
The Log-Structured Merge-Bush & the Wacky Continuum

Sean Chun and Kaijie Zhou



Presentation 
Overview

1. Introduction
a. Problem (WPI)
b. Solution( Wacky with 

LSM-Bush)
2. Background
3. Capped Lazy Leveling
4. Log Structured Merge Bush
5. Wacky Continuum
6. Experiment Results

a. Evaluations
7. Related Works
8. Conclusion
9. Q&A

10.



Introduction

Key-Value Store
(KVS)

- What is a Key Value 
Store?

- What are some 
issues with KVS?



Introduction

Key-Value Store
(KVS)

Some Issues that current Key-Value 
Store is facing:

- Increase in write proportions in 
many application

- Large raw data cannot be all fit 
into memory

- Solid State Drive (SSD) make write 
operations more costly than read 
operations



Introduction

Problem

Write and Point Read Intensive 
Workloads (WPI)

- Write intensive workloads with 
mostly only point reads workload

- Need to rapidly ingest write and 
enable fast application read

Existing designs keep capacity ratio 
fixed between levels. 



Introduction

Existing Design to 
Keep fixed Point 
Read Cost



Introduction

Solution

The Wacky Continuum

- LSM-Bush with whole spectrum of merge 
policies, from laziest to greediest.

- Provide analytical model that allow searching 
for best merge policy for a given workload

- With some range read, use CLL to adjust the 
capacity ratio of largest level

- With no range read, increase capacity ratio 
between smaller level and use LSM-Bush

LSM-Bush

- Setting increasing capacity ratios between 
smaller pairs of adjacent levels, which allow 
for more runs before merging



Background Bloom Filters and Fence Pointers



Background

Difference between Tiering 
and Leveling?



Background 
Continued

Merge Policies

- Leveling

- A merge is triggered at a level as soon 

as a new run comes in

- Tiering

- Gather runs and merges them only 

when it reaches capacity.

- Uniform Bloom Filters Memory

- Require more bits per entry for the 

largest level as the data size grows in 

order to keep the point read cost fixed

-



Background 
Continued

Sorted Array best for read (minimize read cost)

Log best for write (minimize write cost)



Background 
Continued:

- Bloomptimized Filters Memory
- Set exponentially decreasing False Positive Rates 

to smaller levels relative to the largest level’s FPR

- Require linearly more bits per entry at smaller 

levels, the number of entries for smaller levels 

decreases at a much faster exponential rate

- Cost Emancipation Asymmetry
- Sum of FPR (read cost) mostly come from larger 

levels, but write cost come equally from every 

level

- Lazy Leveling
- Reduce merge overhead by using Tiering on L-1 

levels and Leveling on level L

- WA is O(T+L) (T from largest level and L from 1 to 

L-1 levels)

-



Background
Continued: Problem with Lazy Leveling:

- What can be a problem 
with optimizing the lazy 
leveling policy?



Background
Continued:

Problem with Lazy Leveling:

- What can be a problem with 
optimizing the lazy leveling policy?



Capped Lazy 
Leveling

- High Level Design
- Allow decoupling control of major and minor cost

- Tiering in L-1 levels 

- Introduce new parameter capping ratio C, this 

allow varying the largest level capacity 

independently.

- Level Capacities
- the capacity at Level i is smaller than at Level 

L by a factor of the inverse product of the 

capacity ratios between these levels

- Number of Levels



Capped Lazy 
Leveling 
Continued

- Runs at each level

- Bloom Filters

- Fixed largest level and exponentially 

decreasing FPRs in the smaller levels

- Top-Down Capacity Determination
- adjusting the widths of Levels 1 to L−1 after 

every major compaction to ensure that their 

cumulative capacity is smaller by a factor of 

C than the size of the new run at Level L.



Capped Lazy 
Leveling 
Continued

- Memory

- Increase capping ratio C, memory 

requirement decreases because it brings 

data to the largest level.

- Write Amplification
- An entry on average participates in one minor 

compaction at each of Levels 1 to L−1, and in 

O(C) major compactions at Level L

- Squared CLL
- Variant of CLL that sets the capping ratio C to 

be equal to the number of levels L.

- Increase fraction of data on the largest level, 

which has the highest FPR, and requires 

fewest bits per entry



Capped Lazy 
Leveling 
Continued

- Better Trade-Offs:

- More all around scalable tradeoffs

- Trading memory gain for point read, need 

to hold M(average bits per entry) fixed, which 

will cause the sum of FPRs to decrease

- Trading memory gain for write cost 

keeping point read cost fixed and memory 

fixed, require to increase T, which still 

performs better than a LSM Tree

- Analyzing Range Reads:

- Not good for range reads, good for WPI 

workload

- Double WA does not reduce the number of 

runs a range read has to access



Discussion!
1. What is the difference 

between major and minor 
compactions?

