
CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

CS660: Intro to Database Systems

Class 5: File Organization & Indexing

Instructor: Manos Athanassoulis

https://bu-disc.github.io/CS660/

https://bu-disc.github.io/CS660/

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Units

File Organization & Indexing
Page Layout (NSM, DSM, PAX)

File organization (Heap & sorted files)

Index files & indexes

Index classification

2

Readings: Chapter 8.1, 8.4, 9.6, 9.7, PAX paper

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Storage Hierarchy

3

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Storage Hierarchy:
cache, RAM, disk, tape, …

RAM is (usually) not enough

Unit of buffering in RAM:
 “Page” or “Frame”

Unit of interaction with disk:
 “Page” or “Block”

“Locality” and sequential accesses à good disk performance
Buffer pool management

Slots in RAM to hold Pages
Policy to move Pages between RAM & disk

Memory, Disks

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Today: File Storage
Transfer unit of a page is OK when doing I/O, but higher levels of

DBMS operate on records and files of records

Next topics
organize records within pages
keep pages of records on disk

support operations on files of records efficiently

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Record Formats: Fixed Length

information about field types same for all
records in a file; stored in system catalogs

finding ith field done via arithmetic

Base address (B)

L1 L2 L3 L4

F1 F2 F3 F4

Address = B+L1+L2

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Page Formats: Fixed Length Records

record id = <page id, slot #>
packed: moving records for free space
management changes rid; may not be acceptable.

Slot 1
Slot 2

Slot N

.

N M10. . .

M ... 3 2 1
PACKED UNPACKED, BITMAP

Slot 1
Slot 2

Slot N

Free
Space

Slot M

11

number
of records

number
of slots

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Two alternative formats (# fields is fixed):

Offset approach: generally considered superior
direct access to ith field and efficient storage of nulls

$ $ $ $

Fields Delimited by Special Symbols

F1 F2 F3 F4

F1 F2 F3 F4

Array of Field Offsets

Variable Length is more complicated

* * * * *

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

(1) record id = <page id, slot #>
(2) can move records on page without changing rid; so,

attractive for fixed-length records too
(3) page is full when data space and slot array meet

Page iRid = (i,1) Rid = (i,2)

Rid = (i,N)

Pointer to start
of free space

SLOT DIRECTORY

N . . . 2 1
68 16 0 N

slotsSlot Array

Data
“Slotted Page” for Variable Length Records

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

(1) record id = <page id, slot #>
(2) can move records on page without changing rid; so,

attractive for fixed-length records too
(3) page is full when data space and slot array meet

Page iRid = (i,1) Rid = (i,2)

Rid = (i,N)

Pointer to start
of free space

SLOT DIRECTORY

N . . . 2 1
68 16 0 N+1

slots

Inserting a
new record

“Slotted Page” for Variable Length Records

78

N+1

Rid = (i,N+1)

N

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Decomposition Storage Model (DSM)

12

Decompose a relational table to sub-tables per attribute
 Why (and when) is this beneficial?
ü Saves IO by bringing only the relevant attributes

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Partition Attributes Across (PAX)

13

Middle ground?
Decompose a slotted-page internally
in mini-pages per attribute
ü Cache-friendly
ü Compatible with slotted-pages
ü Brings only relevant attributes to

cache
ü Same update abstraction (insert in

a page)

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Units

File Organization & Indexing
Page Layout (NSM, DSM, PAX)

File organization (Heap & sorted files)

Index files & indexes

Index classification

14

Readings: Chapter 8.4 & 9.5

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Files

FILE:
A collection of pages, each containing a collection of records.

Must support:
insert/delete/modify record
read a particular record (specified using record id)
scan all records (possibly with some conditions on the records to be retrieved)

with traditional slotted pages

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Alternative File Organizations

Many alternatives exist, each good for some situations, and not
so good in others:
– Heap files: Suitable when typical access is a file scan retrieving all

records.
– Sorted Files: Best for retrieval in some order, or for retrieving a

“range” of records.
– Index File Organizations: (will cover shortly..)

