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Introduction to KVS

What is a Key-Value Store? 

► A type of storage engine that stores values indexed by a key.

RamCloud



State of the Art KVS

SQL-over-NoSQL Architecture

- Processing layer is 
responsible for 
synchronization

- Snapshot Isolation is 
used for 
synchronization in the 
commit manager.

- A form of 
Multi-Version 
Concurrency Control (a 
way for the system to 
provide concurrent 
accesses to the DB)



Advantages of this Design

SQL-over-NoSQL Architecture

► Elasticity
► Scalability
► Sustains high 

throughput for get/put 
(OLTP) workloads

► Can decouple the 
storage component 
and allow it to be part 
of a completely 
isolated offering (eg. 
DynamoDB as part of 
AWS).

Any downsides?



Downsides

Issues:

► Access patterns of OLTP and OLAP workloads are different
► OLAP workloads requires reading large, or at times all, portions of the data
► Conflict of interest: Get/Put workloads require sparse indexes, while scans 

require spatial locality.
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SQL-over-NoSQL Architecture cont. 
► What are the distributed KVS requirements to efficiently implement the 

SQL-over-NoSQL architecture?

1. Scans
- KVS must be able to support efficient scan operations in addition to 

get/put requests
- Selections, projections and simple aggregates should be supported

● This allows only the relevant data to be fetched from 
storage layer and brought up to processing layer

- Supported shared scans is also a big plus

2. Versioning

3. Batching and Asynchronous Communication



SQL-over-NoSQL Architecture cont. 
► What are the distributed KVS requirements to efficiently implement the 

SQL-over-NoSQL architecture?

1. Scans

2. Versioning
- Different versions of each record should be maintained in order to 

return the right version depending on the timestamp of the 
transaction

- This is important of Multi-Version Concurrency Control
- Garbage collection should be able to reclaim storage occupied by 

old record versions

3. Batching and Asynchronous Communication



SQL-over-NoSQL Architecture cont. 
► What are the distributed KVS requirements to efficiently implement the 

SQL-over-NoSQL architecture?

1. Scans

2. Versioning

3. Batching and Asynchronous Communication
- OLTP processing nodes should be able to batch several requests to 

the storage layer
- Cost of round-trip messages from processing to storage layer can be 

amortized for multiple concurrent transactions
- Batch requests should also be executed asynchronously



Difficulties of Building the Optimal KVS

► The conditions for the three requirements conflict one another

► As a result, more KVS today, with the exception of Kudu, are specifically 
designed for get/put requests

► There are many locality conflicts that surface when we try to integrate 
scans into these systems
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Locality Conflicts

1. Get/Put
- Systems designed for analytical queries normally use columnar layouts 

to increase locality 
● This is so queries can access the same set of memory locations 

repetitively over a short period of time
- Existing KVS typically favor row-store layouts for processing get/put 

requests without the need to materialize records
2. Versioning

3. Batching

SCAN vs..



Locality Conflicts

1. Get/Put

2. Versioning
- The presence of irrelevant versions of records reduces locality and slows 

down scan operations
- Checking the relevance of a record version as part of a scan can be very 

costly
3. Batching

SCAN vs..



Locality Conflicts

1. Get/Put

2. Versioning

3. Batching
- It is not ideal to batch scan operations with get/put requests
- OLTP workloads require constant and predictable get/put response 

times
● Scan operations are highly variable in terms of latency, depending 

on the selectivity of the predicates and the number of columns that 
needs processing during a query

SCAN vs..



Table of Contents
1. Introduction to Key-Value Stores (KVS)
2. KVS System Requirements

3. Design Space
4. TellStore Variants
5. Implementation of TellStore
6. Experimentation Results
7. Related Work
8. Conclusion
9. Future Advancements



Design Space

The main decisions when designing a storage engine:

► How to store data?
► How to access data?
► How to update data?



Design Space



Design Space - how to read



Design Space - how to read



Design Space - how to read
Measurements:

storage - how efficient is the 
storage in terms of 
fragmentation

concurrency - how well is it 
supported

versioning - how costly is it to 
implement (performance wise)

GC - how costly is it to 
implement (performance wise)

get/put - efficiency for get/put 
operations

scan - efficiency for scan 
operations



Garbage Collection

A form of memory management

“Garbage” - useless/obsolete data that is occupying valuable memory space

Advantages:

► Ease of development
► Mitigates certain bugs and memory leaks

Disadvantages:

► Impacts performance

Why do we need to consider GC when designing a key-value store (why can’t we 
just manually manage our memory)? 