2. What are the pros and 
cons of using CLL?

3. What is the effect of 
having less merging on 
write and read costs?



Is it possible to do 
even better than 
SCLL?

Illustrates a cumulative breakdown of how the different 
cost metrics emanate from different levels with SCLL

● The core insight is that while minor compaction 
overheads increase logarithmically with the data 
size, they lead to exponentially diminishing returns 
with respect to memory and point reads



Solution: THE 
LOG-STRUCTURED 
MERGE-BUSH

● To address this cost asymmetry, 
we introduce LSM-BUSH
○ A new data structure, 

generalization of CLL, that 
sets increasing capacity ratios 
between adjacent pairs of 
smaller levels

○ As a result, smaller levels get 
lazier by gathering more runs 
before merging them

○ more scalable tradeoffs all 
around



Discussion! What key 
implementation does 
this paper introduce for 
LSM bush? And why?



LSM Continued

Key Innovation

● LSM-bush introduces a new parameter 
called the growth exponential X to s pairs of 
adjacent smaller levels



LSM Continued:
Capacity Ratio

● For all Levels 1 to to L-1,, the capacity ratio ri at Level 
i is greater by a power of X than the capacity ratio at 
Level i+1

● Result: 
○ The capacity at smaller levels decreases at a 

doubly-exponential rate.
○ When X is set close to 1, LSM-bush becomes 

identical to CLL. As we increase X, smaller 
levels become increasingly lazier by gathering 
more runs before merging them.

 i=L

 i=L-1

 i=L-2



LSM Continued:
Level Capacities 
and Number Of 
Levels

Level Capacity: Ni is the  the capacity at Level i, derived i 
by observing that it is smaller than Level L by a factor of 
the inverse product of the capacity ratios between 
these levels.

Number of Levels: The number of levels is found by 
observing that the largest level is larger than the 
buffer by a factor of the product of all capacity 
ratios.



LSM Continued:
Runs at Each Level

Ai is the maximum number of runs at Level i

For Levels 1 to L−1, Level i gathers at most ri−1 runs 
from Level i − 1 before reaching capacity (the r th i 
run triggers a minor compaction). On the other hand, 
Level L has one run since a major compaction is 
triggered whenever a new run comes in.



LSM Continued:
Bloom Filters

This equation Bloomptimizes the filters such that the 
largest level’s filter has a fixed FPR while smaller levels 
are assigned decreasing FPRs as the data grows to keep 
the sum of FPRs p fixed

Performs one hash table check rather than numerous 
Bloom filter checks for smaller levels



Properties of LSM 
Bush:
Memory

The memory footprint is derived by summing up the 
equation for a Bloom filter’s memory across all levels

Capacity at smallers levels decreases at a doubly 
exponential rate 
          Defined by:                              
On the other hand, the number of bits per entry for 
smaller levels increases at an exponential rate

Defined by:                     

Thus, while smaller levels require exponentially 
more bits per entry, they have doubly-exponentially 
fewer entries 

As a result, larger levels dominate the overall 
memory footprint. The number of bits per entry for 
LSM-bush needed for a given point read cost does 
not increase as the data grows.



Properties of LSM:
Range Reads 

● Range read costs are derived analyzing the 
number of runs across all levels.

○ When the growth exponential X is 
close to 1, LSM-bush becomes 
identical to CLL

■ number of runs is O(1 +T · (L−1))
○ For higher values of X, the number of 

runs at Level 1 quickly comes to 
dominate the overall number of runs in 
the system since it contains 
doubly-exponentially more runs than at 
larger levels

● Thus, range reads generally has to access 
O(1+T · (L−1)+a1) runs.

● The complexity is analyzed by O(T^X^L−2 )



Properties of LSM:
Bloom Filter CPU 
Overheads
 

● As LSM-bush can contain a large number of 
runs at its smaller levels on account of 
merging more lazily

○ Performing a Bloom filter check for 
each of these runs during a point read 
can become a CPU bottleneck

○ To prevent this bottleneck, LSM-bush 
replaces the Bloom filters at smaller 
levels (typically at Levels 1 to L−3) by a 
hash table that maps from each entry 
to its physical location in storage

○ As a result, LSM-bush performs one 
hash table check rather than numerous 
Bloom filter checks for smaller levels

■ hash table requires more bits per 
entry than a Bloom filter does



LSM-Bush: 
Summary

Overall, a faster write time can be 
achieved using the LSM-bush structure 
by introducing the new variable 
(Growth Exponential X)



Discussion! What model is best for high 
number of point reads?

What model is best for more 
write and more range reads?



The Wacky 
Continuum

Wacky: Amorphous Calculable Key-Value Store

● Wacky is a generalization that can 
assume any of the Bloomptimized 
designs discussed so far.

