Skipping-oriented
Partitioning for Columnar
Layouts

Agenda

* Motivation

* Background Knowledge
* GSOP

* EXperiments

* Conclusion

Data Volumes

E 3 The Digital e j
Universe is Huge
4 4 And Growing 44
LB |

Exponentially L

1

Columnar Layouts

Sales Sales Sales
saleid prodid date region saleid prodid date region saleid prodid date region

0oL~ bW =

w0 = N b WO Ry =
W0 00 =] O | LD P =k
o=l el N Rl o B L | L o

=|e|o|~|om|o e |win =
ool ~|om ||| |—

—_
=
—
=
e
=
_—
[

(a) Column Store with Virtual |ds () Column Store with Explicit Ids (c) Row Store
* Pros: N0 need to access unhnecessary data, good tor OLAP workloads

e Cons:
 More operations required to complete a data update (bad for OLTP)
* Tuple reconstruction cost (CPU)

: : D.Abadi et al. The design and implementation of modern column-
Motivation oriented database systems. Foundations and Trends in Databases,

Columnar Layouts (tuple

reconstruction)

* 4 data tuples

e 4 attributes stored
separately

 Divided to 2 blocks

* SELECT B, D FROM T WHERE
B<0 and D=2

t1
t3

t2
t4

5

t
t4

t2
t3

t1
t3

t2
t4

t1
t4

t2
t3

t1
t4

-1 11
-114

= O

| %20|[q

¢ Y1209

Data Skipping

* Data is organized into blocks

[min, max] | [..., ...] — [I—_—

skipped. qualified skipped skipped

* Given a query g, evaluate its filter predicates against
the metadata

e Save I/O, CPU work

Motivation

Target Question

* How to design a data skipping mechanism that exploits
the properties of columnar layouts?

Horizontal

Wh
Partitioning \
Columnar » Mechanis
/
W, Layouts m
Vertical
Partitioning

Background

e When w, =1 and w, = 0, pure horizontal
partitioning
* No need to retrieve unnecessary data, a
property of columnar layouts

 Feature conflicts

* When w, = 0 and w, = 1, pure vertical
partitioning
» Tuple reconstruction

s Whenw, >0, w,>0and w, > w,,
prioritizing vertical partitioning

* Generalized Skipping-Oriented Partitioning
(GSOP)

s Whenw, >0, w,>0and w, > w,,
prioritizing horizontal partitioning

grade course

Feature Conflicts .
B 0OS
* F1: grade="A’;
F2:year>2011Acourse=‘DB’ A DB
* The best partitioning scheme for F1 DB
t1t2|t3td .,
* The best partitioning scheme for F2
t1t4|t2t3 year course
e But you have to choose one t, 2012 Al

t; 2012 OS

t; 2012 DB

t, 2013 DB

Background

Generalized Skipping Oriented
Partitioning (GSOP)

 Workload Analysis

« Augmentation

* Column Grouping (vertical partitioning)
 Local Feature Selection

 Partitioning (horizontal)

GSOP

Workload Analysis

A workload is a collection of queries

 Each query is associated with a filter

 Filter can be seen as a conjunction of features
« SELECT B, D FROM T WHERE B<0, D=2

 Find a set of features that occurs in the workload
 Subsume as many queries as possible

NVorkload Analvsis

* Ql: prod.='shoes’, prod. in (‘shoes’, ‘shirts’)

* Q2: prod. in (‘shoes’, ‘shirts’), revenue>32, revenue>
21

* Q3: prod.=‘shirts’, revenue>21, prod. in (‘shoes’,
‘shirts’)

*F1: {revenue > 21} subsumes Q2 and Q3

* F2: {product in (‘shoes’, ‘shirts’) } subsumes both Q1
and Q2

NVorkload Analvsis

Augmentation

Selected Features

time id event category publisher revenue features weight

I1 | 08:01:01 | 102 | click jeans | groupon 0.0

F1 event="buy' 50
{2 | 08:01:01 | 103 | click shirts google -0.5
{3 | 08:01:01 | 104 | click shirts groupon 0.0

F2| product='jeans' 20
l4 | 08:01:02 | 105 | buy jeans google 12.0
5 | 08:01:03 | 106 | click | jeans google -0.5 £ publisher='google' -
t6 [08:01:04 | 107 | buy | shoes | shoedeal | 30.0 revenue <0

(a) tuples (b) features

Auamentation

Augmentation

Store the evaluation result:
as a bit vector .