Design Space - how to read
Measurements:

storage - how efficient is the 
storage in terms of 
fragmentation

concurrency - how well is it 
supported

versioning - how costly is it to 
implement (performance wise)

GC - how costly is it to 
implement (performance wise)

get/put - efficiency for get/put 
operations

scan - efficiency for scan 
operations



Update: update-in-place

Page

1 Foo 23

2 Bar 44

Records are 
fixed-size
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Update: update-in-place
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Update: update-in-place

1. Why is storage an advantage 
of update-in-place (assuming 
fixed record sizes)?

2. Why are versioning and 
concurrency disadvantages?

Measurements:

storage - how efficient is the storage in 
terms of fragmentation

concurrency - how well is it supported

versioning - how costly is it to implement

GC - how costly is it to implement

get/put - efficiency for get/put operations

scan - efficiency for scan operations



Update: log-structured

No overwriting necessary, just append to a log.



Introducing

The World’s Simplest Database

Two methods:
get(k)
put(k,v)



Insert 1

The World’s Simplest Database

put(1, “foo”)

1, “foo”



Insert 2

The World’s Simplest Database

put(2, “bar”)

1, “foo”

2, “bar”



Delete 1

The World’s Simplest Database

put(1, “”)

1, “foo”

2, “bar”

1, “”



Update 1

The World’s Simplest Database

put(1, “baz”)

1, “foo”

2, “bar”

1, “”

1, “baz”



Get 1

The World’s Simplest Database

get(1) = 

1, “foo”

2, “bar”

1, “”

1, “baz”

“foo”



Get 1

The World’s Simplest Database

get(1) =

1, “foo”

2, “bar”

1, “”

1, “baz”

“foo”



Get 1

The World’s Simplest Database

get(1) =

1, “foo”

2, “bar”

1, “”

1, “baz”

“”



Get 1

The World’s Simplest Database

get(1) = “baz”

1, “foo”

2, “bar”

1, “”

1, “baz”

“baz”



Update: log-structured

Measurements:

storage - how efficient is the storage in 
terms of fragmentation

concurrency - how well is it supported

versioning - how costly is it to implement

GC - how costly is it to implement

get/put - efficiency for get/put operations

scan - efficiency for scan operations



Update: delta-main



Update: delta-main

This approach tries to combine the advantages 
of the log-structured approach (fast get/put) 
with the advantages of update-in-place (fast 
scans).



Layout



PAX - Partition Attributes Across 
Paradigm

► Variant of column-major ordering
► PAX is a compromise between the pure column and row-major designs.



PAX - Partition Attributes Across 
Paradigm

► Stores a set of records in every page, but within the page, all records are 
stored in a column-major representation.

https://www.pdl.cmu.edu/PDL-FTP/Database/pax.pdf



Versions



Versions - clustered

► Stores all versions of a record in the same location

Page

1 Foo 23

2 Bar 44

3 Baz 41
Insert

Version Data



Versions - chained

► Chain the versions in a linked list



Garbage Collection - 2 strategies

Periodic garbage collection in a separate dedicated thread/process

Piggy-back garbage collection with (shared) scans



Design Space
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TellStore-Log

Update: Log-structured

Layout: Row-major

Versions: Chained Versions

Garbage collection: Piggy-backed



TellStore-Log Update: Log-structured

Layout: Row-major

Versions: Chained Versions

Garbage collection: Piggy-backed



TellStore-Log

Questions for discussion:

► Why did the paper use a hash index to implement this log-structured storage 
(as opposed to eg. a tree index)?

► Why does TellStore-Log have good scan performance compared to other 
log-structured designs (such as RAMCloud)?



TellStore-Col

Update: Delta-main

Layout: Column-major

Versions: Clustered Versions

Garbage collection: Periodic



TellStore-Col



TellStore-Col

Questions for discussion:

► Why is the “delta” split into two logs - insert log and update log?
► (Hint: A different log is used depending on whether the key exists or not)

► What are the advantages of TellStore-Col vs TellStore-Log?
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Implementation

► This section describes TellStore as a distributed, in-memory KVS, that can 
use any of the storage engines described above
► Communication model
► Thread model
► Data indexing
► Predicate pushdowns



Implementation - Communication Model

► Batching + Async Communication
► A processing instance should not be idle while waiting for a 

storage request to complete
► otherwise wasted CPU and network bandwidth

Batching requests from the 
processing layer and responses from 
storage cuts down on the messaging 
rate, which would otherwise be a 
bottleneck.



