
CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

CS660: Intro to Database Systems

Class 21: Concurrency Control

Instructor: Manos Athanassoulis

https://bu-disc.github.io/CS660/

https://bu-disc.github.io/CS460/

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Units

Concurrency Control

Serializability

Two phase locking

Lock management and deadlocks

Locking granularity

Tree locking

Phantoms and predicate locking

Readings: Chapter 17.1

2

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Review
DBMSs support ACID Transaction semantics

Concurrency control and Crash Recovery are key components

For Isolation property, serial execution of transactions is safe but
slow

– Try to find schedules equivalent to serial execution

3

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Formal Properties of Schedules
Serial schedule: Schedule that does not interleave the actions of
different transactions
Equivalent schedules: For any database state, the effect of
executing the first schedule is identical to the effect of executing
the second schedule
Serializable schedule: A schedule that is equivalent to some
serial execution of the transactions
 Note: If each transaction preserves consistency, every

serializable schedule preserves consistency.

4

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Conflicting Operations
We need a formal notion of equivalence that can be
implemented efficiently

– Base it on the notion of “conflicting” operations

Definition: Two operations conflict if:
– They are done by different transactions,
– They are done on the same object,
– And at least one of them is a write

5

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Conflict Serializable Schedules
Definition: Two schedules are conflict equivalent iff:

– They involve the same actions of the same transactions, and
– every pair of conflicting actions is ordered the same way

Definition: Schedule S is conflict serializable if:
– S is conflict equivalent to some serial schedule

Note, some “serializable” schedules are NOT conflict serializable
– A price we pay to achieve efficient enforcement

6

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Conflict Serializability – Intuition
A schedule S is conflict serializable if:

– You are able to transform S into a serial schedule by swapping consecutive non-
conflicting operations of different transactions

Example:

7

R(A) R(B)W(A) W(B)

R(A) W(A) R(B) W(B)W(A)

R(B)R(B)

R(A)

W(B)

W(A)

W(B)

R(A)

R(A) R(B)W(A) W(B)
R(A) W(A) R(B) W(B)

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Conflict Serializability (Continued)

Here’s another example:

Serializable or not?

R(A) W(A)
R(A) W(A)

NOT!

8

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Dependency Graph
Dependency graph:

– One node per transaction
– Edge from Ti to Tj if:

• An operation Oi of Ti conflicts with an operation Oj of Tj and
• Oi appears earlier in the schedule than Oj

Theorem: Schedule is conflict serializable if and only if its
dependency graph is acyclic

Ti Tj

9

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Example

A schedule that is not conflict serializable:

The cycle in the graph reveals the problem. The output of T1
depends on T2, and vice-versa

T1 T2
A

B

Dependency graph

T1: R(A), W(A), R(B), W(B)
T2:
T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)
T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)
T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)
T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)

10

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

View Serializability
Alternative (weaker) notion of serializability
Schedules S1 and S2 are view equivalent if:

1. If Ti reads initial value of A in S1, then Ti also reads initial value of A in S2
2. If Ti reads value of A written by Tj in S1, then Ti also reads value of A written by Tj in S2
3. If Ti writes final value of A in S1, then Ti also writes final value of A in S2

Basically, allows all conflict serializable schedules
+ “blind writes”

11

T1: R(A) W(A)
T2: W(A)
T3: W(A)

T1: R(A),W(A)
T2: W(A)
T3: W(A)

view

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Notes on Serializability Definitions
View Serializability allows (slightly) more schedules than Conflict
Serializability

– Problem: it is difficult to enforce efficiently

Neither definition allows all schedules that you would consider
“serializable”

– Because they don’t understand the meanings of the operations or the data

In practice, Conflict Serializability is used, because it can be
enforced efficiently

– To allow more concurrency, some special cases do get handled separately, such
as travel reservations

12

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Serializability Summary
Serial schedule

Equivalent schedules ≣

Conflict Serializable schedule Sa, if Sa conflict equivalent with (some) Sserial
View Serializable schedule Sb, if Sb view equivalent with (some) Sserial

13

T1
T2

T3

conflict equivalent = if all conflicting op’s same order
view equivalent = if same view aftereasier to enforce!

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Units

Concurrency Control

Serializability

Two phase locking

Lock management and deadlocks

Locking granularity

Tree locking

Phantoms and predicate locking

Readings: Chapter 17.1

14

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Two-Phase Locking (2PL)

Locking Protocol
– each transaction obtains

• S (shared) lock on object before reading
• X (exclusive) lock on object before writing

– A transaction cannot request additional locks once it releases any locks
– Thus, there is a “growing phase” followed by a “shrinking phase”

15

S X

S Ö –

X – –

Lock
Compatibility
Matrix

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Two-Phase Locking (2PL)

2PL on its own is sufficient to guarantee conflict serializability
(i.e., schedules whose dependency graph is acyclic), but, it is
subject to Cascading Aborts

16

time

locks held

release phaseacquisition
phase

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Strict 2PL
Problem: Cascading Aborts
Example: rollback of T1 requires rollback of T2!

