
Skipping-oriented
Partitioning for Columnar

Layouts

Agenda

• Motivation

• Background Knowledge

• GSOP

• Experiments

• Conclusion

Data Volumes

Columnar Layouts

• Pros: no need to access unnecessary data, good for OLAP workloads

• Cons:
• More operations required to complete a data update (bad for OLTP)

• Tuple reconstruction cost (CPU)

Motivation
D.Abadi et al. The design and implementation of modern column-
oriented database systems. Foundations and Trends in Databases,

Columnar Layouts (tuple
reconstruction)
• 4 data tuples

• 4 attributes stored
separately

• Divided to 2 blocks

• SELECT B, D FROM T WHERE
B<0 and D=2

Data Skipping

• Data is organized into blocks

 skipped. qualified skipped skipped

• Given a query q, evaluate its filter predicates against
the metadata

• Save I/O, CPU work

Motivation

Target Question

• How to design a data skipping mechanism that exploits
the properties of columnar layouts?

Horizontal
Partitioning

Vertical
Partitioning

Columnar
Layouts

wh

wv

Mechanis
m

Background

• When wh = 1 and wv = 0, pure horizontal
partitioning

• No need to retrieve unnecessary data, a
property of columnar layouts

• Feature conflicts

• When wh = 0 and wv = 1, pure vertical
partitioning

• Tuple reconstruction

• When wh > 0, wv > 0 and wv > wh,
prioritizing vertical partitioning
• Generalized Skipping-Oriented Partitioning

(GSOP)

• When wh > 0, wv > 0 and wh > wv,
prioritizing horizontal partitioning

Feature Conflicts

• F1: grade=‘A’;
F2:year>2011 course=‘DB’∧

• The best partitioning scheme for F1
t1t2|t3t4

• The best partitioning scheme for F2
t1t4|t2t3

• But you have to choose one

Background

Generalized Skipping Oriented
Partitioning (GSOP)

GSOP

• Workload Analysis

• Augmentation

• Column Grouping (vertical partitioning)

• Local Feature Selection

• Partitioning (horizontal)

Workload Analysis

• A workload is a collection of queries

• Each query is associated with a filter
• Filter can be seen as a conjunction of features

• SELECT B, D FROM T WHERE B<0, D=2

• Find a set of features that occurs in the workload
• Subsume as many queries as possible

Workload Analysis

• Q1: prod.=‘shoes’, prod. in (‘shoes’, ‘shirts’)

• Q2: prod. in (‘shoes’, ‘shirts’), revenue>32, revenue>
21

• Q3: prod.=‘shirts’, revenue>21, prod. in (‘shoes’,
‘shirts’)

• F1: {revenue > 21} subsumes Q2 and Q3

• F2: {product in (‘shoes’, ‘shirts’)} subsumes both Q1
and Q2

Workload Analysis

Augmentation

Selected Features

Augmentation

Augmentation

Batch evaluate these features against each tuple

Store the evaluation results
as a bit vector

Augmentation

Data Skipping with Bit Vectors

Augmentation

Data Skipping with Bit Vectors

Union Vector(OR)

Query: SELECT publisher
FROM table WHERE F1

P2 can be safely skipped

Augmentation

Spectrum of
Partitioning

• Two Extremes:
• All columns follow the same horizontal partitioning

scheme

• Each column can have its own partitioning scheme

• Which one is better?
• Depends on the workload and data characteristics

Column Grouping

Column Grouping

• Divide columns into column groups

• An objective function
• Tradeoff (skipping effectiveness, tuple reconstruction)

• The opportunities of skipping horizontal blocks within each
column group

Column Grouping

Objective Function

• Skipping Effectiveness:
• The overall scanning cost for query q is:

C: the set of columns in the table
G = {G1, G2, . . . , Gm}: a column grouping scheme of the

