Adaptive Adaptive Indexing

Paper Review by Manuja DeSilva & Michael Hendrick

Table of Contents

- Meet the Authors
- The Problem
- Existing Work
- Radix Partitioning
- TLBs and Software Managed Buffers
- Handling Skew
- Meta-Adaptive Algorithm
- Experiments and Conclusion

Meet The Authors

Felix Martin Schunknecht

Saarland University PostDoc

Jens Dittrich

Saarland University Prof.

Laurent Linden

Saarland University RA

The Problem

How do we quickly and efficiently answer range queries on a database, without performing manual tuning ?

The Problem

How do we quickly and efficiently answer range queries on a database, without performing manual tuning ?

Adaptively build indexes !

Why Even Index

Fig. 1: **Concept** of database cracking reorganizing for multiple queries and converging towards a sorted state.

There already exists many types of adaptive indexes. Why do we need another one ?

There already exists many types of adaptive indexes. Why do we need another one ?

Each of the other indexes only solves a very specific problem.

Standard Cracking (Database Cracking)

\$Cheap \rightarrow performs the least amount of reorganization (crack in 2)

Poor performance -> Although it does well with random workloads, it performs the same as a *Scan* with sequential workloads

(a) Standard Cracking (DC)

What is a sequential workload ?

C = # of comparisons required to answer query

Stochastic Cracking

Picks up where standard cracking left off - e.g DC only partitions based on the query itself, which leaves a large part of the index still unsorted

Solution: Introduce random cracks in addition to the query crack

(b) Stochastic Cracking (DD1R)

Visual representation of Stochastic Cracking Algorithms

Hybrid Cracking

(c) Hybrid Cracking (HCS). For HSS, the inputs are sorted.

Database cracking has a slow convergence speed

Adaptive merging has a large memory footprint

Solution: Split the inputs into partitions (DC), merge the final column

Figure 2: Database cracking.

hbnecoyulzqutgjwvdokimreapxafsi data loaded into initial partitions; sorted in-memory bcehnouy gjlqtuwz deikmorv aafipsx #1 #3 #2 #4 where ... between 'd' and 'i' bcnouy jlqtuwz deefghil kmorv aapsx final partition #1 #2 #3 #4 where ... between 'f' and 'm' deefghiijklm benouy gtuwz orv aapsx final partition #1 #2 #3 #4 Figure 3: Adaptive merging.

The solution to all other solutions:

Adaptive adaptive indexing

Classical approaches revolve around comparison based methods for calculating partitions.

What's the problem with this ?

Classical approaches revolve around comparison based methods for calculating partitions.

What's the problem with this ?

The partitions are solely dependent on the inputted queries and the raw data itself, which doesn't follow any schema

The Solution: Radix Partitioning

What is Radix Partitioning?

Number	Binary	
1	0001	
2	0010	
7	0111	
5	0101	
3	0011	
4	0100	

Number	Binary
1	00 01
2	00 10
7	01 11
5	01 01
3	00 11
4	01 00

Partition	Elements
Partition 1 (00)	1,2,3
Partition 2 (01)	7,5,4

Out of Place Radix Partitioning

Inputs: The *source* column and the *number* (k) of requested partitions

k is calculated as **k** = **2^f** (more on this in a bit)

Phase 1: Create a Histogram

Phase 2: Copy Entries

Let's look at an example!

Out of Place Radix Partitioning

What is TLB?

Translation Lookaside Buffer

TLB stores a **mapping** of <u>virtual mem to physical mem</u> for quick lookups

Random copying leads to TLB **misses** with more than 32 partitions

If there's a TLB hit, great! But how to handle misses?

Software-Managed Buffers

Non-temporal streaming stores and SIMD

add r0 r1 r2 Cache Bypass caches SW buffer when writing output 13 36 42 mm256 stream si256 add [r3] [r6] [r9] 67 mm256 stream si256 |r4| |r7] |r10| Cacheline 36 k=4 partition buffer b=2 entries Hardware |r5| |r8] |r11| write-combine buffer

Output

...........

36

42

k partitions

Evaluation of Out of Place Radix Partitioning

In Place Radix Partitioning: Subsequent Queries

Contrary to **Out of Place**, all **subsequent** queries must **reorganize in-place**

Standard cracking reorganizes data using [low,high] inputs given by the query

Phase 1: Create a *histogram* that tells us the amount of values in each partition

Phase 2: Perform a *search and replace* through the index column.