How to avoid Cascading Aborts?
Strict Two-phase Locking (Strict 2PL) Protocol:

– Same as 2PL, except:
– All locks held by a transaction are released only when the transaction completes

17

T1: R(A), W(A), R(B), W(B), Abort
T2: R(A), W(A)

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Allows only conflict serializable schedules, but it is actually stronger than
needed for that purpose
In effect, “shrinking phase” is delayed until

a) Transaction has committed (commit log record on disk), or
b) Decision has been made to abort the transaction (locks can be released after

rollback)

18

locks held

acquisition
phase

time

release all locks at
end of xact

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Non-2PL, A= 1000, B=2000, Output =?
Lock_X(A)
Read(A) Lock_S(A)
A: = A-50
Write(A)
Unlock(A)

Read(A)
Unlock(A)
Lock_S(B)

Lock_X(B)
Read(B)
Unlock(B)
PRINT(A+B)

Read(B)
B := B +50
Write(B)
Unlock(B) 19

what is the problem here?

A+B not executed
in Isolation

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

2PL, A= 1000, B=2000, Output =?
Lock_X(A)
Read(A) Lock_S(A)
A: = A-50
Write(A)

Lock_X(B)
Unlock(A)

Read(A)
Lock_S(B)

Read(B)
B := B +50
Write(B)
Unlock(B) Unlock(A)

Read(B)
Unlock(B)
PRINT(A+B) 20

what is the problem here?

what if it aborts?

Cascade Abort

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Strict 2PL, A= 1000, B=2000, Output =?
Lock_X(A)
Read(A) Lock_S(A)
A: = A-50
Write(A)

Lock_X(B)
Read(B)
B := B +50
Write(B)
Unlock(A)
Unlock(B)

Read(A)
Lock_S(B)
Read(B)
PRINT(A+B)
Unlock(A)
Unlock(B) 21

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

All Schedules

Avoid
Cascading
Abort

Serial

View Serializable

Conflict Serializable

Venn Diagram for Schedules

22

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

All Schedules

Avoid
Cascading
Abort

Serial

View Serializable

Conflict Serializable

Q: Which schedules does Strict 2PL allow?

23

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Two phase locking: Summary
Locks implement the notions of conflict directly

2PL has:
– Growing phase where locks are acquired and no lock is released
– Shrinking phase where locks are released and no lock is acquired

Strict 2PL requires all locks to be released at once, when transaction ends

24

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Units

Concurrency Control

Serializability

Two phase locking

Lock management and deadlocks

Locking granularity

Tree locking

Phantoms and predicate locking

Readings: Chapter 17.2-17.4

25

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Lock and unlock requests handled by the Lock Manager

Lock Manager contains an entry for each currently held lock

Lock table entry:
– Pointer to list of transactions currently holding the lock
– Type of lock held (shared or exclusive)
– Pointer to queue of lock requests

Lock Management

26

A B C

S: T1, T2
req
X: T3
X: T4

X: T5

req
S: T1
S: T3

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Lock Management, continued
Basic operation: when lock request arrives see if any other
transaction holds a conflicting lock

– If not, create an entry and grant the lock
– Else, put the requestor on the wait queue

Lock upgrade: transaction that holds a shared lock can be
upgraded to hold an exclusive lock

Two-phase locking is simple enough, right?

27

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Example: Output = ?
Lock_X(A)

Lock_S(B)
Read(B)
Lock_S(A)

Read(A)
A: = A-50
Write(A)
Lock_X(B)

28

what is the problem here?

Deadlock

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Deadlocks
Deadlock: Cycle of transactions waiting for locks to be released
by each other
Two ways of dealing with deadlocks:

– Deadlock prevention
– Deadlock detection

Many systems just “punt” and use Timeouts
– What are the dangers with this approach?

29

forward progress

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Deadlock Detection
Create a waits-for graph:

– Nodes are transactions
– Edge from Ti to Tj if Ti is waiting for Tj to release a lock

Periodically check for cycles in waits-for graph

30

Ti Tj

Ti waits Tj to release a lock

Important!! This is different than dependency graph!

