
Fast Scans on Key-Value Stores
By David Shen and Beatrice Tanaga

About the Authors

This work was done in 2017 at ETH Zürich, a university in Switzerland.

Markus Pilman Kevin Bocksrocker Lucas Braun Renato Marroquin Donald Kossmann
Snowflake Computing Microsoft Oracle Labs PhD Student, ETH Zürich Microsoft Research,

previously Professor at
ETH Zürich

Table of Contents
1. Introduction to Key-Value Stores (KVS)
2. KVS System Requirements
3. Design Space
4. TellStore Variants
5. Implementation of TellStore
6. Experimentation Results
7. Related Work
8. Conclusion
9. Future Advancements

Table of Contents

1. Introduction to Key-Value Stores (KVS)
2. KVS System Requirements
3. Design Space
4. TellStore Variants
5. Implementation of TellStore
6. Experimentation Results
7. Related Work
8. Conclusion
9. Future Advancements

Introduction to KVS

What is a Key-Value Store?

► A type of storage engine that stores values indexed by a key.

RamCloud

State of the Art KVS

SQL-over-NoSQL Architecture

- Processing layer is
responsible for
synchronization

- Snapshot Isolation is
used for
synchronization in the
commit manager.

- A form of
Multi-Version
Concurrency Control (a
way for the system to
provide concurrent
accesses to the DB)

Advantages of this Design

SQL-over-NoSQL Architecture

► Elasticity
► Scalability
► Sustains high

throughput for get/put
(OLTP) workloads

► Can decouple the
storage component
and allow it to be part
of a completely
isolated offering (eg.
DynamoDB as part of
AWS).

Any downsides?

Downsides

Issues:

► Access patterns of OLTP and OLAP workloads are different
► OLAP workloads requires reading large, or at times all, portions of the data
► Conflict of interest: Get/Put workloads require sparse indexes, while scans

require spatial locality.

Table of Contents
1. Introduction to Key-Value Stores (KVS)

2. KVS System Requirements
3. Design Space
4. TellStore Variants
5. Implementation of TellStore
6. Experimentation Results
7. Related Work
8. Conclusion
9. Future Advancements

SQL-over-NoSQL Architecture cont.
► What are the distributed KVS requirements to efficiently implement the

SQL-over-NoSQL architecture?

1. Scans

2. Versioning

3. Batching and Asynchronous Communication

SQL-over-NoSQL Architecture cont.
► What are the distributed KVS requirements to efficiently implement the

SQL-over-NoSQL architecture?

1. Scans
- KVS must be able to support efficient scan operations in addition to

get/put requests
- Selections, projections and simple aggregates should be supported

● This allows only the relevant data to be fetched from
storage layer and brought up to processing layer

- Supported shared scans is also a big plus

2. Versioning

3. Batching and Asynchronous Communication

SQL-over-NoSQL Architecture cont.
► What are the distributed KVS requirements to efficiently implement the

SQL-over-NoSQL architecture?

1. Scans

2. Versioning
- Different versions of each record should be maintained in order to

return the right version depending on the timestamp of the
transaction

- This is important of Multi-Version Concurrency Control
- Garbage collection should be able to reclaim storage occupied by

old record versions

3. Batching and Asynchronous Communication

SQL-over-NoSQL Architecture cont.
► What are the distributed KVS requirements to efficiently implement the

SQL-over-NoSQL architecture?

1. Scans

2. Versioning

3. Batching and Asynchronous Communication
- OLTP processing nodes should be able to batch several requests to

the storage layer
- Cost of round-trip messages from processing to storage layer can be

amortized for multiple concurrent transactions
- Batch requests should also be executed asynchronously

Difficulties of Building the Optimal KVS

► The conditions for the three requirements conflict one another

► As a result, more KVS today, with the exception of Kudu, are specifically
designed for get/put requests

► There are many locality conflicts that surface when we try to integrate
scans into these systems

Locality Conflicts

1. Get/Put

2. Versioning

3. Batching

SCAN vs..

Locality Conflicts

1. Get/Put
- Systems designed for analytical queries normally use columnar layouts

to increase locality
● This is so queries can access the same set of memory locations

repetitively over a short period of time
- Existing KVS typically favor row-store layouts for processing get/put

requests without the need to materialize records
2. Versioning

3. Batching

SCAN vs..