 = C ; for
 Given query q

: the set of columns q needs to access
: the column groups q needs to access

: # rows that q needs to scan in

columns q accesses # rows, depends on
horizontal partitioning

cells

Column Grouping

Objective Function

• Tuple Reconstruction Overhead
• Store tuple-id for each row

• Assume that we use sort-merge join to do tuple reconstruction

C: the set of columns in the table
G = {G1, G2, . . . , Gm}: a column grouping scheme of the

 = C ; for
 Given query q

: the set of columns q needs to access
: the column groups q needs to access

: # rows that q needs to scan in

Column Grouping

Objective Function

C: the set of columns in the table
G = {G1, G2, . . . , Gm}: a column grouping scheme of the

 = C ; for
 Given query q

: the set of columns q needs to access
: the column groups q needs to access

: # rows that q needs to scan in

Column Grouping

Efficient Estimation of

• : # rows that q needs to scan in

• Exact computation of is very expensive

v1(1,1,0)

v2(0,1,1)

v3(1,0,0)

Gi

V = {(1,0,0), (0,1,1), (1,0,1)}

count(v1) = 10

b: the size of a block (skipping granularity)

, an upperbound

The set of distinct vectors in Gi

rows whose feature vector is v

total # tuples min # blocks to skip

Column Grouping

Efficient Estimation of

• Exact computation of is very expensive

• Estimation:
• Group the rows that have the same feature vectors

• Let be the set of distinct vectors after grouping in Gi

• For , is the number of rows whose feature vector is

• is the size of a block

• Given a query , divide into and

• , an upperbound

Column Grouping

Bottom-up Search Strategy

• Initially, each column
itself forms a group

• Iteratively choose two
groups to merge until all
columns are in one group

• The merge should lead
to the minimum value of
the obj function

start

1st iteration

2nd iteration

3rd iteration

end

Column Grouping

Bottom-up Search Strategy

• Pick the iteration where
the objective function
has the minimum value
and return the
corresponding grouping
scheme

• Evaluate the obj
function (estimation)
times

min value

1 2 3 4 5

Column Grouping

Local Feature Selection

• For each column group, the set of features that are
most helpful in block data skipping is different

• How do we decide the set of features that is the most
helpful?

: the set of queries that need to access column group
: the features that subsume

Local Feature Selection

The set of features that are subsumed by at least one query in the workload

Local Feature Selection

: the set of queries that need to access column group
: the features that subsume

• Create a ranked list of local features for each
column group

• Determine how many features to use for
partitioning
• Set a heuristic number

Local Feature Selection

Horizontal Partitioning

• L. Sun, M. J. Franklin, S. Krishnan, and R. S. Xin. Fine-
grained partitioning for aggressive data skipping. In
SIGMOD, pages 1115–1126, 2014.

Horizontal Partitioning

Experiments
Big Data Benchmark

Experiments
TPC-H Benchmark

100 test queries, hundreds of millions of rows

Is the
estimation
good?

• Full Compt: compute the exact value of the obj function

• Sel. Est.: baseline estimation based on traditional
selectivity

• Block Est.: proposed block-based estimation

• TPC-H

Conclusion

• Develop a novel hybrid data skipping framework (GSOP)
• Take into account these row-based and column-based

tradeoffs

• GSOP can always find a partitioning layout no worse
than SOP
• Significantly reduce the amount of data scanned

• Improve end-to-end query response times

	Slide 1
	Agenda
	Data Volumes
	Columnar Layouts
	Columnar Layouts (tuple reconstruction)
	Data Skipping
	Target Question
	Slide 8
	Slide 9
	Feature Conflicts
	Generalized Skipping Oriented Partitioning (GSOP)
	Workload Analysis
	Slide 14
	Augmentation
	Augmentation
	Data Skipping with Bit Vectors
	Data Skipping with Bit Vectors
	Spectrum of Partitioning
	Column Grouping
	Objective Function
	Objective Function
	Objective Function
	Efficient Estimation of
	Efficient Estimation of
	Bottom-up Search Strategy
	Bottom-up Search Strategy
	Local Feature Selection
	Local Feature Selection
	Horizontal Partitioning
	Experiments
	Experiments
	Is the estimation good?
	Conclusion