Implementation - Thread Model

Why this thread model? In other words, what is the benefit of having 
separate threads for scans and gets/puts?



Implementation - Data Indexing

What about indexing across KV stores? 
How do we know which KV Store 
contains the key we want? Simple if 
we only have a few instances, but 
what if we have many KV Stores?



Implementation - DHT

Source: https://www.cs.princeton.edu/courses/archive/fall16/cos418/docs/L10-dhts.pdf



Implementation - Predicate Pushdowns

Pushing down predicates allows for less data movement. Imagine:
 
SELECT * FROM A,B WHERE A.id=B.id AND A.name=“John”;



Implementation - Predicate Pushdowns

► TellStore requires all selection 
predicates of scans to be in 
conjunctive normal form (CNF).

► CNF - a conjunction of one or 
more clauses, where a clause is a 
disjunction of literals; otherwise 
put, it is an AND of ORs.
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Experimental Setup
► Test environment

- All experiments were done on a cluster of 12 machines
- All KVS benchmarked are Non-uniform Memory Access (NUMA) unaware
- 3x the number of processing nodes as storage nodes were used to 

prevent load generation from becoming the bottleneck

► TellStore-Col was the main test subject against all other KVS
► Kudu performances were used as a baseline for all the experiments

► Running the experiment
- First populate the data, then run the experiment for 7 minutes 

total
- First and last minute were factored out due to warm-up and    

cool-down effects



Experimental Benchmarks 

1. Yahoo! Cloud Serving Benchmark (YCSB)
- Commonly referred to as “Big Data” Benchmark
- The YCSB benchmark was the designated goal performance for cloud 

data serving systems, in particular for transaction-processing workloads

2.     Extended YCSB → YCSB#

- Specially crafted to test additional capabilities of a KVS
- Schema was extended to include variable-size columns and 3 new queries that 

involve scans 
- Scaling factor dictating the number of tuples in the database was set to 50

● Corresponds to a test set of 50 million tuples

Side note about 
NUMA-unaware

When you have multiple 
physical cores, each core 
might have their own 
cache rather than a 
shared pool of memory 
and it’s faster to access 
each core’s local cache 
rather than the shared 
memory bus. 
An NUMA-Unaware 
system simply means 
that the system does not 
take this access times 
into account.



YCSB# Queries



Experiment 1: Get/Put Workload

► Tested with traditional YCSB benchmark, no bulk queries
► Get/Put contains 50% update requests consisting of ⅓ inserts, ⅓ updates and ⅓ deletes
► Database size is kept constant with equal amounts of inserts and deletes

Results:

► TellStore performs much better than all others EXCEPT RAMCloud
- RAMCloud is a distributed in-memory KVS that’s highly tuned and specifically designed for 

these kinds of queries (get/put)
- RAMCloud is normally seen as the upper bound of the best performance



Experiment 1: Get/Put Workload

Results:

► Note that all KVS scale linearly with the number of machines 
► What does the slope have to do with the system’s scalability?

The steeper the slope, the more “scalable” it is with the number of machines; the more machines 
you add, the more operations processed

► RAMCloud’s scalability issue as shown in (a) might have been due to sub-optimal garbage collection 
implementation



Experiment 1: Get/Put Workload

► TellStore-Log and TellStore-Row outperformed TellStore-Col 
► Analysis of TellStore-Col with get/put workload

- Write-optimized (row-oriented) log in the data helped process      
Update operations

- It is more costly to materialize records from columns during               
Get operations



Experiment 2: Batching

► As covered in previous sections, processing layer uses batching to improve get/put throughput, but 
at the cost of increased latency

► The bigger the batch size, the better the throughput for all variants
► Effects however, are not significant enough to say that getting the correct batch size settings is 

fundamentally important



Experiment 3: Scans

► YCSB# scan queries were ran in isolation without concurrent get/put workload

► TellStore-Log was slightly faster than TellStore-Col in Query 3
- This was because Query 3 has no projections
- Read-only workload of Query 3 is the best case for scans in TellStore-Log

● Scan does not need to perform garbage collection
● Scan is not affected by data fragmentation



► Displays average response time of Query 1 from YCSB#
► Tested on a fixed get/put workload of 35,000 operations per second, because that’s Kudu’s 

maximum workload sustainability

Results:

► Even though Kudu has a columnar design favorable towards Query 1, its overall performance was 
worse than the TellStore variants

► TellStore-Log does fairly well because in this workload, update requests are kept at a moderate 
thus fairly high locality was maintained to support scan performance

Experiment 4: Hybrid Workloads



Experiment 4: Hybrid Workloads

► Displays response time of Query 1 for the separate TellStore variants when we scale beyond 
35,000 operations per second



Experiment 4: Hybrid Workloads

► Response time for Query 1 is constant and independent of the concurrent get 
workload, why?