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Heap (Unordered) Files

Simplest file structure
contains records in no particular order

As file grows and shrinks, disk pages are allocated / de-allocated

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Heap File Implemented Using Lists

the header page id and Heap file name must be stored someplace
each page contains 2 “pointers” plus data

Header
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Pages with
Free Space

Full Pages

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Heap File Using a Page Directory

The entry for a page can include the number of free bytes on the page.
The directory is a collection of pages; linked list implementation is just
one alternative.

Much smaller than linked list of all HF pages!

Data
Page 1

Data
Page 2

Data
Page N

Header
Page

DIRECTORY

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Heap files vs. Sorted files
Quick+dirty cost model: # of disk I/O’s

For simplicity, ignore:
CPU costs
Gains from pre-fetching and sequential access

Average-case analysis; based on several simplistic assumptions.

Good enough to show the overall trends!

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Some Assumptions in the Analysis
Single record insert and delete.
Equality search - exactly one match (e.g., search on key)

Question: what if more or fewer???

Heap Files:
Insert always appends to end of file.

Sorted Files:
Files compacted after deletions.
Search done on file-ordering attribute.

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Cost of Operations (in #of I/Os)
B: Number of data pages

Heap File Sorted File notes…

Scan all
records
Equality
Search
Range
Search
Insert

Delete

Heap File Sorted File notes…

Scan all
records

B B

Equality
Search
Range
Search
Insert

Delete

Heap File Sorted File notes…

Scan all
records

B B

Equality
Search

0.5B log2 B assumes exactly one
match!

Range
Search
Insert

Delete

Heap File Sorted File notes…

Scan all
records

B B

Equality
Search

0.5B log2 B assumes exactly one
match!

Range
Search

B (log2 B) + (#match
pages)

Insert

Delete

Heap File Sorted File notes…

Scan all
records

B B

Equality
Search

0.5B log2 B assumes exactly one
match!

Range
Search

B (log2 B) + (#match
pages)

Insert 2 (log2B) + 2*(B/2) must R & W

Delete

Heap File Sorted File notes…

Scan all
records

B B

Equality
Search

0.5B log2 B assumes exactly one
match!

Range
Search

B (log2 B) + (#match
pages)

Insert 2 (log2B) + 2*(B/2) must R & W

Delete 0.5B + 1 (log2B) + 2*(B/2) must R & W

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

System Catalogs
For each relation:

name, file name, file structure (e.g., Heap file)
attribute name and type, for each attribute
index name, for each index
integrity constraints

For each index:
structure (e.g., B+ tree) and search key fields

For each view:
view name and definition

Plus stats, authorization, buffer pool size, etc.

Catalogs are themselves stored as relations!

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Attr_Cat(attr_name, rel_name, type, position)

Candidate keys?

à Try querying the PostgreSQL/MySQL catalogues (in SQL!)

attr_name rel_name type position
attr_name Attr_Cat string 1
rel_name Attr_Cat string 2
type Attr_Cat string 3
position Attr_Cat integer 4
sid Students string 1
name Students string 2
login Students string 3
age Students integer 4
gpa Students real 5
fid Faculty string 1
fname Faculty string 2
sal Faculty real 3

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Units

File Organization & Indexing
Page Layout (NSM, DSM, PAX)

File organization (Heap & sorted files)

Index files & indexes

Index classification

25

Readings: Chapter 8.2, 8.3.2

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Indexes

retrieve records searching in one or more fields:
Find all students in the “CS” department
Find all students with a gpa > 3

an index on a file speeds up selections on the search key fields for the index
any subset of the fields of a relation can be the search key for an index
search key is not the same as key (does not have to be unique).

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Directory

2.5 3 3.5

1.2* 1.7* 1.8* 1.9* 2.2* 2.4* 2.7* 2.7* 2.9* 3.2* 3.3* 3.3* 3.6* 3.8* 3.9* 4.0*

2

Data Records

An index contains a collection of data entries, and supports efficient
retrieval of records matching a given search condition

Data entries:

(Index File)

(Data file)

Example: Simple Index on GPA

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Index Search Conditions
Search condition = <search key, comparison operator>

Examples…
 (1) Condition: Department = “CS”

– Search key: “CS”
– Comparison operator: equality (=)

 (2) Condition: GPA > 3
– Search key: 3
– Comparison operator: greater-than (>)