Locality Conflicts

1. Get/Put

2. Versioning
- The presence of irrelevant versions of records reduces locality and slows

down scan operations
- Checking the relevance of a record version as part of a scan can be very

costly
3. Batching

SCAN vs..

Locality Conflicts

1. Get/Put

2. Versioning

3. Batching
- It is not ideal to batch scan operations with get/put requests
- OLTP workloads require constant and predictable get/put response

times
● Scan operations are highly variable in terms of latency, depending

on the selectivity of the predicates and the number of columns that
needs processing during a query

SCAN vs..

Table of Contents
1. Introduction to Key-Value Stores (KVS)
2. KVS System Requirements

3. Design Space
4. TellStore Variants
5. Implementation of TellStore
6. Experimentation Results
7. Related Work
8. Conclusion
9. Future Advancements

Design Space

The main decisions when designing a storage engine:

► How to store data?
► How to access data?
► How to update data?

Design Space

Design Space - how to read

Design Space - how to read

Design Space - how to read
Measurements:

storage - how efficient is the
storage in terms of
fragmentation

concurrency - how well is it
supported

versioning - how costly is it to
implement (performance wise)

GC - how costly is it to
implement (performance wise)

get/put - efficiency for get/put
operations

scan - efficiency for scan
operations

Garbage Collection

A form of memory management

“Garbage” - useless/obsolete data that is occupying valuable memory space

Advantages:

► Ease of development
► Mitigates certain bugs and memory leaks

Disadvantages:

► Impacts performance

Why do we need to consider GC when designing a key-value store (why can’t we
just manually manage our memory)?

Design Space - how to read
Measurements:

storage - how efficient is the
storage in terms of
fragmentation

concurrency - how well is it
supported

versioning - how costly is it to
implement (performance wise)

GC - how costly is it to
implement (performance wise)

get/put - efficiency for get/put
operations

scan - efficiency for scan
operations

Update: update-in-place

Page

1 Foo 23

2 Bar 44

Records are
fixed-size

Update: update-in-place

Page

1 Foo 23

2 Bar 44

3 Baz 41 Insert

Update: update-in-place

Page

1 Foo 23

2 Bar 44

3 Baz 1000 Update

Update: update-in-place

Page

1 Foo 23

2 Bar 44

3 Baz 41

Delete

Update: update-in-place

Page

1 Foo 23

3 Baz 41

Update: update-in-place

1. Why is storage an advantage
of update-in-place (assuming
fixed record sizes)?

2. Why are versioning and
concurrency disadvantages?

Measurements:

storage - how efficient is the storage in
terms of fragmentation

concurrency - how well is it supported

versioning - how costly is it to implement

GC - how costly is it to implement

get/put - efficiency for get/put operations

scan - efficiency for scan operations

Update: log-structured

No overwriting necessary, just append to a log.

Introducing

The World’s Simplest Database

Two methods:
get(k)
put(k,v)

Insert 1

The World’s Simplest Database

put(1, “foo”)

1, “foo”

Insert 2

The World’s Simplest Database

put(2, “bar”)

1, “foo”

2, “bar”

Delete 1

The World’s Simplest Database

put(1, “”)

1, “foo”

2, “bar”

1, “”

Update 1

The World’s Simplest Database

put(1, “baz”)

1, “foo”

2, “bar”

1, “”

1, “baz”

Get 1

The World’s Simplest Database

get(1) =

1, “foo”

2, “bar”

1, “”

1, “baz”

“foo”

Get 1

The World’s Simplest Database

get(1) =

1, “foo”

2, “bar”

1, “”

1, “baz”

“foo”

Get 1

The World’s Simplest Database

get(1) =

1, “foo”

2, “bar”

1, “”

1, “baz”

“”

Get 1

The World’s Simplest Database

get(1) = “baz”

1, “foo”

2, “bar”

1, “”

1, “baz”

“baz”

Update: log-structured

Measurements:

storage - how efficient is the storage in
terms of fragmentation

concurrency - how well is it supported

versioning - how costly is it to implement

GC - how costly is it to implement

get/put - efficiency for get/put operations

scan - efficiency for scan operations

Update: delta-main

Update: delta-main

This approach tries to combine the advantages
of the log-structured approach (fast get/put)
with the advantages of update-in-place (fast
scans).

