
FISHSTORE: FASTER INGESTION
WITH SUBSET HASHING

BY BENJAMIN BORDEN

TABLE OF CONTENTS
• Authors

• The problem

• Introducing faster

• Introducing fishstore

• Subset hash indexing

• Data ingestion in fishstore

• Subset retrieval in fishstore

• Adaptive prefetching

• Evaluation of fishstore on datasets

• Fishstore subset retrieval performance

• Conclusion

MEET THE AUTHORS

Donald Kossman Badrish Chandramouli Yinan Li Dong Xie
Microsoft Research Microsoft Research Microsoft Research University of Utah

THE PROBLEM?

• Increased importance of cloud-edge architecture →
• increased the amount of data being ingested by the cloud

• Previous Industry Goal:

• Ingest information as fast as possible by dumping it into storage

• Current Industry Goal:

• The data needs to be immediately ready for analytical queries

THE TYPE OF QUERIES WE CARE ABOUT
• Ad-hoc queries

• Scan data over time ranges

• Recurring queries

• Have identical predicates, but are repeated over different time ranges

• Point lookup queries

• Based on various keys

• Streaming queries

• Fed parts of the ingested data satisfying custom predicates and based on the query schema

TRADITIONAL APPROACHES
• Ingest the data in raw form

• Load data into warehouse in batch jobs

OR

• Parse data and load into database

or

• update secondary range index over
every attribute during ingestion

Why is this bad?

Why is this bad?

TRADITIONAL APPROACHES
• Ingest the data in raw form

• Load data into warehouse in batch jobs

OR

• Parse data and load into database

or

• update secondary range index over
every attribute during ingestion

Why is this bad?
This is slow (low throughput)
Has high latency before the data is ready for
queries

Why is this bad?
Also very slow (low throughput)

INTRODUCING FASTER

FASTER
• FASTER:

• a persistent key-value store
• consists of a:

• lightweight
• cache optimized
• concurrent

• hash index backed by a hybrid log ordered by data-arrival

• Benefits

• Very low CPU cost

• More than 150 millions operations per second

BACKGROUND ON FASTER
• FASTER: concurrent latch-free hash key value store with support for larger than memory data

• FASTER has two components:

• a hash index

• log structured record store

INTRODUCING FISHSTORE

INTRODUCING FISHSTORE

• Fishstore = [F]aster [I]ngestion with [S]ubset [H]ashing store:
• a storage layer for flexible schema data

• Borrows some features from faster such as basic index design and epoch model

• Allows for the dynamic registration of predicated subset functions (PSF) →

• allow for efficient retrieval of subsets of ingested data based on common criteria

• PROS OF PSFS –

• CONS OF PSFS –

INTRODUCING FISHSTORE

• Fishstore = [F]aster [I]ngestion with [S]ubset [H]ashing store:
• a storage layer for flexible schema data

• Borrows some features from faster such as basic index design and epoch model

• Allows for the dynamic registration of predicated subset functions (PSF) →

• allow for efficient retrieval of subsets of ingested data based on common criteria

• PROS OF PSFS – Allows for speedy and customizable retrieval of data

• CONS OF PSFS – A large number of PSF leads to throughput penalties

PREDICATED SUBSET FUNCTION

• Predicated Subset Function (PSFs):
• groups records with similar properties for later retrieval

• "Given a data source of records in R, a predicated subset function
(PSF) is a function f : R → D which maps valid records in R, based on
a set of fields of interest in R, to a specific value in domain D”

EXAMPLE: MACHINE TELEMETRY

• THE CHALLENGES OF THE FISHSTORE
SYSTEM CONSISTS OF TWO MAJOR
COMPONENTS:
• INGESTION AND INDEXING
• SUBSET RETRIEVAL

INGESTION & INDEXING

• FISHSTORE ingests data into an immutable log in ingestion order and with a hash index

• For every PSF and value in the log there is a hash entry which links all matching values in a hash chain

• Major difference between key-value store and PSF based hash chains:

• A record can be part of more than one hash chain!

SUBSET RETRIEVAL

• The primary benefit of PSFs is scan optimization

• If a subset needs to be retrieved which does not have a relevant PSF, a full scan of the data is required

• Fishstore supports scans for records that match PSF values in which case it retrieves the relevant

hash chain.

• However FISHSTORE does not recatagorize data which is older than the implementation of the PSF!

• When retrieving data that has a relevant PSF but the data is older than the PSF implementation:

• a full scan must be done over the older data.

SYSTEM ARCHITECTURE OF FISHSTORE
• The architecture of FISHSTORE

consists of:
• A hybrid log for record allocation,

• A hash index that holds pointers
to records on the log,

• A registration service

• A set of ingestion workers

CHALLENGES/SOLUTIONS

• Problem: Designing a fast concurrent index which supports PSFs

• Solution: Using a subset hash index combined with a carefully designed record layout

• Problem: Acquiring a safety boundary for on-demand indexing.

