Adaptive Adaptive
Indexing

Paper Review by Manuja DeSilva & Michael Hendrick

Table of Contents

Meet the Authors

The Problem

Existing Work

Radix Partitioning

TLBs and Software Managed Buffers
Handling Skew

Meta-Adaptive Algorithm
Experiments and Conclusion

Meet The Authors

Felix Martin Schunknecht Jens Dittrich Laurent Linden

Saarland University PostDoc Saarland University Prof. Saarland University RA

AR

- 0
\~'-"'

3

\

&
-
-

The Problem

How do we quickly and efficiently
answer range queries on a database,
without performing manual tuning ?

The Problem

How do we quickly and efficiently
answer range queries on a database,
without performing manual tuning ?

Why Even Index

Index Index Index Index
Column Column Column Column

R E—

Qu=[13,42)

Fig. 1: Concept of database cracking reorganizing for multiple
queries and converging towards a sorted state.

Existing work

There already exists many types of
adaptive indexes. Why do we need
another one ?

Existing work

There already exists many types of
adaptive indexes. Why do we need
another one ?

Standard Cracking (Database Cracking)

A

13
16
B
9
2
12
1
19
3
14
11
3

6

(a) Standard Cracking (DC)

salect

from

where
and

> 2em e

Index Column (A)

> 10
< 14

.
>

..................

$Cheap — performs the least amount
of reorganization (crack in 2)

Poor performance -> Although it does
well with random workloads, it
performs the same as a Scan with
sequential workloads

Response time (secs)

102 | | | |

a) Random Workload |

|

_

I I |

b) Sequential Workload_;

Scan A

Sort

I-

1
.

10-6 | i : ! .
110 10° 10° 10*1

Query sequence

DC Performance (random vs sequential workloads)

10 10° 10° 1
Query sequence

04

What is a sequential workload ?

13 select A
from R
16 where A < 4

19

C = # of comparisons required to answer
query

12

13

19

select
from R
where

A

A<

16

12

13

19

select A
from R
where A < 10

16

12

13

19

Stochastic Cracking

A Index Column (A)
13 | 1. random crack at & | g
16 | 2. select & 3
from R

4 where A 10 4
9 and A 4|y
2 | 2
12 7
f 8
! 9
19

3

14

11

8

6

(b) Stochastic Cracking (DD1R)

Picks up where standard cracking
left off - e.g DC only partitions
based on the query itself, which
leaves a large part of the index
still unsorted

Introduce random
cracks in addition to the query
crack

Initial array contains values in [0-k], Query asks for range [low-high]

0 k
N T 2] /A 7
0 low high k
Cracking e e csss——————————————————————
0 low high ¢2 ci k
DDC commme commms s s o —
0 low high r2 r1i K
DDR e oo oo comss S—
0 low high c1 k
DD1C oo <o om0 —
0 low high r1 k
0 r1 k
MDD1R oo S
low high
=

Visual representation of Stochastic Cracking Algorithms

Hybrid Cracking

T =k Database cracking has a slow
o e | convergence speed

Adaptive merging has a large
: i memory footprint

Split the inputs into
partitions (DC), merge the final
)} (¢) Hybrid Cracking (HCS), For COIumn

HSS, the inputs are sorted.

hbnecoyulzqutgjwvdokimreapxafsi
1 data lvaded directly, without sorting
hbnecoyulzqutgjwvdokimreapxafsi

l where ... between ‘d” and ‘1’
hcaa| hegdiefi||noyulzqutjwvokmrpxs

(1) (2) 1 (3)
where ... between 'f” and ‘m’

bcaa|ede hglflHl]km"noyuzqutwvorpxsl

() (2a) @b) (3a) (3b)
Figure 2: Database cracking.

hbnecoyulzqutgjwvdokimreapxafsi
l data loaded into initial partitions; sorted in-memory

beehnouy ||gjlgtuwz | deikmory| aafipsx
l #1 #2 #3 #4

where ... between 'd’ and ‘1 7
deefghil |benouy|jlatuwz||kmorv||aapsx|
final partition #1 #2 #3 itd

where ... beoween ‘f7 and “m’

deefghll]k]m |bcn0uy|qtuw7|org“aapsx
final partition #1 #2 #3 4

Figure 3: Adaptive merging.

