
Adaptive Adaptive
Indexing

Paper Review by Manuja DeSilva & Michael Hendrick

Table of Contents
● Meet the Authors
● The Problem
● Existing Work
● Radix Partitioning
● TLBs and Software Managed Buffers
● Handling Skew
● Meta-Adaptive Algorithm
● Experiments and Conclusion

Meet The Authors

Felix Martin Schunknecht

Saarland University PostDoc

Jens Dittrich

Saarland University Prof.

Laurent Linden

Saarland University RA

The Problem

How do we quickly and efficiently
answer range queries on a database,
without performing manual tuning ?

The Problem

How do we quickly and efficiently
answer range queries on a database,
without performing manual tuning ?

Adaptively build indexes !

Why Even Index

Existing work

There already exists many types of
adaptive indexes. Why do we need

another one ?

Existing work

There already exists many types of
adaptive indexes. Why do we need

another one ?

Each of the other indexes only solves a very specific problem.

Standard Cracking (Database Cracking)

$Cheap → performs the least amount
of reorganization (crack in 2)

Poor performance -> Although it does
well with random workloads, it
performs the same as a Scan with
sequential workloads

DC Performance (random vs sequential workloads) [1]

 What is a sequential workload ?

13

16

4

9

12

7

1

19

N = 8

select A
from R
where A < 4

1

16

4

9

12

7

13

19

C = # of comparisons required to answer
query

1

4

16

9

12

7

13

19

select A
from R
where A < 7

1

4

9

7

16

12

13

19

select A
from R
where A < 10

N N -1 N - 2

Stochastic Cracking

Picks up where standard cracking
left off - e.g DC only partitions
based on the query itself, which
leaves a large part of the index
still unsorted

Solution: Introduce random
cracks in addition to the query
crack

Visual representation of Stochastic Cracking Algorithms

Hybrid Cracking

Database cracking has a slow
convergence speed

Adaptive merging has a large
memory footprint

Solution: Split the inputs into
partitions (DC), merge the final
column

[2]

The solution to all other solutions:

Adaptive adaptive indexing

Partitioning

Classical approaches revolve around
comparison based methods for

calculating partitions.

What’s the problem with this ?

Partitioning

Classical approaches revolve around
comparison based methods for

calculating partitions.

What’s the problem with this ?

The partitions are solely dependent on the inputted queries
and the raw data itself, which doesn’t follow any schema

The Solution:
Radix Partitioning

What is Radix Partitioning?

Number Binary

1 0001

2 0010

7 0111

5 0101

3 0011

4 0100

Number Binary

1 00 | 01

2 00 | 10

7 01 | 11

5 01 | 01

3 00 | 11

4 01 | 00

Partition Elements

Partition 1 (00) 1,2,3

Partition 2 (01) 7,5,4

Out of Place Radix Partitioning
Inputs: The source column and the number (k) of requested partitions

k is calculated as k = 2^f (more on this in a bit)

Phase 1: Create a Histogram

Phase 2: Copy Entries

Let’s look at an example!

Out of Place Radix Partitioning

4

2

7

1

6

3

Input:
k = 2

1 | 00

0 | 10

1 | 11

0 | 01

1 | 10

0 | 11

b = 1

2

1

3

4

7

6

Output

0

1

Values are copied!

What is TLB?
Translation Lookaside Buffer

TLB stores a mapping of virtual mem to physical mem for quick lookups

Random copying leads to TLB misses with more than 32 partitions

If there’s a TLB hit, great! But how to handle misses?

Software-Managed Buffers

Non-temporal streaming stores and SIMD

add r0 r1 r2

add |r3| |r6] |r9|
 |r4| |r7] |r10|
 |r5| |r8] |r11|

Evaluation of Out of Place Radix Partitioning

In Place Radix Partitioning: Subsequent Queries

Contrary to Out of Place, all subsequent queries must reorganize in-place

Standard cracking reorganizes data using [low,high] inputs given by the query

Phase 1: Create a histogram that tells us the amount of values in each
partition

Phase 2: Perform a search and replace through the index column.

In-Place Example

2

1

3

15

7

6

0

1

Input:
k = 4 b = 2

00 | 10

00 | 01

00 | 11

11 | 11

01 | 11

01 | 10

2

1

3

15

7

6

00

01

11

In-Place Example

2

1

3

15

7

6

00 | 10

00 | 01

00 | 11

11 | 10

01 | 11

01 | 10

2

1

3

15

7

6

00

01

Is 2 in the right
place? Yes!

Is 1 in the right
place? Yes!

2

1

3

6

7

15

00

01

11

Is 3 in the right
place? Yes! 00 is
done!
Is 15 in the right
place? No! Swap
within 11.

Is 6 in the right
place? Yes!

Is 7 in the right
place? Yes, 01 is
done!

11

Is 15 in the right
place? Yes, 11 is
done!

Evaluation of In Place Radix Partitioning

The meta-adaptive indexing algorithm

2

The meta-adaptive indexing algorithm in-action

Handling Skew
● Radix partitioning might not handle skewed distributions well (Why?)
● Solution: Equi-depth histograms and out of place radix partitioning.
● Not quite perfect for radix partitioning (Why?).

Handling Skew

What is the effect of differing key distributions ?

Different key distributions affect the skew.

What is the effect of differing key distributions ?

Query workload

Experimental Evaluation

Two Tests

How well can the
meta-adaptive index

emulate other indexes ?

How do the response times
of the meta-adaptive index
compare to other indexes ?

32KB of L1 cache

256KB of L2 cache

10MB of shared L3 cache

2MB Page Size

24GB of DDR3 RAM

How much memory are we working with ?

32KB of L1 cache

256KB of L2 cache

10MB of shared L3 cache

2MB Page Size

24GB of DDR3 RAM

How much memory are we working with ?

Why are these numbers important ?

32KB of L1 cache

256KB of L2 cache

10MB of shared L3 cache

2MB Page Size

24GB of DDR3 RAM

How much memory are we working with ?

These could potentially be the values of tadapt and tsort

Our dataset

About 1.5GB of data, around 100 million entries consisting of 8B keys

Emulation of adaptive indexes and traditional methods
M

et
a-

ad
ap

tiv
e

 in
de

x
O

rig
in

al

in
de

x

Simulated Annealing

Cumulative Indexing

*Normal distribution

Final Thoughts

● Tackles more than one problem
● Minimal overhead compared to previous work, with better results
● Consistently performs well under varying workloads, in comparison to varying

results of other indexes.
● Takes advantage of unique optimizations, such as Simulated Annealing,

Software-Managed Buffers, and Non-Temporal Streaming Stores

References

1. F. Halim, S. Idreos, P. Karras, and R. H. C. Yap, “Stochastic database
cracking: Towards robust adaptive indexing in main-memory column- stores,”
PVLDB, vol. 5, no. 6, pp. 502–513, 2012.

2. S. Idreos, S. Manegold, H. Kuno, and G. Graefe, “Merging what’s cracked,
cracking what’s merged: Adaptive indexing in main-memory column-stores,”
PVLDB, vol. 4, no. 9, pp. 585–597, 2011