Layout

PAX - Partition Attributes Across
Paradigm

► Variant of column-major ordering
► PAX is a compromise between the pure column and row-major designs.

PAX - Partition Attributes Across
Paradigm

► Stores a set of records in every page, but within the page, all records are
stored in a column-major representation.

https://www.pdl.cmu.edu/PDL-FTP/Database/pax.pdf

Versions

Versions - clustered

► Stores all versions of a record in the same location

Page

1 Foo 23

2 Bar 44

3 Baz 41
Insert

Version Data

Versions - chained

► Chain the versions in a linked list

Garbage Collection - 2 strategies

Periodic garbage collection in a separate dedicated thread/process

Piggy-back garbage collection with (shared) scans

Design Space

Table of Contents

1. Introduction to Key-Value Stores (KVS)
2. KVS System Requirements
3. Design Space

4. TellStore Variants
5. Implementation of TellStore
6. Experimentation Results
7. Related Work
8. Conclusion
9. Future Advancements

TellStore-Log

Update: Log-structured

Layout: Row-major

Versions: Chained Versions

Garbage collection: Piggy-backed

TellStore-Log Update: Log-structured

Layout: Row-major

Versions: Chained Versions

Garbage collection: Piggy-backed

TellStore-Log

Questions for discussion:

► Why did the paper use a hash index to implement this log-structured storage
(as opposed to eg. a tree index)?

► Why does TellStore-Log have good scan performance compared to other
log-structured designs (such as RAMCloud)?

TellStore-Col

Update: Delta-main

Layout: Column-major

Versions: Clustered Versions

Garbage collection: Periodic

TellStore-Col

TellStore-Col

Questions for discussion:

► Why is the “delta” split into two logs - insert log and update log?
► (Hint: A different log is used depending on whether the key exists or not)

► What are the advantages of TellStore-Col vs TellStore-Log?

Table of Contents

1. Introduction to Key-Value Stores (KVS)
2. KVS System Requirements
3. Design Space
4. TellStore Variants

5. Implementation of TellStore
6. Experimentation Results
7. Related Work
8. Conclusion
9. Future Advancements

Implementation

► This section describes TellStore as a distributed, in-memory KVS, that can
use any of the storage engines described above
► Communication model
► Thread model
► Data indexing
► Predicate pushdowns

Implementation - Communication Model

► Batching + Async Communication
► A processing instance should not be idle while waiting for a

storage request to complete
► otherwise wasted CPU and network bandwidth

Batching requests from the
processing layer and responses from
storage cuts down on the messaging
rate, which would otherwise be a
bottleneck.

Implementation - Thread Model

Why this thread model? In other words, what is the benefit of having
separate threads for scans and gets/puts?

Implementation - Data Indexing

What about indexing across KV stores?
How do we know which KV Store
contains the key we want? Simple if
we only have a few instances, but
what if we have many KV Stores?

Implementation - DHT

Source: https://www.cs.princeton.edu/courses/archive/fall16/cos418/docs/L10-dhts.pdf

Implementation - Predicate Pushdowns

Pushing down predicates allows for less data movement. Imagine:

SELECT * FROM A,B WHERE A.id=B.id AND A.name=“John”;

Implementation - Predicate Pushdowns

► TellStore requires all selection
predicates of scans to be in
conjunctive normal form (CNF).

► CNF - a conjunction of one or
more clauses, where a clause is a
disjunction of literals; otherwise
put, it is an AND of ORs.

