
Bridging the Archipelago
between Row-Stores and
Column-Stores for Hybrid
Workloads
Paschal Igusti & Kamoltat Sirivadhna

Agenda

● Motivation
● Storage Model
● Why FSM
● Tile Based Architecture
● Concurrency Control
● Layout Reorganization
● Experimental Evaluation
● Conclusion

Hybrid Transaction-Analytical Processing

- Organizations need to transform fresh and historical data
into critical insights

- Hybrid Transaction-Analytical Processing (HTAP)
- Analyze a combination of historical data-sets and real-time data

- Data has immense value as soon as it is created, but
diminishes over time

- What are some examples of such cases?

HTAP Pipelines

- Many organizations implement HTAP pipelines using
separate DBMSs

- One for transactions and new information (OLTP DBMS)
- The other for analytical queries (OLAP DBMS)
- Many inherent problems with this implementation

- Too much time to propagate changes between separate systems

- Administrative overhead for deploying and maintaining is too heavy

- Requires a query for multiple systems to combine data from

different databases

Ideally...

- Use a single HTAP DBMS to support OLTP workloads and
OLAP queries to operate on transactional and historical
data

- Key problem: executing OLAP workloads that access old
and new data while simultaneously executing
transactions and updates the database

- Separate engines:
- OLTP: Engine for row-oriented data

- OLAP: Engine for column-oriented data

Bridging the Archipelago

- Cobbling systems together leads to increased complexity
and degraded performance

- This paper presents a method to bridge the architectural
gap between OLTP and OLAP systems using a unified
architecture

- Store tables using hybrid layouts based on how the
DBMS expects the tuples to be accessed in the future

Storage Model
What are the different types of Storage

Model mentioned in the paper? And what

are the pros and cons?

- N-ary Storage
- Good for transactional queries
- Bad for analytic queries

- Decomposition Storage
- Good for analytic queries
- Bad for transactional queries

- Flexible Storage
- Good for analytic & transactional queries
- Need to have a good understanding of the attributes.

(without online query)

When should we
use FSM?

Tile-Based Architecture
What is a Physical Tile?

A tile tuple is a subset of attribute values

that belong to a tuple. A set of tile tuples

form a physical tile. We refer to a collection

of physical tiles as a tile group.

Tile-Based Architecture cont.
What is a Logical Tile?

Represents values spread across a

collection of physical tiles from one or

more tables. This abstraction hides the

specifics of the layout of the table from

its execution engine, without sacrificing

the performance benefits of a

workload-optimized storage layout.

Tile-Based Architecture cont.
What is Logical Tile Algebra? And what are

some of the operators mentioned in the

paper?

- Bridge Operators
- Sequential Scan & Index Scan

- Metadata Operators
- Projection & Selection

- Mutators
- Insert & Delete & Update

- Pipeline Breakers
- Join & Union & Intersect

Tile-Based Architecture cont.
What are the benefits of the logical tile

abstraction for an HTAP DBMS?

- Layout Transparency

- Vectorized Processing

- Flexible Materialization

- Caching Behavior

Concurrency Control
What does the columns in the table represent?

● TxnId: A placeholder for the

identifier of the transaction that

currently holds a latch on the

tuple.

● BeginCTS: The commit timestamp

from which the tuple becomes

visible.

● EndCTS: The commit timestamp

after which the tuple ceases to be

visible.

● PreV: Reference to the previous

version, if any, of the tuple.

- (the tile group identifier and

the offset of the tuple within

that tile group)

Concurrency Control: Indexes

- Uses B+ trees as the data structure to

store primary and secondary indexes

- Uses the PreV field to traverse the

version chain to find the newest

version of the tuple that is visible to the

transaction.

- Index holds a logical location of the

latest version of a tuple, they do not

store raw tuple pointers since DBMS

needs to update during reorganization

if store raw tuple

Concurrency Control: Recovery
(Future work discussion)

- Uses ARIES recovery protocol

- Records the changes performed by the transaction in the

write-ahead log, before committing the transaction.

- Periodically takes snapshots that are stored on the

filesystem to bound the recovery time after a crash.

- Does not record the physical changes to the indexes in the

log.

- The DBMS rebuilds all of the tables’ indexes during

recovery to ensure that they are consistent with the

database

Layout Reorganization

- All previously mentioned

optimizations of the

FSM-based DBSM are

debatable without smart layout

reorganization methods

- Two phase vertical partitioning

algorithm: Clustering & Greedy

Algo

On-line Query Monitoring

- DBMS uses lightweight

monitor that tracks attributes

that are accessed by each

query

- Need to determine which

attributes should be stored in

the same physical tile in new

layout

- Collects information about

attributes present in SELECT

and WHERE clauses

On-line Query Monitoring cont.

