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The Problem

How do we quickly and efficiently
answer range queries on a database,
without performing manual tuning ?



The Problem

How do we quickly and efficiently
answer range queries on a database,
without performing manual tuning ?



Why Even Index

Index Index Index Index
Column Column Column Column

R E—

Qu=[13,42)

Fig. 1: Concept of database cracking reorganizing for multiple
queries and converging towards a sorted state.



Existing work

There already exists many types of
adaptive indexes. Why do we need
another one ?



Existing work

There already exists many types of
adaptive indexes. Why do we need
another one ?



Standard Cracking (Database Cracking)
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(a) Standard Cracking (DC)
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$Cheap — performs the least amount
of reorganization (crack in 2)

Poor performance -> Although it does
well with random workloads, it
performs the same as a Scan with
sequential workloads



Response time (secs)
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What is a sequential workload ?

13 select A
from R
16 where A < 4
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C = # of comparisons required to answer
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Stochastic Cracking

A Index Column (A)
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(b) Stochastic Cracking (DD1R)

Picks up where standard cracking
left off - e.g DC only partitions
based on the query itself, which
leaves a large part of the index
still unsorted

Introduce random
cracks in addition to the query
crack



Initial array contains values in [0-k], Query asks for range [low-high]
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Visual representation of Stochastic Cracking Algorithms



Hybrid Cracking

T =k Database cracking has a slow
o e | convergence speed

Adaptive merging has a large
: i memory footprint

Split the inputs into
partitions (DC), merge the final
)} (¢) Hybrid Cracking (HCS), For COIumn

HSS, the inputs are sorted.




hbnecoyulzqutgjwvdokimreapxafsi
1 data lvaded directly, without sorting
hbnecoyulzqutgjwvdokimreapxafsi

l where ... between ‘d” and ‘1’
hcaa| hegdiefi||noyulzqutjwvokmrpxs

(1) (2) 1 (3)
where ... between 'f” and ‘m’

bcaa|ede hglflHl]km"noyuzqutwvorpxsl

() (2a) @b) (3a) (3b)
Figure 2: Database cracking.

hbnecoyulzqutgjwvdokimreapxafsi
l data loaded into initial partitions; sorted in-memory

beehnouy ||gjlgtuwz | deikmory| aafipsx
l #1 #2 #3 #4

where ... between 'd’ and ‘1 7
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final partition  #1 #2 #3 itd

where ... beoween ‘f7 and “m’

deefghll]k]m |bcn0uy|qtuw7|org“aapsx
final partition #1 #2 #3 4

Figure 3: Adaptive merging.
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How many queries before the index fully supports
a random query?



The solution to all other solutions:

Adaptive adaptive indexing



Partitioning

Classical approaches revolve around
comparison based methods for
calculating partitions.

What’s the problem with this ?



Partitioning

Classical approaches revolve around
comparison based methods for
calculating partitions.

What’s the problem with this ?

The partitions are solely dependent on the inputted queries
and the raw data itself, which doesn’t follow any schema



The Solution:
Radix Partitioning



What is Radix Partitioning?

Number Binary Number Binary

1 0001 1 00| O1

2 0010 2 00|10 Partition Elements
7 0111 7 01| 11 Partition 1 (00) | 1,2,3

5 0101 5 01|01 Partition 2 (01) | 7,5,4

3 0011 3 00 | 11

4 0100 4 01|00



Out of Place Radix Partitioning

Inputs: The source column and the number (k) of requested partitions
k is calculated as k = 2*f (more on this in a bit)

Phase 1: Create a Histogram

Phase 2: Copy Entries

Let’s look at an example!



Out of Place Radix Partitioning

k=2 b=1 Values are copied!
4 " 1]00
2 0]10 oot
7 111
1 001
6 1|10
3 0|11




What is TLB?

Translation Lookaside Buffer

TLB stores a mapping of virtual mem to physical mem for quick lookups

Random copying leads to TLB misses with more than 32 partitions

If there’s a TLB hit, great! But how to handle misses?



Software-Managed Buffers

Input Cache & Cutput
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Non-temporal streaming stores and SIMD
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Evaluation of Out of Place Radix Partitioning
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In Place Radix Partitioning: Subsequent Queries

Contrary to Out of Place, all subsequent queries must reorganize in-place

Standard cracking reorganizes data using [low,high] inputs given by the query

Phase 1: Create a histogram that tells us the amount of values in each
partition

Phase 2: Perform a search and replace through the index column.