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Deadlock Detection (Continued)

Example:

T1: S(A), S(D), S(B)
T2: X(B) X(C)
T3: S(D), S(C), X(A)
T4: X(B)

T1 T2

T4 T3
31

waits for
waits for

waits for

waits for

deadlock!

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Deadlock Prevention
Assign priorities based on timestamps
Say Ti wants a lock that Tj holds
 Two policies are possible:

Wait-Die: If Ti has higher priority, Ti waits for Tj;
 otherwise Ti aborts
Wound-wait: If Ti has higher priority, Tj aborts;
 otherwise Ti waits

Why do these schemes guarantee no deadlocks?
Important detail: If a transaction re-starts, make sure it gets its original
timestamp. -- Why?

32

the trx that wants a (held) lock:
high priority : waits
low priority : aborts

high priority : kills the other
low priority : wait

to avoid starvation!

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Deadlocks: summary
The lock manager keeps track of the locks issued

Deadlock is a cycle of transactions waiting for locks to be
released to each other

Deadlocks may arise and can be:
– Prevented, e.g. using timestamps
– Detected, e.g. using waits-for graphs

33

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Units

Concurrency Control

Serializability

Two phase locking

Lock management and deadlocks

Locking granularity

Tree locking

Phantoms and predicate locking

Readings: Chapter 17.5.2

41

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Multiple-Granularity Locks
Hard to decide what granularity to lock (tuples vs. pages vs. tables)

Shouldn’t have to make same decision for all transactions!

Data “containers” are nested:

42
Tuples

Tables

Pages

Database

contains

what if T1 has a lock on a page,
and T2 on a tuple of this page?
how to correctly protect the data?

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Solution: New Lock Modes, Protocol
Allow transaction to lock at each level, but with a special
protocol using new “intention” locks:
Still need S and X locks, but before locking an item,
transaction must have proper intension locks on all its
ancestors in the granularity hierarchy

43

IS – Intent to get S lock(s) at finer granularity
IX – Intent to get X lock(s) at finer granularity
SIX mode: Like S & IX at the same time.

Tuples

Tables

Pages

Database

Why is it useful?

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Multiple Granularity Lock Protocol
Each transaction starts from the root of the hierarchy
To get S or IS lock on a node, must hold IS or IX on parent node

– What if transaction holds SIX on parent? S on parent?

To get X or IX or SIX on a node, must hold IX or SIX on parent node
Must release locks in bottom-up order and must follow 2PL

44
Protocol is equivalent to directly setting
locks at the leaf levels of the hierarchy.

Tuples

Tables

Pages

Database

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

IS – Intent to get S lock(s) at finer granularity
IX – Intent to get X lock(s) at finer granularity
SIX mode: S & IX at the same time

IS IX SIX

IS

IX

SIX

S X

S

X

ÖÖ Ö Ö -
Ö

Ö

Ö

-

--

-
--

Ö -
-
-
-

-
-

Lock Compatibility Matrix

Ö

45

Tuples

Tables

Pages

Database

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Examples – 2 level hierarchy

T1 scans R, and updates a few tuples:
– T1 gets an SIX lock on R, then get X lock on tuples that are updated

T2 uses an index to read only part of R:
– T2 gets an IS lock on R, and repeatedly gets an S lock on tuples of R

T3 reads all of R:
– T3 gets an S lock on R
– OR, T3 could behave like T2
– We can use lock escalation to decide
– Lock escalation dynamically asks for
 coarser-grained locks when too many
 low level locks acquired

46

Tuples

Tables

IS IX SIX

IS

IX

SIX

S X

S

X

ÖÖ Ö Ö

Ö

Ö

Ö

Ö

Ö

Table

Tuples

SIX1

X1 X1 X1

IS2

S2 S2S2

S3

has to wait!

IS3

S3 S3 S3

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Multiple granularity locking: Summary

Allows flexibility for each transaction to choose locking
granularity independently

Introduces hierarchy of objects

Introduces intention locks

47

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Units

Concurrency Control

Serializability

Two phase locking

Lock management and deadlocks

Locking granularity

Tree locking

Phantoms and predicate locking
Readings: Chapter 17.5.2

48

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

ROOT A

B

C

D E

F

G H I

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

23

49

Potential concurrency bottleneck:

Simply 2PL nodes while traversing:
– root node (and higher level nodes) become

bottlenecks because every tree access
begins at the root

How can we efficiently lock
a particular leaf node?

Don’t confuse this with
multiple granularity locking!!