- Stores the information as a time series
graph for each individual table

- Monitor only gathers statistics from
random subset of queries

- Non-biased towards more frequently observed
transactions

- Reduces monitor overhead

Clustering Queries & Attributes

- For each table T in the database, the DBMS
maintains statistics about queries Q

- For each q ∈ Q, the DBMS extracts the
attributes the query accessed via the
metadata

- The DBMS identifies “important”
attributes via k-means clustering

Clustering cont.

- For each query q, the clustering

algorithm assigns it to the jth

cluster, whose mean

representative is rj

- Computes distance metric by

the number of unique attributes

accessed by two queries divided

by the number of attributes in T

(disjoint set)
- Similar queries are part of the

same cluster

- Updates rj to reflect inclusion of

q

- Algorithm prioritizes each query based on its plan cost
- Queries with higher I/O cost have stronger influence on layout of table

- Means of clusters drift towards recent samples over time

- cj is the mean representative query of the jth cluster
- Vector with length # of attributes in T

- c0 represents the mean’s initial value
- s represents the number of query samples
- w is the weight that determines the rate with which the older query

samples are forgotten (higher weights given to older queries)

Clustering cont.

Runtime
Complexity:
O(m * n * k)

Space
Complexity:
O(n* (m + k))

Greedy Algorithm

- Next phase in algorithm is to use a greedy algorithm to derive a

partitioning layout for the table using the top k representative queries

- Iterates over queries in descending order based on weight of associated

cluster

- For each cluster, algorithm groups attributes accessed by representative

query into one tile

- Continues until each attribute is assigned to a tile

Data Layout Reorganization

- Use an incremental approach for data layout reorganization

- For a given tile group, DBMS copies over the data to the new layout

- Atomically swaps in the newly constructed tile group into the table

- Storage space consumed by physical tiles in old tile group is reclaimed by

the DBMS only when they are no longer referenced by any logical tiles

Data Layout Reorganization cont.

- Reorganization process does not target hot (transactional) tile groups

that are still being heavily accessed by OLTP transactions

- Transforms apply to cold (historic) data

- Updated versions of tuples start off in a tuple-centric layout (similar to

row-store)

- Gradually transformed to OLAP-optimized (similar to column-store)

layout

Experimental Evaluation
What happened in the experiment?

- Deployed Peloton for these experiments on a dual-socket Intel Xeon

E5-4620 server running Ubuntu 14.04 (64-bit).

- Each socket contains eight 2.6 GHz cores. It has 128 GB of DRAM

and its L3 cache size is 20 MB.

- Execute the workload five times and report the average execution

time. Disable the DBMS’s garbage collection and logging

components.

- FSM DBMS can converge to an optimal layout for an arbitrary

workload without any manual tuning.

Experimental Evaluation cont.
What’s ADAPT Benchmark?

- Narrow Table 50 attributes and Wide Tables 500

attributes with a approximate size of 200B with 2KB

- Contains 5 Queries

- 2 Work loads: Read only and Hybrid

Horizontal Fragmentation

Why the more tuples per tile group, the better the performance?

- This is because of vectorized processing which process
data logical tile at a time, reducing the interpretation
overhead. The less tuples, the more it is like one tuple at a
time execution.

Reorganization Sensitivity Analysis

- Workload contains a sequence
of scan queries

- Divided into segments of 1000
queries

- Gradually reduce projectivity of
queries from 100% to 10%

- As workload gets executed,
updates table to the form of
{{a0},{a1,...,ak},{ak+1,...,a500}}

- k is split point
- Expect k to decrease from 500

to 50

 Data Reorganization Strategies

What creates these spikes?

- Basically with immediate reorganization the partitioning algorithm derives a new
layout after observing new queries, the storage manager transforms all the tile groups
to the new layout within the critical path of query. Although this benefits the
subsequent queries in the segment, that query incurs the entire data reorganization
penalty

Possible Extensions
- One problem with the k-means clustering algorithm used for vertical partitioning is that a k must be selected

- Currently a popular problem within the industry
- Selecting an incorrect k can have degrading effects

- Can use DP Means Clustering (Lambda Means Clustering) algorithm instead to naturally form clusters within the
data

- Lambda Means is more robust than using a farthest-first heuristic, which requires a user defined k
- Instead of giving it a parameter k, we give it a parameter λ

- λ serves as a threshold to define a new cluster
- The larger the value of λ, the smaller the number of clusters is attained, and vice versa

Key Points to Remember

- FSM implements tile-based storage
- Abstraction layer of logical tiles that point

to physical tiles
- FSM is easily parallelizable via metadata
- Data layout reorganization takes place via

k-means clustering
- FSM is a much better implementation due

to data reorganization

