

CAS CS 660: Grad. Intro to Database Systems
Data-intensive Systems and Computing Lab
Department of Computer Science
College of Arts and Sciences, Boston University
http://bu-disc.github.io/CS660/

CS660 Fall 2023 – Written Assignment 2

Title: Disks, Indexing (Tree, Hash, LSM), Ex. Sorting

Due: 10/14 11:59 PM on Gradescope

Problem 1 [25 pts]

Consider a hard disk drive that has 5 double-sided platters, each surface has 1000 tracks, each track has
256 sectors of size 512 bytes. Each block (disk page) comprises of 8 sectors. The seek time between
adjacent tracks in 1ms and the average seek time between two random tracks is 25ms. The disk rotates
at a speed of 7200 rpm (revolutions per minute).

Let’s say, we have a file of size 1 MB and it contains 2048 equal-sized records.

1. What is the size of a block? How many records fit in a block? How many blocks are required to store the
entire file?

2. What is the capacity of each cylinder?

3. What is maximum time (worst case) to read two blocks from the disk (the blocks to be read are part of
the same read request and no external factors affect the read latency)?

4. If the file is stored “sequentially”, how long will it take to read the whole file? Assume that for sequential
writes data are written in adjacent tracks once a track is full.

5. If the blocks in the file are spread “randomly” across the disk, how long will it take to read the whole
file?

Problem 2 [25 pts]

1. Based on the given B+ tree, Identify a list of five data entries such that:

http://bu-disc.github.io/CS660/

CAS CS 660: Grad. Intro to Database Systems
Data-intensive Systems and Computing Lab
Department of Computer Science
College of Arts and Sciences, Boston University
http://bu-disc.github.io/CS660/

(a) Inserting the entries in the order shown and then deleting them in the opposite order (e.g., insert a,
insert b, insert c, delete c, delete b, delete a) results in the original tree.

(b) Inserting the entries in the order shown and then deleting them in the opposite order (e.g., insert a,
insert b, insert c, delete c, delete b, delete a) results in a different tree.

2. What is the minimum number of insertions of data entries with distinct keys that will cause the height
of the (original) tree to change from its current value (of 1) to 3?

3. Would the minimum number of insertions that will cause the original tree to increase to height 3
change if you were allowed to insert duplicates (multiple data entries with the same key), assuming that
overflow pages are not used for handling duplicates?

Problem 3 [25 pts]

Suppose that we are using extendible hashing on a file that contains records with
the following search-key values:

(449, 654, 135, 331, 615, 831, 1016, 176, 285, 468, 340, 124, 136, 668, 818, 117)

1. Load these values into a file in the given order using extendible hashing. Assume that every bucket

(block) of the index can store up to four (4) data entries.

Show the structure of the hash index after every 8 insertions, and the global and local depths.
Use the hash function: h(K) = K mod 64 and then apply the extendible hashing technique.
Using this function, every number is mapped first to a number between 0 and 63 and then we
take its binary representation. The extendible hashing technique is then applied to the binary
representation. Furthermore, initially, you start with a single bucket and a single pointer; the
global and local depths are zero (0).

2. State one advantage and one disadvantage of Linear Hashing versus the Extendible Hashing.

Problem 4 [25 pts]

Suppose we want to store 272 entries and that a disk page fits 28 entries.

1. How many I/Os would a point query require? (Hint: assume a sorted file on disk)

2. Suppose we want to speed up our queries and we decide to build a B+ tree index. Compare the cost

answering a point query with both approaches only considering the lookup cost, without calculating

the cost to build the B+ tree.

3. Now assume that we use an LSM-tree to store all our entries. What is the cost of a point lookup if we

employ an LSM-tree with size ratio 8 and merging policy tiering?

4. How does that cost change if we change the merging policy to leveling?

http://bu-disc.github.io/CS660/