Table of Contents
1. Introduction to Key-Value Stores (KVS)
2. KVS System Requirements
3. Design Space
4. TellStore Variants
5. Implementation of TellStore

6. Experimentation Results
7. Related Work
8. Conclusion
9. Future Advancements

Experimental Setup
► Test environment

- All experiments were done on a cluster of 12 machines
- All KVS benchmarked are Non-uniform Memory Access (NUMA) unaware
- 3x the number of processing nodes as storage nodes were used to

prevent load generation from becoming the bottleneck

► TellStore-Col was the main test subject against all other KVS
► Kudu performances were used as a baseline for all the experiments

► Running the experiment
- First populate the data, then run the experiment for 7 minutes

total
- First and last minute were factored out due to warm-up and

cool-down effects

Experimental Benchmarks

1. Yahoo! Cloud Serving Benchmark (YCSB)
- Commonly referred to as “Big Data” Benchmark
- The YCSB benchmark was the designated goal performance for cloud

data serving systems, in particular for transaction-processing workloads

2. Extended YCSB → YCSB#

- Specially crafted to test additional capabilities of a KVS
- Schema was extended to include variable-size columns and 3 new queries that

involve scans
- Scaling factor dictating the number of tuples in the database was set to 50

● Corresponds to a test set of 50 million tuples

Side note about
NUMA-unaware

When you have multiple
physical cores, each core
might have their own
cache rather than a
shared pool of memory
and it’s faster to access
each core’s local cache
rather than the shared
memory bus.
An NUMA-Unaware
system simply means
that the system does not
take this access times
into account.

YCSB# Queries

Experiment 1: Get/Put Workload

► Tested with traditional YCSB benchmark, no bulk queries
► Get/Put contains 50% update requests consisting of ⅓ inserts, ⅓ updates and ⅓ deletes
► Database size is kept constant with equal amounts of inserts and deletes

Results:

► TellStore performs much better than all others EXCEPT RAMCloud
- RAMCloud is a distributed in-memory KVS that’s highly tuned and specifically designed for

these kinds of queries (get/put)
- RAMCloud is normally seen as the upper bound of the best performance

Experiment 1: Get/Put Workload

Results:

► Note that all KVS scale linearly with the number of machines
► What does the slope have to do with the system’s scalability?

The steeper the slope, the more “scalable” it is with the number of machines; the more machines
you add, the more operations processed

► RAMCloud’s scalability issue as shown in (a) might have been due to sub-optimal garbage collection
implementation

Experiment 1: Get/Put Workload

► TellStore-Log and TellStore-Row outperformed TellStore-Col
► Analysis of TellStore-Col with get/put workload

- Write-optimized (row-oriented) log in the data helped process
Update operations

- It is more costly to materialize records from columns during
Get operations

Experiment 2: Batching

► As covered in previous sections, processing layer uses batching to improve get/put throughput, but
at the cost of increased latency

► The bigger the batch size, the better the throughput for all variants
► Effects however, are not significant enough to say that getting the correct batch size settings is

fundamentally important

Experiment 3: Scans

► YCSB# scan queries were ran in isolation without concurrent get/put workload

► TellStore-Log was slightly faster than TellStore-Col in Query 3
- This was because Query 3 has no projections
- Read-only workload of Query 3 is the best case for scans in TellStore-Log

● Scan does not need to perform garbage collection
● Scan is not affected by data fragmentation

► Displays average response time of Query 1 from YCSB#
► Tested on a fixed get/put workload of 35,000 operations per second, because that’s Kudu’s

maximum workload sustainability

Results:

► Even though Kudu has a columnar design favorable towards Query 1, its overall performance was
worse than the TellStore variants

► TellStore-Log does fairly well because in this workload, update requests are kept at a moderate
thus fairly high locality was maintained to support scan performance

Experiment 4: Hybrid Workloads

Experiment 4: Hybrid Workloads

► Displays response time of Query 1 for the separate TellStore variants when we scale beyond
35,000 operations per second

Experiment 4: Hybrid Workloads

► Response time for Query 1 is constant and independent of the concurrent get
workload, why?

- Scans and get requests are scheduled on different cores in the
storage node

- Scan performance is not impacted by garbage collection, data stored
in delta or stale versions of records

Experiment 4: Hybrid Workloads

► Scan response time is visibly affected by raising the get/put workload
► TellStore-Log would be the best approach

- After the sharp increase of the average scan response time at 500,000
concurrent get/put requests per second, garbage collection rewrites the
entire log with every scan as every page is affected by an update

TellStore-Row and TellStore-Col
are heavily impacted by
concurrent updates

- Increasing update load
results in more costly
pointer-chasing to the delta
for the look up of the latest
version of the record

TellStore-Col also does not have
any advantage over TellStore-Row
with high update workloads, since
almost all records are fetched
from the row-store delta