○ A design continuum that can be tweaked to 
transition across designs, includes cost 
models to predict how tweaks impact overall 
system behavior

● Wacky’s design space can be searched 
analytically and navigated in small and 
informed steps to converge to the best 
performformance model 



Wacky Continuum:
Controlling 
Merging within 
Levels

● Wacky inherits the LSM-bush design space with the 
goal to be able to optimize for range reads

● Incoming data into a level gets merged into the 
active run. Once the run reaches the merge 
threshold, it becomes static and a new active run is 
initialized. 

○ When merge threshold = 1, we have Leveled 
merging. 

○ When merge threshold= 1/(ri−1), we have 
Tiered merging

● Wacky introduces  new two parameters:
○ K controls the merge threshold at Levels 1 to L 

- 1
○ Z controls the merge threshold at Level L
○ Allows Wacky to fine-tune the merge threshold 

across different levels
● Equation: the maximum number of runs that each 

level can have
○ When K and Z are both 0 then there is Leveled 

Merging; When both are 1 then Tiered Merging



Wacky Continuum

● Wacky has a total of five parameters, K, Z, X, T and C, which fully dictate the overall structure.
○ Figure 8 shows how these parameters can assume any of the designs discussed so far



Wacky Continuum: 
Searchable Cost 
Model

A generalized cost model for Wacky with the goal of being able 
to search for the best design for a given application.

● Write Cost: divide write-amplification by the block size B 
○ each entry gets copied an average of (C/aL) 

times at Level L and (ri -1)/(aL + 1) at level i
○ assumes preemptive merging, whereby we 

include all runs at Levels 1 to i in a merge 
operation if these levels are all just below 
capacity



Wacky Continuum: 
Searchable Cost 
Model

● Point Reads: 
○ Rzero = the I/O cost of a point read to a 

non-existing entry
■ P = the sum of all FPRs

○ R =  the cost of a worst-case point read
■ (1) one I/O to fetch the target entry from 

Level L
■ (2) an average of p −pL ·aL false positives 

while searching Levels 1 to L−1
■ (3) an average of pL ·aL/ 2 false positives 

while searching Level L
■ sum up these three terms to obtain the 

expression for R
● Range Reads:

○ V = the total number of runs in the system



Wacky Continuum:
Searchable Cost 
Model

Finding the best design:

● Find average worst-case operation cost Θ in different 
types of operations in the workload

● r= point reads
● z= zero-result point reads
● w= writes
● v= range reads
● Multiply each of them by the corresponding I/O cost
● Allows the search of the design to minimizes the 

average operation cost

Alternative: Searching all combinations of Wacky’s 
parameters can be computationally intensive

● Sse an iterative approach to increment T to find a 
local minimum for the average operation cost Θ



Evaluation Implementation:

- Wacky on top of Rocks-DB

- Use RocksDB API to trigger merging across 

levels and within levels

- Extend RocksDB to set different FPRs to 

different levels

Default Workload:

- 256GB data with 128B entries
- Default 5 bits per entry to the Bloom Filters 

of each baseline



Evaluation Point Reads vs Writes



Evaluation Range Read vs Writes

-  60% writes and 40% read
- QLSM-bush to SCLL to 

lazy leveling and finally to 
Leveling



Evaluation Data Size Scalability:

- Workload of 60% insertions and 

40% point reads(half zero results 

and half at largest level)

- Switch from SCLL to QLSM-Bush



Evaluation Memory Scalability

- Dash curve is SK (log-structured 
hash table design)

- SK performs better than Wacky 
given more than 40 bits per entry 
for bloom filter



Evaluation Systems Comparison

- Wacky vs Monkey(Bloomptizied 

Tierd and leveled) vs 

Dostoevsky(Monkey with LL)

- Wacky outperform Dostoevsky in 

write intensive workload due to 

SCLL and QLSM-Bush

Dostoevsky



Related Works:
LSM Tree

● Write-intensive workloads -> LSM-tree’s merge 
operations become a performance bottleneck

● Solutions
a. Partition individual runs 
b. Store the value components of all entries 
c. Pack entries more densely into the buffer 

● Many operations in existing LSM-tree designs are 
fundamentally unimpactful and can be removed 
by applying increasing capacity ratios across 
smaller levels to scale write cost better than 
existing LSM-tree designs (LSM BUSH)



Related Works:
LSH-Table

● (LSH-Table) logs entries in storage and 
maps their locations in memory using a hash 
table

○ Exhibits optimum write performance at 
the expense of having a high memory 
footprint

● Solution:
○ Unify the design spaces of LSM-tree 

and LSH-table to be able to perform as 
well as possible under any memory 
constraints

○ -> Smaller levels of LSM-bush are a 
series of LSH-tables that evolve as a 
bush



1. Existing key-value stores backed 
by an LSM tree exhibit 
deteriorating 
performance/memory trade-offs 
as the data grows

2. Introduce LSM-bush
3. Embed LSM-bush within Wacky




