
• All the physical versions of a logical

tuple are stored in the same table
space. The versions are inter-mixed.

• On every update, append a new
version of the tuple into an empty
space in the table.

Main Table

TUPLE

A0 $111
POINTER

A1 $222 Ø

A2 $333 Ø
B1 $10 Ø

54

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Version Chain Ordering
• Approach #1: Oldest-to-Newest (O2N)

– Append new version to end of the chain.
– Must traverse chain on look-ups.

• Approach #2: Newest-to-Oldest (N2O)
– Must update index pointers for every new version.
– Do not have to traverse chain on look-ups.

55

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Time-Travel Storage

Overwrite master version in
the main table and update
pointers.

Main Table

TUPLE

A2 $222
POINTER

B1 $10
A3 $333

Time-Travel Table

TUPLE

A1 $111
POINTER

A2 $222
Ø

On every update, copy the
current version to the time-
travel table. Update
pointers.

56

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Garbage Collection
• The DBMS needs to remove reclaimable physical versions from

the database over time.
– No active Xact in the DBMS can “see” that version (SI).
– The version was created by an aborted Xact.

• Two additional design decisions:
– How to look for expired versions?
– How to decide when it is safe to reclaim memory?

58

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Garbage Collection
• Approach #1: Tuple-level

– Find old versions by examining tuples directly.
– Background Vacuuming vs. Cooperative Cleaning

• Approach #2: Transaction-level
– Xacts keep track of their old versions so the DBMS does not have to scan tuples to

determine visibility.

59

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Xact #1
Tid=12

Xact #2
Tid=25

BEGIN-TS END-TS

A100 1 9
B100 1 9
B101 10 20

Tuple-Level GC

Background Vacuuming:
Separate thread(s) periodically
scan the table and look for
reclaimable versions. Works
with any storage.

Vacuum

Cooperative Cleaning:
Worker threads identify
reclaimable versions as they
traverse version chain. Only
works with O2N.

Dirty Block BitM
ap

A2 A3

B0 B1 B2 B3

INDEX
A0 A1GET(A)

60

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Transaction-Level GC

• Each Xact keeps track of its read/write set.
• On commit/abort, the Xact provides this information

to a centralized vacuum worker.

• The DBMS periodically determines when all versions
created by a finished Xact are no longer visible.

61

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Transaction-Level GC

UPDATE(B)

Xact #1
UPDATE(A)

BEGIN @ 10

Vacuum

Old Versions
A2
B6

A2
B6

BEGIN-TS END-TS

1 ∞
8 ∞

DATA

-
-

A3 10 ∞ -
B7 10 ∞ -

10
10

TS<10

COMMIT @ 15 10
10

10
10

62

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Next Class
• Logging and recovery!

74