Batch evaluate these features against each tuple

\
{ \
time id event category publisher revenue ;E?EGFE}
f1 |o0801:01 | 102 | click | jeans | groupon 0.0 o t1 | (0,1,0)
t2 | 08:01:01 | 103 | click shirts google -0.5 & e » t2 | (0,01)
t3 | 08:01:01 | 104 | click shirts | groupon 0.0 . ‘ t3 | (0,0,0)
t4 | 08:01:02 | 105 | buy jeans google 12.0 Fa| praducsjeans 2 ta | (1,1,0)
t5 | 08:01:03 | 106 | click | jeans google -0.5 £ publisher='google"' i t5 | (0,1,)
16 | 08:01:04 | 107 | buy shoes shoedeal 30.0 revenue <0 te | (1,0,0)
(a) tuples (b) features (¢) vectors

Auamentation

t1
t2
t3
t4
t5
te

Data Skipping with Bit Vectors

time id event category publisher revenue
08:01:01 | 102 | click jeans groupon 0.0
08:01:01 | 103 | click shirts google 0.5
08:01:01 | 104 | click shirts groupon 0.0
08:01:02 | 105 | buy jeans google 12.0
08:01:03 | 106 | click jeans google -0.5
08:01:04 | 107 | buy shoes | shoedeal 30.0

Auamentation

(a) tuples

F1

F2

F3

features weight

revenue <0

event="buy’ 50
product="jeans’ 20
publisher="google 10

(b) features

1
t2
{3
ta
{5
te

(¢) vectors

(0,1,0)

(0,0,1)

(0,0,0)

(1,1,0)

(0,1,1)

(1,0,0)

P1
(1,1,0)

P2
(0,1,1)

P3
(1,0,0)

blocking

t1(0,1,0)
ta(1,1,0)

t2(0,0,1)
ts(0,1,1)

t3 (0,0,0)
ts (1,0,0)

(d) blocks

F1

F2

F

event="buy' 50
product="feans’ 20
publisher="google 10

revenue < 0

(b) features

Auamentation

t1
t2
t3
ta
ts
te

(¢) vectors

Union Vector(OR)

(0,1,0)

(0,0,1)

(0,0,0)

(1,1,0)

(0,1,1)

(1,0,0)

P1
(1,1,0)

P2
P3

(1,0,0)

blocking

t1(0,1,0)
ta(1,1,0)

t2 (0,0,1)
ts(0,1,1)

t3(0,0,0)
t6 (1,0,0)

(d) blocks

Data Skipping with Bit Vectors

Query: SELECT publisher
FROM table WHERE F1

P2 can be safely skipped

Spectrum of
Partitioning

B C D A ©C E D A B C D
1) [v] [2] é! tifm] [y]: w1 ‘F;% t[m| w[-1] ti[y] t[s]
0] [v] |4) % t3:|m| |y 4|1 (2] % t3|m| t4-1] t3|y| t3|4
ol [x] [6 % w2i[f] [x t2:[0] [6]! % 2l] t2lo] t2lx] 2]
-1 |x| 2] = t4 | 1 x 23210 |4 = td| f t:3|[] tdi x| t4]|2
B s e iticeot ML " .y 1 — -
Worat skipping effectiveness Best
= -
Best Warst

tuple reconstruction cverhead

Two Extremes:

e All columns follow the same horizontal partitioning

scheme

 Each column can have its own partitioning scheme

Which one is better?

 Depends on the workload and data characteristics

L ¥201Q

¢ %2019

Column Grouping

* Divide columns into column groups

* An objective function
* Tradeoff (skipping effectiveness, tuple reconstruction)

/

 The opportunities of skipping horizontal blocks within each
column group

_olumn Grouping

C: the set of columns in the table
G = {Gl, G,, ..., Gm}: a column grouping scheme of the
for

Objective Functlonenqueryq

: the set of columns g needs to access
: the column groups g needs to access
: # rows that g needs to scanin

» Skipping Effectiveness:
 The overall scanning cost for query q is:

NCT|-r

/ \

columns g accesses # rows, depenq§ on
horizontal partitioning

cells

_olumn Grouping

C: the set of columns in the table
G = {Gl, G,, ..., Gm}: a column grouping scheme of the
: for

Objective Functiomnaeyq

: the set of columns g needs to access
: the column groups g needs to access
: # rows that g needs to scanin

* Tuple Reconstruction Overhead
e Store tuple-id for each row
 Assume that we use sort-merge join to do tuple reconstruction

Zr_:.,- ega (17 +sort(r)) if |G¥| > 1

overhead(q, G) = :
() otherwise

_olumn Grouping

C: the set of columns in the table
G={G, G, ..., Gm}: a column grouping scheme of the

Objective Functiomnaeyq

: the set of columns g needs to access
: the column groups g needs to access
: # rows that g needs to scanin

COST(q,G) = Z |G; N C?| - r! + overhead(q, G)
G eiY

COST(W,G) = » COST(q,G)

_olumn Grouping

Efficient Estimation of

;. # rows that g needs to scan in
 Exact computation of Is very expensive

_The set of distinct vectors in G,

_—
v,(1,1,0) vV = {(1,0,0), (0,1,1), (1,0,1)}
count(v,) = 10— #rows whose feature vector is v
v,(0,1,1)
b: the size of a block (skipping granularity)
v5(1,0,0) , an upperbound
b Y ,
€} total # tuples = min # blocks to skip