Experiment 4: Hybrid Workloads

► 1%, 25%, 50%, 75%, and 99% percentile response times of Query 1 with concurrent get/put workload
► Even though TellStore-Col outperforms TellStore-Log at 1 Mio. get/put requests, TellStore-Log is

still better overall
- Scan performance of TellStore-Log is dependent on delta size

● Before GC, delta size is large so scan is slow
● After GC, delta size is small so scan is fast

- Roughly constant response time in TellStore-Log with piggy-backed garbage collection

Experiment 5: Huawei-AIM Benchmark

► This experiments strives to show that TellStore also performs well against more complex,
interactive workloads

► Workload is defines 7 analytical queries with concurrent get/put workload of 40,000 operations per
second

► There was not much different when scan was ran in isolation, hence these are the results for
concurrent workloads

Experiment 5: Huawei-AIM Benchmark

► TellStore-Col outperformed all others significantly
► Notice that the difference between TellStore-Col and TellStore-Log is the

biggest in this experiment, why?
- This workload was run on a table with more than 500 columns, giving

TellStore-Col’s columnar layout a bigger advantage

Table of Contents
1. Introduction to Key-Value Stores (KVS)
2. KVS System Requirements
3. Design Space
4. TellStore Variants
5. Implementation of TellStore
6. Experimentation Results

7. Related Work
8. Conclusion
9. Future Advancements

Related Work
► Systems that adopted the SQL-over-NoSQL architecture

- FoundationDB, Hyder, Tell, and AIM
- FoundationDB, Hyder and Tell were not built to take on analytics; AIM supports read-only analytics

and high update rates

► Large-scale Analytical Systems
- Hadoop, Spark, and DB2/BLUE
- These systems has significant trouble with or no support for querying live data that is subject to

frequent and fine-grained updates

► Systems with good support for hybrid workloads on live data
- HyPer, HANA, and Hekaton/Apollo
- TellStore differs from these with its ability to scale out in a distributed system, while the above can

only scale up on a single machine

► Document Stores
- DocumentDB and MongoDB
- These offer certain scans with secondary indexes which are specifically tuned to document-related use-cases

Let’s take a look at several other existing KVS:

► TellStore can hopefully be used as a model to further improve these existing KVS systems to achieve a
better overall performance

Table of Contents
1. Introduction to Key-Value Stores (KVS)
2. KVS System Requirements
3. Design Space
4. TellStore Variants
5. Implementation of TellStore
6. Experimentation Results
7. Related Work

8. Conclusion
9. Future Advancements

Conclusion

► It is indeed possible to build a KVS that efficiently supports both scans for
analytics and high get/put throughput for OLTP workloads with TellStore

► The integrated design of TellStore addressed important design questions of a
KVS, allowing it to outperform existing ones

► Advanced implementation techniques of TellStore (e.g., piggy-backing
garbage collection) helps to mitigate the effects of concurrent update on
scan times

► Among the three TellStore variants, we can conclude that TellStore-Col has
the best overall performance, followed by TellStore-Log, then TellStore-Row

Table of Contents
1. Introduction to Key-Value Stores (KVS)
2. KVS System Requirements
3. Design Space
4. TellStore Variants
5. Implementation of TellStore
6. Experimentation Results
7. Related Work
8. Conclusion

9. Future Advancements

Future Research and Advancements
► TellStore currently does not feature high availability with replication

- Replication feature in TellStore is currently being implemented
- With confirmed observation, replication is orthogonal to all other

aspects of a KVS and will not change the main results discovered in
this paper

► Getting analytical workloads to run efficiently
- Having fast scans on KVS only partially solves the issue
- Explore other analytical queries that can only be efficiently executed in a

distributed manner
● Studies against other distributed query processing systems (e.g., Spark and

Presto) using TPC-H benchmark queries
● TellStore does not have an advantage, since neither Spark nor Presto can

efficiently utilize TellStore’s scan feature of shared scans and pushing down
selections, projections and aggregation to the storage layer

► Studies against less aggressive variants to carry out garbage collection in
TellStore-Col and TellStore-Row
- Current implementation of garbage collection may result in high

contention of memory buss and in-write amplification if data does not
fit into main memory