• Solution: Utilizing epoch-based threading model to find safe boundaries

• Problem: Data ingestion should be latch-free in order to achieve high throughput

• Solution: An unusual lock-free technique discussed later

• Problem: Scanning a hash chain imitates random I/Os which damages subset retrieval speeds

• Solution: Utilizing an adaptive prefetching technique discussed in more detail later

SUBSET HASH INDEX

SUBSET HASH INDEX

• FISHSTORE’s fast index called subset hash index:

• a hash table that indexes hash chains of records

based on user defined PSFs

• To retrieve records with a specific property:

• calculates the hash signature of the property to

locate the hash entry

• follows the chain until it retrieves all matching entries

FISHSTORE RECORD LAYOUT

EPOCHS AND YOU
• Fishstore has an epoch framework where there is a global epoch e which may

be incremented by any thread

• Each thread has a local epoch, which they refresh to keep up with the global
epoch

• When all threads’ epochs are at least at value c, then all threads are aware of
all changes up to global epoch c

ON-DEMAND INDEXING
• FISHSTORE keeps two versions of all metadata

• Rest state:

• when there are no index altering requests

• Prepare state:

• when the user pushes an index altering request to the system

• Pending state:

• Once the inactive metadata is updated, it becomes the active
metadata and increments the global epoch to apply the
changes.

• Rest state:
• When the epoch becomes safe, FISHSTORE applies the changes

to the old metadata

DATA INGESTION IN
FISHSTORE

DATA INGESTION
• Fishstore ingests data concurrently with each thread being referred to as an ingestion worker

• To complete ingestion, the incoming data moves through four phases:
• Parsing and PSF evaluation

• Record space allocation

• Subset hash index update
• Record visibility

PARSING AND PSF EVALUATION

• Ingestion worker uses whatever parser which was provided by the user to parse data fields in a batch.

• Whenever a worker detects changes:

• it recalculates the minimum field set for index building and recreates its thread-local parser

• After parsing out essential fields:

• the worker annotates the position of a field and evaluates all requested PSFs for each record.

RECORD SPACE ALLOCATION

• After a worker is done parsing the received data →

• it must determine how much space it requires in fishstore.

• Then the worker allocates space by shifting the tail of the log to accommodate more data.

• Lastly the data is copied over to the payload region and record headers are filled.

• Since we have yet to update the index, the record is inserted with its visibility bit set to false.

• Any reader that touches an invisible record ignores it.

• This guarantees the atomicity of record insertion.

INDEX UPDATE & RECORD VISIBILITY

• Once record space allocation is finished, the worker updates all the hash chains of which the

record applies.

• To perform this update, we use a compare and swap

• IF THE compare-and-swap fails (which is usually):

• mark the record as invalid, reallocate space on the log and try again.

• Finally, the record is made atomically visible to readers by setting the visibility bit in the header

SUBSET RETRIEVAL IN
FISHSTORE

SUBSET RETRIEVAL INTERFACE

• Fishstore retrieves all records satisfying a given property in a continuous range of the log

• However, just because a given property currently has a hash chain associated with it, does not

mean all the records which satisfy that property have been indexed. Why?

SUBSET RETRIEVAL INTERFACE

• Fishstore retrieves all records satisfying a given property in a continuous range of the log

• However, just because a given property currently has a hash chain associated with it, does not

mean all the records which satisfy that property have been indexed. Why? Because records could

have been entered before the PSF was written!

• Fishstore breaks the request into index scans + full scans based on safe registration and deregistration

boundaries for all psfs.

• Full scans have to parse and evaluate the request against each record encountered

ADAPTIVE PREFETCHING

ADAPTIVE PREFETCHING

• When the log is totally in-memory, exploring the hash chain is not resource intensive.

• If the exploration lands on storage:

• will issue random I/Os even when retrieved records may be continuously located on the log, hurting performance.

• In FISHSTORE, we use adaptive prefetching to detect locality on the hash chain and actively prefetch more

data on the log to reduce random I/Os.

EVALUATION OF
FISHSTORE ON DATASETS

*HIGHER IS BETTER

*HIGHER IS BETTER FISHSTORE Outperforms Due To Removal Of Indexing
And Parsing Bottlebecks!

*HIGHER IS BETTER

*HIGHER IS BETTER

FISHSTORE:
Throughput ↑
as # of
workers ↑!

*HIGHER IS BETTER

*HIGHER IS BETTER

FISHSTORE
scales better
than other
solutions!

FISHSTORE
increases
speed with
faster parsing
and indexing

*HIGHER IS BETTER

*HIGHER IS BETTER Ingestion speed goes ↓ as the # of
PSFs ↑!

FISHSTORE SUBSET
RETRIEVAL PERFORMANCE

*LOWER IS BETTER

*LOWER IS BETTER

Prefetching
good: issue
random I/Os
for selective
queries and
okay
performance
on non-
selective
ones!

*LOWER IS BETTER

*LOWER IS BETTER

Due to
adaptive
prefetching,
index scan
does not
become as
slow as full
scan!

*LOWER IS BETTER

*LOWER IS BETTER

Index scan
with and
without
adaptive
prefetching
benefit from
having more
memory!

*LOWER IS BETTER

*LOWER IS BETTER

FishStore
achieves
higher
throughput,
because short
scans are
cheaper with
no parsing or
index update

*LOWER IS BETTER

*LOWER IS BETTER

FISHSTORE
performance
betters
because less
of the data
requires a full
scan!

CONCLUSION
• Huge volumes of structured and unstructured data are being ingested into the cloud from a

variety of data sources which no current methodology can ingest at high throughput with low
CPU cost.

• Building on faster, FISHSTORE is a concurrent storage layer for data with flexible schema, based
on the notion of hash indexing user chosen, dynamically registered predicated subset functions.