[2]

p O)iFuII Index

Y

2

LT

P &

g § Bad Hybrid
: : a ri

3 2 & o Adaptive Merging = y

2=

= g 5 Database

% "l ldeal Hybrid ©Cracking Scan

O

How many queries before the index fully supports
a random query?

The solution to all other solutions:

Adaptive adaptive indexing

Partitioning

Classical approaches revolve around
comparison based methods for
calculating partitions.

What’s the problem with this ?

Partitioning

Classical approaches revolve around
comparison based methods for
calculating partitions.

What’s the problem with this ?

The partitions are solely dependent on the inputted queries
and the raw data itself, which doesn’t follow any schema

The Solution:
Radix Partitioning

What is Radix Partitioning?

Number Binary Number Binary

1 0001 1 00| O1

2 0010 2 00|10 Partition Elements
7 0111 7 01| 11 Partition 1 (00) | 1,2,3

5 0101 5 01|01 Partition 2 (01) | 7,5,4

3 0011 3 00 | 11

4 0100 4 01|00

Out of Place Radix Partitioning

Inputs: The source column and the number (k) of requested partitions
k is calculated as k = 2*f (more on this in a bit)

Phase 1: Create a Histogram

Phase 2: Copy Entries

Let’s look at an example!

Out of Place Radix Partitioning

k=2 b=1 Values are copied!
4 " 1]00
2 0]10 oot
7 111
1 001
6 1|10
3 0|11

What is TLB?

Translation Lookaside Buffer

TLB stores a mapping of virtual mem to physical mem for quick lookups

Random copying leads to TLB misses with more than 32 partitions

If there’s a TLB hit, great! But how to handle misses?

Software-Managed Buffers

Input Cache & Cutput

i ¢
% ; SW buffer

—_—
18 k—4 partition buffer : o rae—
85 ; b2 entries :
2’
5 Factor b less
47 trips to main

memory k partitions

Non-temporal streaming stores and SIMD

O
add r0 r1 r2 e
nsw butte: : when writing output
= R 256_stream_si256 <.
- : . ‘ _mn256_stream s 4
add |r3| |r6] |r9| s “""‘;1
4| |r7] 10| = o
r5 r8' r1 1 | fousass Sy il SR : wnte::er:l:::éebuﬁer
) i partitions

Evaluation of Out of Place Radix Partitioning

4.5 Ll L L] L) L L] L]
Out-of-place crack-in-wo + In-place crack-in-fwo ssesesas
Cut-of-place radix partiticning

Runtime in [s]

(] w o~ -
o~ u b o~
v o (5] 2

Partitioning Fanout

B192

2048
4096

16384
32768

In Place Radix Partitioning: Subsequent Queries

Contrary to Out of Place, all subsequent queries must reorganize in-place

Standard cracking reorganizes data using [low,high] inputs given by the query

Phase 1: Create a histogram that tells us the amount of values in each
partition

Phase 2: Perform a search and replace through the index column.

In-Place Example

Input: -

k=4 b=2

2 00]10 2

: | NIRRT #Y

1 g 00|01 1

3 / 00 | 11 " 3
. & N

15 11| 11 . 15

7 ;011 : : - : 7

6 01]10 6

00

01

11

In-Place Example

2 00| 10 2
1 00 | 01 1 00
3 00 | 11 3 /
15 1110 15 01
7 01| 11 7 /11
6 01110 6 /

2
1 00
3 /
6 01
7 /11
15 /

Is 2 in the right
place? Yes!

Is 1 in the right
place? Yes!

Is 3 in the right
place? Yes! 00 is
done!