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Two Useful Observations
1. In a B+Tree, higher levels of the tree only direct searches for leaf pages
2. For inserts, a node on a path from root to modified leaf must be locked

(in X mode, of course), only if a split can propagate up to it from the
modified leaf (Similar point holds w.r.t. deletes)

We can exploit these observations to design efficient locking protocols
that guarantee serializability even though they violate 2PL

50

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

A Simple Tree Locking Algorithm: “crabbing”

Search: Start at root and go down; repeatedly, S lock child then unlock
parent
Insert/Delete: Start at root and go down, obtaining X locks as needed.
Once child is locked, check if it is safe:

– If child is safe, release all locks on ancestors

Safe node: Node such that changes will not propagate up beyond this
node.
 -- When?

– Insertions: Node is not full
– Deletions: Node is not half-empty

51

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Example
ROOT A

B

C

D E

F

G H I

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

Do:
1) Search 38*
2) Delete 38*
3) Insert 45*
4) Insert 25*

23

52

shared lock

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Example
ROOT A

B

C

D E

F

G H I

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

Do:
1) Search 38*
2) Delete 38*
3) Insert 45*
4) Insert 25*

23

53

exclusive lock

safe?

safe?

safe?

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Example
ROOT A

B

C

D E

F

G H I

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

Do:
1) Search 38*
2) Delete 38*
3) Insert 45*
4) Insert 25*

23

54

exclusive lock

safe?

safe?

safe?

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Example
ROOT A

B

C

D E

F

G H I

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

Do:
1) Search 38*
2) Delete 38*
3) Insert 45*
4) Insert 25*

23

55

exclusive lock

safe?

safe?

safe?

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Example
ROOT A

B

C

D E

F

G H I

20

35

20*

38 44

22* 23* 24* 35* 36* 38* 41* 44*

Do:
1) Search 38*
2) Delete 38*
3) Insert 45*
4) Insert 25*

23

56

exclusive lock

safe?

why does this scheme violate 2PL?

releases locks and acquires new locks!

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Units

Concurrency Control

Serializability

Two phase locking

Lock management and deadlocks

Locking granularity

Tree locking

Phantoms and predicate locking
Readings: Chapter 17.5.1

57

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Dynamic Databases – The “Phantom” Problem

If we relax the assumption that the DB is a fixed collection of objects, even
Strict 2PL (on individual items) will not ensure serializability:
Consider T1 – “Find oldest sailor”

– T1 locks all records, and finds oldest sailor (say, age = 71)
– Next, T2 inserts a new sailor; age = 96 and commits
– T1 (within the same transaction) checks for the oldest sailor again and finds

sailor aged 96!
The sailor with age 96 is a “phantom tuple” from T1’s point of view:
 “first it’s not there then it is”

No serial execution of T1 and T2 could result to this!

58

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

The “Phantom” Problem – ex. 2
Consider T3 – “Find oldest sailor for each rating”

– T3 locks all pages containing sailor records with rating = 1, and finds oldest sailor
(say, age = 71)

– Next, T4 inserts a new sailor; rating = 1, age = 96
– T4 also deletes oldest sailor with rating = 2 (and, say, age = 80), and commits
– T3 now locks all pages containing sailor records with rating = 2, and finds oldest

(say, age = 63)

T3 saw only part of T4’s effects!

No serial execution where T3’s result could happen!

59

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

The Problem
T1 and T3 implicitly assumed that they had locked the set of all
sailor records satisfying a predicate

– Assumption only holds if no sailor records are added while they are
executing!

– Need some mechanism to enforce this assumption
(Index locking and predicate locking)

Examples show that conflict serializability on reads and writes of individual
items guarantees serializability only if the set of objects is fixed!

60

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Predicate Locking
Predicate locking:
Grant lock on all records that satisfy some logical predicate,
e.g., age > 2*salary

Index locking is a special case of predicate locking for which an
index supports efficient implementation of the predicate lock

– What is the predicate in the sailor example?

In general, predicate locking has a lot of locking overhead

61

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

 Index Locking

If there is a dense index on the rating field using Alternative (2), T3 should lock
the index page containing the data entries with rating = 1

– If there are no records with rating = 1, T3 must lock the index page where such a data
entry would be, if it existed!

If there is no suitable index, T3 must obtain:
1. A lock on every page in the table file

à prevent a record’s rating from being changed to 1

 AND
2. The lock for the file itself

à prevent records with rating = 1 from being added or deleted
62

r=1

Data
Index

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Transaction Support in SQL-92
SERIALIZABLE
No phantoms, all reads repeatable, no “dirty” (uncommited) reads

REPEATABLE READS
phantoms may happen

READ COMMITTED
phantoms and unrepeatable reads may happen

READ UNCOMMITTED
all of them may happen

63

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Phantom problem: Summary
If database objects can be added/removed, need to guard

against Phantom Problem

Must lock logical sets of records

Efficient solution: index locking

64