In-Place Example

Input: b = 2

In-Place Example

2	00 10
1	00 01
3	00 11
15	11 10
7	01 11
6	01 10

Is 2 in the right place? Yes!

Is 1 in the right place? **Yes!**

Is 3 in the right place? Yes! 00 is done!

Is 15 in the right place? **No! Swap** within 11.

Is 6 in the right place? **Yes!**

Is 7 in the right place? Yes, 01 is done!

Is 15 in the right place? **Yes, 11 is done!**

Evaluation of In Place Radix Partitioning

Input data size

The meta-adaptive indexing algorithm

Parameter	Meaning Number of fan-out bits in the very first query.	
bfirst		
tadapt	Threshold below which fan-out adaption starts.	
bmin	Minimal number of fan-out bits during adaption.	
bmax	Maximal number of fan-out bits during adaption.	
tsort	Threshold below which sorting is triggered.	
bsort	Number of fan-out bits required for sorting.	
skewtol	Threshold for tolerance of skew.	

$$f(s,q) = \begin{cases} b_{first} & \text{if } q = 0\\ b_{min} & \text{else if } s > t_{adapt} \\ b_{min} + \left\lceil (b_{max} - b_{min}) \cdot \left(1 - \frac{s}{t_{adapt}}\right) \right\rceil & \text{else if } s > t_{sort} \\ b_{sort} & \text{else.} \end{cases}$$

The meta-adaptive indexing algorithm in-action

Fig. 5: The partitioning fan-out bits returned by f(s,q) for partition sizes s from 0MB to 80MB and q > 0 with $t_{adapt} = 64MB$, $b_{min} = 2$, $b_{max} = 10$, $t_{sort} = 2MB$, and $b_{sort} = 64$.

Handling Skew

- Radix partitioning might not handle skewed distributions well (Why?)
- Solution: Equi-depth histograms and out of place radix partitioning.
- Not *quite* perfect for radix partitioning (Why?).

Handling Skew

What is the effect of differing key distributions ?

Fig. 8: Different key distributions used in the experiments.

What is the effect of differing key distributions ?

Fig. 8: Different key distributions used in the experiments.

Different key distributions affect the skew.

Query workload

Fig. 9: Different **query workloads**. Blue dots represent the high keys whereas red dots represent the low keys.

Experimental Evaluation

Two Tests

How well can the meta-adaptive index emulate other indexes ? How do the response times of the meta-adaptive index compare to other indexes ?

How much memory are we working with ?

32KB of L1 cache

256KB of L2 cache

10MB of shared L3 cache

2MB Page Size

24GB of DDR3 RAM

How much memory are we working with ?

32KB of L1 cache

256KB of L2 cache

10MB of shared L3 cache

2MB Page Size

24GB of DDR3 RAM

Why are these numbers important ?

How much memory are we working with ?

32KB of L1 cache

256KB of L2 cache

10MB of shared L3 cache

2MB Page Size

24GB of DDR3 RAM

These could potentially be the values of t_{adapt} and t_{sort}

Our dataset

About 1.5GB of data, around 100 million entries consisting of 8B keys

Emulation of adaptive indexes and traditional methods

Simulated Annealing

Parameter	Uniform	Normal	Zipf
b_{first}	12 bits	10 bits	5 bits
b_{min}	2 bits	1 bit	3 bits
b_{max}	5 bits	5 bits	5 bits
t_{adapt}	218MB	102MB	211MB
t_{sort}	354KB	32KB	32KB
skewtol	4x	5x	5x

Cumulative Indexing

DC DD1R HCS Meta-adaptive Index (Manually configured) Meta-adaptive Index (Simulated annealing configured)

*Normal distribution

Final Thoughts

- Tackles more than one problem
- Minimal overhead compared to previous work, with better results
- Consistently performs well under varying workloads, in comparison to varying results of other indexes.
- Takes advantage of unique optimizations, such as Simulated Annealing, Software-Managed Buffers, and Non-Temporal Streaming Stores

References

 F. Halim, S. Idreos, P. Karras, and R. H. C. Yap, "Stochastic database cracking: Towards robust adaptive indexing in main-memory column- stores," *PVLDB*, vol. 5, no. 6, pp. 502–513, 2012.

2. S. Idreos, S. Manegold, H. Kuno, and G. Graefe, "Merging what's cracked, cracking what's merged: Adaptive indexing in main-memory column-stores," *PVLDB*, vol. 4, no. 9, pp. 585–597, 2011