Is 15 in the right
place? No! Swap
within 11.

Is 6 in the right
place? Yes!

Is 7 in the right
place? Yes, 01 is
done!

Is 15 in the right
place? Yes, 11 is
done!

Evaluation of In Place Radix Partitioning

HUNDMa N |MS)

15F

10Fr

32KB (L1)

Input data s@e

266KB (L2) 2MB (Page)

10MB (L)

L

2x|

2 x In-place crack-in-lwo
n-place radix partitionng

512 4 2 512 4 a2
Partiioning Fanout

512

L

The meta-adaptive indexing algorithm

Parameter Meaning

Brirat Number of fan-out bits in the very first query.
tadapt Threshold below which fan-out adaption starts,

| PRY Minimal number of fan-out bits during adaption,
| T Maximal number of fan-out bits during adaption.
tuort Threshold below which sorting is triggered.
buort Number of tan-out bits required for sorung.
skewtol Threshold tor tolerance of skew.

bfirst ifg=20

bmin + |—(bm,a:1: = bmin) 2 (1 = Tdsa;)-l else if s > tsort

bsort else.

f(s,9q)

The meta-adaptive indexing algorithm in-action

100 u T T T T T T (T)
= . S, .
; L | Lo = 2MB taa'apt =64MB f ”Z" 4
P i B seeesens 1
= T T LT T LT P PP PP PP PP PRI PPEPPPPIPPIN PR PPR MR PP -
D "“""""‘“m““"““
S ; "””“”WM’ ;
8 23322920080 084CC<4<H
L‘B 1 l L I 1 L | 1 L

0 10 20 30 40 50 60 70 80

Partition Size (MB): s
Fig. 5: The partitioning fan-out bits returned by f(s,q) for
partition sizes s from OMB to 8OMB and q > 0 with t,4qpt =
64MB,; byyive = 2.:0muw: = 10; togri = 2NB; and b,.ri =64.

Handling Skew

e Radix partitioning might not handle skewed distributions well (Why?)
e Solution: Equi-depth histograms and out of place radix partitioning.
e Not quite perfect for radix partitioning (Why?).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2. 3.
Partition Index Partition Index

. Input Column Column
out-of-place i
Handling Skew B nplace
bfirst =2 bits Biin—4 bits v
+*
Histogram
on 00
4
E (Y
@
g &8
o bmin
| lov " FY (1
l Al v v
SSH. 2
bfires @ 10
v Y
e T

What is the effect of differing key distributions ?

UNIFORM [0,2%4) NORMAL (u«2% g.25%) ZIPF [0,2%), <06
= 2
: l LN Q
B
o
@
2 _

Key range

Fig. 8: Different key distributions used in the experiments.

What is the effect of differing key distributions ?

UNIFORM [0,2%4) NORMAL (u«2 g.25%) ZIPF [0,2%%), a=0.6
= N
)
— |
o
@
(TR
Key range

Fig. 8: Different key distributions used in the experiments.

Different key distributions affect the skew.

Query workload

PERIODIC SEQUENTIAL ZOOMOUTALT ZOOMINALT

RANDOM SKEW

Key Range

Query Sequence

Fig. 9: Different query workloads. Blue dots represent the
high keys whereas red dots represent the low keys.

Experimental Evaluation

Two Tests
How well can the How do the response times
meta-adaptive index of the meta-adaptive index

emulate other indexes ? compare to other indexes ?

How much memory are we working with ?

32KB of L1 cache

256KB of L2 cache
10MB of shared L3 cache

2MB Page Size
24GB of DDR3 RAM

How much memory are we working with ?

32KB of L1 cache

256KB of L2 cache

10MB of shared L3 cache

2MB Page Size
24GB of DDR3 RAM

Why are these numbers important ?

How much memory are we working with ?

32KB of L1 cache

256KB of L2 cache

10MB of shared L3 cache

2MB Page Size
24GB of DDR3 RAM

These could potentially be the values of t_ dapt andt__ .