- Scans and get requests are scheduled on different cores in the 
storage node

- Scan performance is not impacted by garbage collection, data stored 
in delta or stale versions of records



Experiment 4: Hybrid Workloads

► Scan response time is visibly affected by raising the get/put workload
► TellStore-Log would be the best approach

- After the sharp increase of the average scan response time at 500,000 
concurrent get/put requests per second, garbage collection rewrites the 
entire log with every scan as every page is affected by an update

TellStore-Row and TellStore-Col 
are heavily impacted by 
concurrent updates

- Increasing update load 
results in more costly 
pointer-chasing to the delta 
for the look up of the latest 
version of the record

TellStore-Col also does not have 
any advantage over TellStore-Row 
with high update workloads, since 
almost all records are fetched 
from the row-store delta



Experiment 4: Hybrid Workloads

► 1%, 25%, 50%, 75%, and 99% percentile response times of Query 1 with concurrent get/put workload 
► Even though TellStore-Col outperforms TellStore-Log at 1 Mio. get/put requests, TellStore-Log is 

still better overall
- Scan performance of TellStore-Log is dependent on delta size

● Before GC, delta size is large so scan is slow
● After GC, delta size is small so scan is fast

- Roughly constant response time in TellStore-Log with piggy-backed garbage collection



Experiment 5: Huawei-AIM Benchmark

► This experiments strives to show that TellStore also performs well against more complex, 
interactive workloads

► Workload is defines 7 analytical queries with concurrent get/put workload of 40,000 operations per 
second

► There was not much different when scan was ran in isolation, hence these are the results for 
concurrent workloads



Experiment 5: Huawei-AIM Benchmark

► TellStore-Col outperformed all others significantly
► Notice that the difference between TellStore-Col and TellStore-Log is the 

biggest in this experiment, why?
- This workload was run on a table with more than 500 columns, giving 

TellStore-Col’s columnar layout a bigger advantage
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Related Work
► Systems that adopted the SQL-over-NoSQL architecture

- FoundationDB, Hyder, Tell, and AIM
- FoundationDB, Hyder and Tell were not built to take on analytics; AIM supports read-only analytics 

and high update rates

► Large-scale Analytical Systems
- Hadoop, Spark, and DB2/BLUE 
- These systems has significant trouble with or no support for querying live data that is subject to 

frequent and fine-grained updates

► Systems with good support for hybrid workloads on live data
- HyPer, HANA, and Hekaton/Apollo
- TellStore differs from these with its ability to scale out in a distributed system, while the above can 

only scale up on a single machine

► Document Stores
- DocumentDB and MongoDB
- These offer certain scans with secondary indexes which are specifically tuned to document-related use-cases

Let’s take a look at several other existing KVS:

► TellStore can hopefully be used as a model to further improve these existing KVS systems to achieve a 
better overall performance
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Conclusion

► It is indeed possible to build a KVS that efficiently supports both scans for 
analytics and high get/put throughput for OLTP workloads with TellStore

► The integrated design of TellStore addressed important design questions of a 
KVS, allowing it to outperform existing ones

► Advanced implementation techniques of TellStore (e.g., piggy-backing 
garbage collection) helps to mitigate the effects of concurrent update on 
scan times

► Among the three TellStore variants, we can conclude that TellStore-Col has 
the best overall performance, followed by TellStore-Log, then TellStore-Row
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Future Research and Advancements
► TellStore currently does not feature high availability with replication

- Replication feature in TellStore is currently being implemented
- With confirmed observation, replication is orthogonal to all other 

aspects of a KVS and will not change the main results discovered in 
this paper

► Getting analytical workloads to run efficiently
- Having fast scans on KVS only partially solves the issue
- Explore other analytical queries that can only be efficiently executed in a 

distributed manner
● Studies against other distributed query processing systems (e.g., Spark and 

Presto) using TPC-H benchmark queries
● TellStore does not have an advantage, since neither Spark nor Presto can 

efficiently utilize TellStore’s scan feature of shared scans and pushing down 
selections, projections and aggregation to the storage layer

► Studies against less aggressive variants to carry out garbage collection in 
TellStore-Col and TellStore-Row
- Current implementation of garbage collection may result in high 

contention of memory buss and in-write amplification if data does not 
fit into main memory