In-Place Example

Input: -

k=4 b=2

2 00]10 2

: | NIRRT #Y

1 g 00|01 1

3 / 00 | 11 " 3
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In-Place Example

2 00| 10 2
1 00 | 01 1 00
3 00 | 11 3 /
15 1110 15 01
7 01| 11 7 /11
6 01110 6 /

2
1 00
3 /
6 01
7 /11
15 /

Is 2 in the right
place? Yes!

Is 1 in the right
place? Yes!

Is 3 in the right
place? Yes! 00 is
done!

Is 15 in the right
place? No! Swap
within 11.

Is 6 in the right
place? Yes!

Is 7 in the right
place? Yes, 01 is
done!

Is 15 in the right
place? Yes, 11 is
done!



Evaluation of In Place Radix Partitioning
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The meta-adaptive indexing algorithm

Parameter Meaning

Brirat Number of fan-out bits in the very first query.
tadapt Threshold below which fan-out adaption starts,

| PRY Minimal number of fan-out bits during adaption,
| T Maximal number of fan-out bits during adaption.
tuort Threshold below which sorting is triggered.
buort Number of tan-out bits required for sorung.
skewtol Threshold tor tolerance of skew.

bfirst ifg=20

bmin + |—(bm,a:1: = bmin) 2 (1 = Tdsa;)-l else if s > tsort

bsort else.

f(s,9q)




The meta-adaptive indexing algorithm in-action
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Fig. 5: The partitioning fan-out bits returned by f(s,q) for
partition sizes s from OMB to 8OMB and q > 0 with t,4qpt =
64MB,; byyive = 2.:0muw: = 10; togri = 2NB; and b,.ri =64.



Handling Skew

e Radix partitioning might not handle skewed distributions well (Why?)
e Solution: Equi-depth histograms and out of place radix partitioning.
e Not quite perfect for radix partitioning (Why?).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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What is the effect of differing key distributions ?

UNIFORM [0,2%4) NORMAL (u«2% g.25%) ZIPF [0,2%), <06
= 2
: l LN Q
B
o
@
2 _

Key range

Fig. 8: Different key distributions used in the experiments.



What is the effect of differing key distributions ?

UNIFORM [0,2%4) NORMAL (u«2 g.25%) ZIPF [0,2%%), a=0.6
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Fig. 8: Different key distributions used in the experiments.

Different key distributions affect the skew.



Query workload

PERIODIC SEQUENTIAL ZOOMOUTALT ZOOMINALT

RANDOM SKEW

Key Range

Query Sequence

Fig. 9: Different query workloads. Blue dots represent the
high keys whereas red dots represent the low keys.



Experimental Evaluation

Two Tests
How well can the How do the response times
meta-adaptive index of the meta-adaptive index

emulate other indexes ? compare to other indexes ?



How much memory are we working with ?

32KB of L1 cache

256KB of L2 cache
10MB of shared L3 cache

2MB Page Size
24GB of DDR3 RAM



How much memory are we working with ?

32KB of L1 cache

256KB of L2 cache

10MB of shared L3 cache

2MB Page Size
24GB of DDR3 RAM

Why are these numbers important ?



How much memory are we working with ?

32KB of L1 cache

256KB of L2 cache

10MB of shared L3 cache

2MB Page Size
24GB of DDR3 RAM

These could potentially be the values of t_ dapt andt__ .



Our dataset

About 1.5GB of data, around 100 million entries consisting of 8B keys



Emulation of adaptive indexes and traditional methods

Quick Sort Coarse-granular
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Single Query Response Time [ms]

DCe® DD1Re® HCS »« Sort + Binary Search
— Meta-adaptive Index (Manually configured)
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DCe® DD1R® HCS « Sort + Binary Search #
Meta-adaptive Index (Manually configured)
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Sort + Binary Search

DC e+ DD1Re® HCS

Meta-adaptive Index (Manually configured)
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Simulated Annealing

Parameter Uniform Normal Zipf
bsirst 12 bits 10 bits 5 bits
Deviini 2 bits 1 bit 3 bits

o A 5 bits 5 bits 5 bits
tadapt 218MB 102MB 211MB
354KB 32KB 32KB
skewtol 4x 5X 5X




DC == DD1R mm HCS

Cumulative Indexing Meta-adaptjve Index (N!anually conﬁgur.ed) -
Meta-adaptive Index (Simulated annealing configured)
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Final Thoughts

e Tackles more than one problem

e Minimal overhead compared to previous work, with better results

e Consistently performs well under varying workloads, in comparison to varying
results of other indexes.

e Takes advantage of unique optimizations, such as Simulated Annealing,
Software-Managed Buffers, and Non-Temporal Streaming Stores
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