_olumn Grouping

Efficient Estimation of

* Exact computation of is very expensive

» Estimation:
 Group the rows that have the same feature vectors
* Let be the set of distinct vectors after grouping in G,
* For, is the number of rows whose feature vector is
* |s the size of a block
 Given a query , divide into and
e , an upperbound

_olumn Grouping

Bottom-up Search Strateqgy

e Initially, each column
itself forms a group

* |teratively choose two
groups to merge until all
columns are in one group

* The merge should lead
to the minimum value of
the obj function

_olumn Grouping

/N

end

3rd jteration

==
/c

=R

2M jteration

N

1st iteration

A NERANER

start

Bottom-up Search Strateqgy

* Pick the iteration where
the objective function
has the minimum value
and return the
corresponding grouping
scheme

* Evaluate the obj
function (estimation)
times

_olumn Grouping

min value / -
/ /A

2
VAN

[N\

end

3rd jteration

/

2" jteration

7

\
\

15t iteration

1

2

3

4

\

5

start

: the set of queries that need to access column group
: the features that subsume

Local Feature Selection

* For each column group, the set of features that are
most helpful in block data skipping is different

* How do we decide the set of features that is the most
helpful?

The set of features that are subsumed by at least one query in the workload

ocal Feature Selection

: the set of queries that need to access column group
: the features that subsume

Local Feature Selection
‘weight(G, f) = }{.:;.| feF andq € 1:1:-'”}|

 Create a ranked list of local features for each
column group

e Determine how many features to use for
partitioning
e Set a heuristic number

ocal Feature Selection

Horizontal Partitioning

* L. Sun, M. J. Franklin, S. Krishnan, and R. S. Xin. Fine-
grained partitioning for aggressive data skipping. In
SIGMOD, pages 1115-1126, 2014.

lorizontal Partitioning

Experiments

| GSOP.-single‘ —
GSOP_ —%—

LN

20.... ..

| 0 # . . E
® " » =5
® "
w s 5
(] " - .

..................

L SOP —e—

o

Query Response Time (s)

(a) Varying #Cols

= | GSOP+ e LT

r

O —NWhAULIONJ
I

0. 0.15 0.2 025 0.3 035 04 045 0.5
(d) Varying Selectivity

Experiments

30 e g |60 AL AP K A A o o AL P W A
T e Actual Data =/ T i Ve T Time XXX -
2, Tuple Id — DT o O, C
E 20 o 10 4 % 4 o A A A AN B R SRR E B AR A A S A
t .g |00 T 4 Lo e o, e S A o
2 | 5 b s ia e o N - s oo oI s s 4 s o R 8 80 R — % T Rl O 000 0 o 0 0 0
6 |0 TR ESRRRR REERRRRR e e {g 60 T T U
qj: 40 fs s s n sé i

5 ST oD mm'm nDmmmmmmrmrerermrrrTTrTTITIT ¢ TR <« b d & .
20 y
; = = - AR
PAR-d PAR-n SOP GSOP GSOP PAR-d PAR-n SOP GSOP GSOP
single single
(a) # Cells Read (b) Query Response Time

100 test queries. hundreds of millions of rows

Full Compt: compute the exact value of the obj function

IS the Sel. Est.: baseline estimation based on traditional

estimation selectivity
good? Block Est.: proposed block-based estimation

TPC-H
Workload Cost B4

Objective Function

£

Full Compt. Sel. Est. Block Est. Full Compt. Sel. Est. Block Est.

(a) Efficiency Comparision (b) Quality Comparison

Conclusion

* Develop a novel hybrid data skipping framework (GSOP)

 Take into account these row-based and column-based
tradeoffs

* GSOP can always find a partitioning layout no worse
than SOP
 Significantly reduce the amount of data scanned
* Improve end-to-end query response times

	Slide 1
	Agenda
	Data Volumes
	Columnar Layouts
	Columnar Layouts (tuple reconstruction)
	Data Skipping
	Target Question
	Slide 8
	Slide 9
	Feature Conflicts
	Generalized Skipping Oriented Partitioning (GSOP)
	Workload Analysis
	Slide 14
	Augmentation
	Augmentation
	Data Skipping with Bit Vectors
	Data Skipping with Bit Vectors
	Spectrum of Partitioning
	Column Grouping
	Objective Function
	Objective Function
	Objective Function
	Efficient Estimation of
	Efficient Estimation of
	Bottom-up Search Strategy
	Bottom-up Search Strategy
	Local Feature Selection
	Local Feature Selection
	Horizontal Partitioning
	Experiments
	Experiments
	Is the estimation good?
	Conclusion