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Units

File Organization & Indexing
Page Layout (NSM, DSM, PAX)

File organization (Heap & sorted files)

Index files & indexes

Index classification

29

Readings: Chapter 8.3, 8.5

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Index Classification
Representation of data entries in index

i.e., what is at the bottom of the index? (3 alternatives)

Index Types
i. Clustered vs. Unclustered
ii. Primary vs. Secondary
iii. Dense vs. Sparse
iv. Single Key vs. Composite

Indexing technique
Tree-based, hash-based, other

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Alternatives for Data Entry k* in Index
1. Actual data record (with key value k)
2. <k, rid of matching data record>
3. <k, list of rids of matching data records>

Choice is orthogonal to the indexing technique.
– Examples of indexing techniques: B+ trees, hash indexes, R trees, …
– Typically, index contains auxiliary info that directs searches to the

desired data entries
Can have multiple (different) indexes per file.

– E.g. file sorted on age, with a hash index on name and a B+tree
index on salary.

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Alternatives for Data Entries (Contd.)
Alternative 1:
 Actual data record (with key value k)

– The index structure is a file organization for data records
(like Heap Files or Sorted Files).

– At most one index per relation can use Alternative 1.
– It saves pointer lookups but can be expensive to maintain with

insertions and deletions.

k record:
<att1, att2, …>

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Alternatives for Data Entries (Contd.)
Alternative 2

 <k, rid of matching data record>
and Alternative 3

 <k, list of rids of matching data records>

– Easier to maintain than Alternative 1.
– At most one index can use Alternative 1; rest must use Alternatives 2 or 3.
– Alternative 3 more compact than Alternative 2

• but leads to variable sized data entries even if search keys are of fixed length.

– Even worse, for large rid lists the data entry would have to span multiple pages!

k record_id:
<rid>

k record_ids:
<rid1, rid2, …>

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Directory

2.5 3 3.5

1.2* 1.7* 1.8* 1.9* 2.2* 2.4* 2.7* 2.7* 2.9* 3.2* 3.3* 3.3* 3.6* 3.8* 3.9* 4.0*

2

Data entries:

Alternatives for Data Entries

k record:
<att1, att2, …>

Alternative 1:

Data Records

(Index File)

(Data file)

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Directory

2.5 3 3.5

1.2* 1.7* 1.8* 1.9* 2.2* 2.4* 2.7* 2.7* 2.9* 3.2* 3.3* 3.3* 3.6* 3.8* 3.9* 4.0*

2

Data entries:

Alternatives for Data Entries

k record_id:
<rid>

Alternative 2:
Data Records

(Index File)

(Data file)

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Directory

2.5 3 3.5

1.2* 1.7* 1.8* 1.9* 2.2* 2.4* 2.7* 2.7* 2.9* 3.2* 3.3* 3.3* 3.6* 3.8* 3.9* 4.0*

2

Data entries:

Alternatives for Data Entries

Data Records

(Index File)

(Data file)

k record_ids:
<rid1, rid2, …>

Alternative 3:

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Directory

2.5 3 3.5

1.2* 1.7* 1.8* 1.9* 2.2* 2.4* 2.7* 2.9* 3.2* 3.3* 3.6* 3.8* 3.9* 4.0*

2

Data entries:

Alternatives for Data Entries

Data Records

(Index File)

(Data file)

k record_ids:
<rid1, rid2, …>

Alternative 3:

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Where were we? Index Classification
Representation of data entries in index

i.e., what is at the bottom of the index? (3 alternatives)

i. Clustered vs. Unclustered
ii. Primary vs. Secondary
iii. Dense vs. Sparse
iv. Single Key vs. Composite

Indexing technique
Tree-based, hash-based, other

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Index Classification - clustering
Clustered vs. unclustered: If order of data records is the same as,
or “close to”, order of index data entries, then called clustered
index.

Index entries

Data entries

direct search for

(Index File)

(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Index Classification - clustering
A file can have a clustered index on at most one key.

Cost of retrieving data records through index varies
greatly based on whether index is clustered!

Note: Alternative 1 implies clustered, but not vice-versa.

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Index Classification - clustering
Suppose that Alternative (2) is used for data entries, and that the
data records are stored in a Heap file.

