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The Problem

How do we quickly and efficiently 
answer range queries on a database, 
without performing manual tuning ? 



The Problem

How do we quickly and efficiently 
answer range queries on a database, 
without performing manual tuning ? 

Adaptively build indexes !



Why Even Index



Existing work

There already exists many types of 
adaptive indexes. Why do we need 

another one ? 



Existing work

There already exists many types of 
adaptive indexes. Why do we need 

another one ? 

Each of the other indexes only solves a very specific problem. 



Standard Cracking (Database Cracking)

$Cheap → performs the least amount 
of reorganization (crack in 2)

Poor performance -> Although it does 
well with random workloads, it 
performs the same as a Scan with 
sequential workloads



DC Performance (random vs sequential workloads) [1]



 What is a sequential workload ? 
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Stochastic Cracking

Picks up where standard cracking 
left off - e.g DC only partitions 
based on the query itself, which 
leaves a large part of the index 
still unsorted

Solution: Introduce random 
cracks in addition to the query 
crack



Visual representation of Stochastic Cracking Algorithms 



Hybrid Cracking

Database cracking has a slow 
convergence speed

Adaptive merging has a large 
memory footprint

Solution: Split the inputs into 
partitions (DC), merge the final 
column 



[2]





The solution to all other solutions:

Adaptive adaptive indexing 



Partitioning

Classical approaches revolve around 
comparison based methods for 

calculating partitions.

What’s the problem with this ?



Partitioning

Classical approaches revolve around 
comparison based methods for 

calculating partitions.

What’s the problem with this ?

The partitions are solely dependent on the inputted queries 
and the raw data itself, which doesn’t follow any schema



The Solution: 
Radix Partitioning



What is Radix Partitioning?

Number Binary

1 0001

2 0010

7 0111

5 0101

3 0011

4 0100

Number Binary

1 00 | 01

2 00 | 10

7 01 | 11

5 01 | 01

3 00 | 11

4 01 | 00

Partition Elements

Partition 1 (00) 1,2,3

Partition 2 (01) 7,5,4



Out of Place Radix Partitioning
Inputs: The source column and the number (k) of requested partitions 

k is calculated as k = 2^f (more on this in a bit)

Phase 1: Create a Histogram

Phase 2: Copy Entries

Let’s look at an example!



Out of Place Radix Partitioning

4

2

7

1

6

3

Input:
k = 2

1 | 00

0 | 10

1 | 11

0 | 01

1 | 10

0 | 11

b = 1

2

1

3

4

7

6

Output

0

1

Values are copied!



What is TLB?
Translation Lookaside Buffer

TLB stores a mapping of virtual mem to physical mem for quick lookups

Random copying leads to TLB misses with more than 32 partitions

If there’s a TLB hit, great! But how to handle misses?



Software-Managed Buffers



Non-temporal streaming stores and SIMD

add r0 r1 r2

add |r3| |r6] |r9|
       |r4| |r7] |r10|
       |r5| |r8] |r11|



Evaluation of Out of Place Radix Partitioning



In Place Radix Partitioning: Subsequent Queries

Contrary to Out of Place, all subsequent queries must reorganize in-place 

Standard cracking reorganizes data using [low,high] inputs given by the query

Phase 1: Create a histogram that tells us the amount of values in each 
partition

Phase 2: Perform a search and replace through the index column. 



In-Place Example
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In-Place Example
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Is 15 in the right 
place? No! Swap 
within 11.
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Is 7 in the right 
place? Yes, 01 is 
done!

11

Is 15 in the right 
place? Yes, 11 is 
done!



Evaluation of In Place Radix Partitioning



The meta-adaptive indexing algorithm

2



The meta-adaptive indexing algorithm in-action



Handling Skew
● Radix partitioning might not handle skewed distributions well (Why?)
● Solution: Equi-depth histograms and out of place radix partitioning.
● Not quite perfect for radix partitioning (Why?).



Handling Skew 



What is the effect of differing key distributions ? 



Different key distributions affect the skew. 

What is the effect of differing key distributions ? 



Query workload 



Experimental Evaluation

Two Tests

How well can the 
meta-adaptive index 

emulate other indexes ? 

How do the response times 
of the meta-adaptive index 
compare to other indexes ?



32KB of L1 cache

256KB of L2 cache

10MB of shared L3 cache

2MB Page Size 

24GB of DDR3 RAM 

How much memory are we working with ? 



32KB of L1 cache

256KB of L2 cache

10MB of shared L3 cache

2MB Page Size 

24GB of DDR3 RAM 

How much memory are we working with ? 

Why are these numbers important ?



32KB of L1 cache

256KB of L2 cache

10MB of shared L3 cache

2MB Page Size 

24GB of DDR3 RAM 

How much memory are we working with ? 

These could potentially be the values of tadapt and tsort 



Our dataset

About 1.5GB of data, around 100 million entries consisting of 8B keys 



Emulation of adaptive indexes and traditional methods
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Simulated Annealing



Cumulative Indexing

*Normal distribution



Final Thoughts

● Tackles more than one problem
● Minimal overhead compared to previous work, with better results
● Consistently performs well under varying workloads, in comparison to varying 

results of other indexes.
● Takes advantage of unique optimizations, such as Simulated Annealing, 

Software-Managed Buffers, and Non-Temporal Streaming Stores



References 

1. F. Halim, S. Idreos, P. Karras, and R. H. C. Yap, “Stochastic database 
cracking: Towards robust adaptive indexing in main-memory column- stores,” 
PVLDB, vol. 5, no. 6, pp. 502–513, 2012. 

2. S. Idreos, S. Manegold, H. Kuno, and G. Graefe, “Merging what’s cracked, 
cracking what’s merged: Adaptive indexing in main-memory column-stores,” 
PVLDB, vol. 4, no. 9, pp. 585–597, 2011 


