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Data Volumes



Columnar Layouts

• Pros: no need to access unnecessary data, good for OLAP workloads

• Cons:
•  More operations required to complete a data update (bad for OLTP)

•  Tuple reconstruction cost (CPU) 

Motivation
D.Abadi et al. The design and implementation of modern column-
oriented database systems. Foundations and Trends in Databases, 



Columnar Layouts (tuple 
reconstruction)
• 4 data tuples

• 4 attributes stored 
separately

• Divided to 2 blocks

• SELECT B, D FROM T WHERE 
B<0 and D=2



Data Skipping

• Data is organized into blocks

         skipped.                qualified   skipped   skipped

• Given a query q, evaluate its filter predicates against 
the metadata

• Save I/O, CPU work

Motivation



Target Question

• How to design a data skipping mechanism that exploits 
the properties of columnar layouts?

Horizontal 
Partitioning

Vertical 
Partitioning

Columnar 
Layouts

wh

wv

Mechanis
m

Background



• When wh = 1 and wv = 0, pure horizontal 
partitioning

• No need to retrieve unnecessary data, a 
property of columnar layouts

• Feature conflicts

• When wh = 0 and wv = 1, pure vertical 
partitioning

• Tuple reconstruction



• When wh > 0, wv > 0 and wv > wh, 
prioritizing vertical partitioning
• Generalized Skipping-Oriented Partitioning 

(GSOP)

• When wh > 0, wv > 0 and wh > wv, 
prioritizing horizontal partitioning



Feature Conflicts

• F1: grade=‘A’; 
F2:year>2011 course=‘DB’∧

• The best partitioning scheme for F1 
t1t2|t3t4

• The best partitioning scheme for F2 
t1t4|t2t3

• But you have to choose one

Background



Generalized Skipping Oriented 
Partitioning (GSOP)

GSOP

• Workload Analysis

• Augmentation

• Column Grouping (vertical partitioning)

• Local Feature Selection

• Partitioning (horizontal)



Workload Analysis

• A workload is a collection of queries

• Each query is associated with a filter
• Filter can be seen as a conjunction of features

• SELECT B, D FROM T WHERE B<0, D=2

• Find a set of features that occurs in the workload
• Subsume as many queries as possible

Workload Analysis



• Q1: prod.=‘shoes’, prod. in (‘shoes’, ‘shirts’) 

• Q2: prod. in (‘shoes’, ‘shirts’), revenue>32, revenue> 
21 

• Q3: prod.=‘shirts’, revenue>21, prod. in (‘shoes’, 
‘shirts’)

• F1: {revenue > 21} subsumes Q2 and Q3

• F2: {product in (‘shoes’, ‘shirts’)} subsumes both Q1 
and Q2

Workload Analysis



Augmentation

Selected Features

Augmentation



Augmentation

Batch evaluate these features against each tuple

Store the evaluation results
as a bit vector

Augmentation



Data Skipping with Bit Vectors

Augmentation



Data Skipping with Bit Vectors

Union Vector(OR)

Query: SELECT publisher 
FROM table WHERE F1

P2 can be safely skipped

Augmentation



Spectrum of 
Partitioning

• Two Extremes:
• All columns follow the same horizontal partitioning 

scheme

• Each column can have its own partitioning scheme

• Which one is better?
• Depends on the workload and data characteristics

Column Grouping



Column Grouping

• Divide columns into column groups

• An objective function 
• Tradeoff (skipping effectiveness, tuple reconstruction)

• The opportunities of skipping horizontal blocks within each 
column group

Column Grouping



Objective Function

• Skipping Effectiveness:
• The overall scanning cost for query q is:

C: the set of columns in the table
G = {G1, G2, . . . , Gm}: a column grouping scheme of the 

 = C ;  for 
 Given query q

: the set of columns q needs to access
: the column groups q needs to access

: # rows that q needs to scan in 

# columns q accesses # rows, depends on 
horizontal partitioning

# cells

Column Grouping



Objective Function 

• Tuple Reconstruction Overhead
• Store tuple-id for each row

• Assume that we use sort-merge join to do tuple reconstruction

C: the set of columns in the table
G = {G1, G2, . . . , Gm}: a column grouping scheme of the 

 = C ;  for 
 Given query q

: the set of columns q needs to access
: the column groups q needs to access

: # rows that q needs to scan in 

Column Grouping



Objective Function

C: the set of columns in the table
G = {G1, G2, . . . , Gm}: a column grouping scheme of the 

 = C ;  for 
 Given query q

: the set of columns q needs to access
: the column groups q needs to access

: # rows that q needs to scan in 

Column Grouping



Efficient Estimation of 

• : # rows that q needs to scan in 

• Exact computation of  is very expensive

v1(1,1,0)

v2(0,1,1)

v3(1,0,0)

Gi

V = {(1,0,0), (0,1,1), (1,0,1)}

count(v1) = 10

b: the size of a block (skipping granularity)

, an upperbound

 

 

 

The set of distinct vectors in Gi

# rows whose feature vector is v

total # tuples min # blocks to skip

Column Grouping



Efficient Estimation of 

• Exact computation of  is very expensive

• Estimation:
• Group the rows that have the same feature vectors

• Let  be the set of distinct vectors after grouping in Gi

• For ,  is the number of rows whose feature vector is 

•  is the size of a block

• Given a query , divide  into  and  

• , an upperbound

Column Grouping



Bottom-up Search Strategy

• Initially, each column 
itself forms a group

• Iteratively choose two 
groups to merge until all 
columns are in one group

• The merge should lead 
to the minimum value of 
the obj function

start

1st iteration

2nd  iteration

3rd  iteration

end

Column Grouping



Bottom-up Search Strategy

• Pick the iteration where 
the objective function 
has the minimum value 
and return the 
corresponding grouping 
scheme

• Evaluate the obj 
function ( estimation)  
times

min value 

1 2 3 4 5

Column Grouping



Local Feature Selection

• For each column group, the set of features that are 
most helpful in block data skipping is different

• How do we decide the set of features that is the most 
helpful?

: the set of queries that need to access column group 
: the features that subsume 

Local Feature Selection

The set of features that are subsumed by at least one query in the workload



Local Feature Selection 

: the set of queries that need to access column group 
: the features that subsume 

• Create a ranked list of local features for each 
column group

• Determine how many features to use for 
partitioning 
• Set a heuristic number

Local Feature Selection



Horizontal Partitioning 

• L. Sun, M. J. Franklin, S. Krishnan, and R. S. Xin. Fine-
grained partitioning for aggressive data skipping. In 
SIGMOD, pages 1115–1126, 2014. 

Horizontal Partitioning



Experiments 
Big Data Benchmark



Experiments 
TPC-H Benchmark

100 test queries, hundreds of millions of rows



Is the  
estimation 
good?

• Full Compt: compute the exact value of the obj function

• Sel. Est.: baseline estimation based on traditional 
selectivity 

• Block Est.: proposed block-based estimation

• TPC-H



Conclusion

• Develop a novel hybrid data skipping framework (GSOP)
• Take into account these row-based and column-based 

tradeoffs 

• GSOP can always find a partitioning layout no worse 
than SOP
• Significantly reduce the amount of data scanned 

• Improve end-to-end query response times
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