Our dataset

About 1.5GB of data, around 100 million entries consisting of 8B keys

Emulation of adaptive indexes and traditional methods

Quick Sort Coarse-granular
Standard Cracking Scan + Binary Search Index 1K Hybrid Crack Sort Hybrid Sort Sort
1 5 "

_ T 0.8

T 0.6

ng S ! 04

= C

S< goz2 |
e 0 ! ! i s J i 3 3 N 3 I 3 i | 1 1 : 1 L 1 1 2
g bfist=1 bmin=1 Dfirst=0 bmin=0 bfirst=0 bmin=0 Dfirst=10bmin=1 Dbfirst=1 bmin=1 bhirst=8 bmin=1
a tadapt=0bmax=1 tadapt=0bmax=0 tadapt=0bmax=0 tadapt=0bmax=1 tadapt=Obmax=1 tadapt=0bmax=1
o tson=0 tsort=0 =datasize tsont=0 tsot=1M tsot=datasize
£
208

oo
e

o
n

Meta-adaptive
index

o
08
1
0
0.2
04 |

g I S|
© O N T Q©
o o O 0O

06

1 M OGS LA | | TN, S A 1 !
WO NTORrONT OO O N T
o o O O 0O (= ie el o o

0
02}
04 +
06 -

!

Querying Progress

Single Query Response Time [ms]

DCe® DD1Re® HCS »« Sort + Binary Search
— Meta-adaptive Index (Manually configured)

L
1000 * ‘|
? |
: ll' : - t
o
| l|l - . s : .‘ ‘
100 v | T . o=
P 19 iy
I||
lI
10 ¢ |
! |
[8 '.. i
' |
|
|
I\
1]
1 10 100 1000
Query Sequence

(a) U(min = 0, max = 2°% — 1)

DCe® DD1R® HCS « Sort + Binary Search #
Meta-adaptive Index (Manually configured)

v Ll

L

Single Query Response Time [ms)

Cuery Sequence

(b) N(u = 293 o = 261)

Sort + Binary Search

DC e+ DD1Re® HCS

Meta-adaptive Index (Manually configured)

L L L
. o . _—»
s
g 3 e .
Q \ 1

[sw] ewn) esuodsay Lsngn 8|buig

1000

100

10

Cuery Sequence

(¢) Z(min = 0, maxz = 2% — 1, a = 0.6)

Simulated Annealing

Parameter Uniform Normal Zipf
bsirst 12 bits 10 bits 5 bits
Deviini 2 bits 1 bit 3 bits

o A 5 bits 5 bits 5 bits
tadapt 218MB 102MB 211MB
354KB 32KB 32KB
skewtol 4x 5X 5X

DC == DD1R mm HCS

Cumulative Indexing Meta-adaptjve Index (N!anually conﬁgur.ed) -
Meta-adaptive Index (Simulated annealing configured)

25

15

10

Accum. Query Respanse Time [s)

RANDOM
SKEWED
PERIODIC
EQUENTIAL
ZOOMOUTALT
ZOOMINALT

. . . ol
*Normal distribution Query Workloads

Final Thoughts

e Tackles more than one problem

e Minimal overhead compared to previous work, with better results

e Consistently performs well under varying workloads, in comparison to varying
results of other indexes.

e Takes advantage of unique optimizations, such as Simulated Annealing,
Software-Managed Buffers, and Non-Temporal Streaming Stores

References

1. F. Halim, S. Idreos, P. Karras, and R. H. C. Yap, “Stochastic database
cracking: Towards robust adaptive indexing in main-memory column- stores,’
PVLDB, vol. 5, no. 6, pp. 502-513, 2012.

2. S.ldreos, S. Manegold, H. Kuno, and G. Graefe, “Merging what’s cracked,
cracking what's merged: Adaptive indexing in main-memory column-stores,”
PVLDB, vol. 4, no. 9, pp. 585-597, 2011

