
UpBit: Scalable In-Memory

Updatable Bitmap Indexing
Dimitris Staratzis

Meet the authors

Manos Athanassoulis

Boston University

Stratos Idreos

Harvard University

Zheng Yan

Facebook

1. Background

(1)Bitmap Index Introduction
What is it?

The domain of column A has d unique values which

correspond to d value bitvectors VB = {V1,V2,...,Vd}

(1)Bitmap Index Introduction
Why use it?

•Very fast equality and low selectivity queries

•Occupy relatively little space

•Take advantage of parallelism

Memory footprint

• To minimize storage requirements, we use compression.

• Typical example of Run-Length encoding:

What is the cost of using it?

Very space efficient even for domains with large cardinality!

| 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |

| 1 | 5 | 0 | 4 | 1 |

The Problem

We need both good read performance and data freshness.

Scalability for Updates

What is the problem?

Update row 2 from
20 to 10

2 1 0

Updating bitvectors is very

inefficient
Why?

Update Conscious Bitmaps

(UCB)
What is the state of the art?

•Core idea - Existence Bitvector

(EB)

•EB is initialized with 1s

•A bitwise AND between

the VB and the EB is

required

Update Conscious Bitmaps

(UCB)
How to read?

select * from table where columnA = 20

Update Conscious Bitmaps

(UCB)
How deletes work in the state of the art?

Delete row 2

Update Conscious Bitmaps

(UCB)
How updates work in the state of the art?

First delete then append (Out-of-place)

Does UCB scale?

No!

Update Conscious Bitmaps

(UCB)

As more updates arrive, read queries become increasingly

more expensive.

Why?

Update Conscious Bitmaps

(UCB)
Why it does not scale?

•Updates/Deletes —> Worse compressibility of
the bitvectors

•Need to decode and re-encode

•Need to map rowIDs with EB

2. The solution: UpBit
Scalable Updates in Bitmap Indexing

UpBit, 1st design element:

Update Bitvector (UB)

•Every update flips a bit

•The current value is the

XOR

• Initialized to 0s

•One per value of the

domain

UpBit, 2nd design element:

Fence Pointers (FP)

•Efficient access to compressed

bitvectors

•No need to decompress

Fence Pointers in Detail

UpBit
Basic Operations

• Updates

• Search

• Delete

• Insert

UpBit - Update (1)
Update row 5 from 20 to 10

UpBit - Update (2)
Update row 5 from 20 to 10

UpBit - Update (3)
Update row 5 from 20 to 10

UpBit - Update (4)
Update row 5 from 20 to 10

UpBit - Update (5)
Update row 5 from 20 to 10

UpBit - Query

1.Find the bitvector i that corresponds to val, using the VBM

which links values to bitvectors

2.Perform bitwise XOR between Vi and Ui

select * from table where columnA = 20

UpBit - Delete row

1.We need to retrieve the value Bi of this row k

2.Find the update bitvector corresponding to this value Bi

3.Negate the contents of the selected update bitvector for row k

Delete row 2

UpBit - Insert row

1.We need to find the bitvector Bi corresponding to val (Ui)

2.Make sure enough padding space is available

3.We increase the Ui size by one element and we set the new bit

equal to one on the Bi bitvector

Insert value 20

Does UpBit scale?

Yes!

UpBit Scales
How?

Merge each UB with the corresponding VB

When updates > T

• Mark UB as "to be merged”

• Reinitialize UB

3. Experimental

Results

Scalability

When stressing UpBit with updates, it delivers scalable read
performance, addressing the most important limitation observed for
UCB

Update Latency

UpBit delivers 51 − 115× faster updates than in-place updates and
15 − 29× faster updates than state-of-the-art update-optimized
bitmap index UCB.

Read Latency

UpBit outperforms update optimized indexes by nearly 3× in terms of
read performance while it loses only 8% compared to read-optimized
indexes.

Workload Latency

UpBit combines very low overhead on updates and very low reads.

Query Latency

For low selectivity, UpBit is superior

FP Behavior (1)

Optimal size: 103 - 105

FP Behavior (2)

Optimal size: 103 - 105

UpBit Space Overhead

Minimal when compressed!

Summary

• Bitmap Indexes are not efficient for updates

• UCB improves this by introducing EB

• UCB does not scale

• UpBit uses both UB and Fence Pointers to achieve

scalability

Thank you!