To build clustered index, first sort the Heap file (with some free space on each page for
future inserts).
Overflow pages may be needed for inserts. (Thus, order of data recs is “close to”, but not
identical to, the sort order.)

Data entries
(Index File)

(Data file)

Data Records

Data entries

Data Records

CLUSTERED UNCLUSTEREDIndex entries
direct search for
data entries

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Index Classification - clustering
Cost of retrieving records found in range scan:

Clustered: cost = # pages in file w/matching records
Unclustered: cost ≈ # of matching index data entries

What are the tradeoffs????

Data entries
(Index File)

(Data file)

Data Records

Data entries

Data Records

CLUSTERED UNCLUSTEREDIndex entries
direct search for
data entries

Clustered Pros:

Clustered Cons:

ü Efficient range searches
ü Compression

x expensive to maintain
on-the-fly
sloppy with re-org

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Primary vs. Secondary Index
Primary: index key includes the file’s primary key
Secondary: any other index

Sometimes confused with Alt. 1 vs. Alt. 2/3
Primary index never contains duplicates
Secondary index may contain duplicates

If index key contains a candidate key, no duplicates => unique
index

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Dense: at least one data entry per key value
Sparse: an entry per data page in file

Every sparse index is clustered!
Sparse indexes are smaller;
 however, some useful
 optimizations are based
 on dense indexes.
Alternative 1 always leads to dense index.

Dense vs. Sparse Index

Ashby, 25, 3000

Smith, 44, 3000

Ashby

Cass

Smith

22

25

30

40

44

44

50

Sparse Index
on

Name Data File
Dense Index

on
Age

33

Bristow, 30, 2007

Basu, 33, 4003

Cass, 50, 5004

Tracy, 44, 5004

Daniels, 22, 6003

Jones, 40, 6003

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Composite Search Keys
Search on combination of fields.

Equality query: Every field is
equal to a constant value. E.g. wrt
<sal,age> index:

age=12 and sal =75

Range query: Some field value is
not a constant, e.g.:

age=12; or age=12 and sal > 20; or age>15

Data entries in index sorted by
search key for range queries

“Lexicographic” order

sue 13 75

bob

12

10

20
8011

12

name age sal

cal
joe

<age, sal>

12,20
12,10
11,80

13,75

<sal, age>

20,12
10,12

75,13
80,11

<age>

11
12
12
13

<sal>

10
20
75
80

Data records
sorted by name

Examples of composite key
indexes using lexicographic order.

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Tree vs. Hash-based index
Hash-based index: Good for equality selections.

File = a collection of buckets. Bucket = primary page plus 0 or more overflow pages
Hash function h: h(r.search_key) = bucket in which record r belongs

Tree-based index: Good for range selections.
Hierarchical structure (Tree) directs searches
Leaves contain data entries sorted by search key value
B+ tree: all root->leaf paths have equal length (height)

Will discu
ss in Cl

asses 7
& 8!

More inde
xes in C

lasses 10
 & 11!

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Summary
variable length record format

with field offset directory supports direct access to ith field and null values

slotted page
supports variable length records and allows records to move on page

file layer
(i) keeps track of pages in a file (ii) supports abstraction of a collection of records

(iii) tracks availability of free space

catalog relations
store metadata about relations, indexes, views (common to all records in a given collection)

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Summary (Cont.)
various file organizations

sorting or building an index is important if selection queries are frequent

index is a collection of data entries plus a way to quickly find entries with
given key values.

(i) hash-based good for equality search
(ii) sorted files and tree-based indexes best for

range search; also good for equality search

(files not kept sorted in practice; B+ tree more common)

CAS CS 660 [Fall 2023] - https://bu-disc.github.io/CS660/ - Manos Athanassoulis

Summary (Cont.)
data entries in index can be: (i) actual data records, (ii) <key, rid> pairs, or

(iii) <key, rid-list> pairs.
[orthogonal to indexing structure (i.e. tree, hash, etc.)]

usually have several indexes on a given file of data records, each with a
different search key

index classification
(i) clustered vs. unclustered, (ii) primary vs. secondary,
(iii) sparse vs. dense, (iv) single key vs. composite key

affect utility & performance

