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What is the problem?

Selection Operators Aggregate Functions

SELECT AF(y) FROM T
WHERE x BETWEEN 1b AND ub

Limitations?



AQP (Approximate Query Processing)
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AQP State of Art

SAMPLING




AQP-Sampling

Offline Sampling Online Sampling
Assumption Workload is partially known. No assumptions

SpeedUp High Low



AQP

Can we do AQP while ensuring: ?

Small query execution time
Small states (memory/storage)
High accuracy

Low money cost

YES!



DBEst

DEFINITION:

an AQP engine supporting the analytical needs, using prebuilt, a priori state

DBEst QP Engine Data Store
Samples —
Exact QP
v A
Catalog : 4
¢ < % v
Models Approx QP




DBEst-What are the models?

TWO MODELS
D(x) R(x)

Density Estimator Regression Function




DBEst-How?

SELECT COUNT(sales_price,x) FROM

store_sales
WHERE (sales_price,x) BETWEEN Ib AND

ub;

ub
COUNT(y) = N - / D(x)dx
lb



DBEst-How?

VARIANCE_x(x) = E [x*] - [E [x]]?
B flzb x> Dix)dx [flzb xD(x)dx] 2
[ Dax | [ Dx)dx

STDDEV _x(x) = YVARIANCE_x(x)

ub ub

_ » x2D(x)dx _[ 7 xD(x)dx]2
ub ub
, D(x)dx ;, D(x)dx



DBEst-How?

PERCENTILE

Plx < a)v: 14

[ D(x)dx = p
F(x) =p <=3  USEBISECTION!



DBEst-How?

SELECT COUNT(x) FROM

table

WHERE x BETWEEN Ib AND ub;
@ Problem: we need y to query!
SELECT SUM(y) FROM

table USE Ry (CE)

WHERE x BETWEEN Ib AND ub;



DBEst-How?

SELECT AVG(sales_price) FROM fEI;ECT AVG(y) FROM
aple

store_sales .
WHERE sales_time BETWEEN Ib AND ub; YWWHERE x BETWEEN Ib AND ub;

AVG(y) = Ely] "
o f(z)D(x) dz
~ B |R(x E —
) S = T b
b D(x)R(x)dx

/lzb D(x)dx



DBEst-How?

EXTEND REGRESSION TO MULTIVAR:

SELECT SUM(sales_price) FROM >
store_sales

WHERE sales_time BETWEEN Ib AND ub
AND sold_time BETWEEN Ib AND ub;

SELECT SUM(z) FROM

table

WHERE x BETWEEN Ib AND ub
AND yBETWEEN Ib AND ub ;

Rz(’ o Y



DBEst-How?

SELECT =z, AVG(y) FROM T
WHERE x BETWEEN 1b AND ub
GROUP BY z;

SOLUTION:
Treat each z as having its own dataset to train model
primitive on



DBEst-LIMITATIONS AND CHALLENGES

Models grow linearly with number of groups
*increase query processing time? - parallelizable
SOLUTION: create Model bundles to store model
necessary for “High-cardinality” queries

*still 10x as fast as sampling



DBEst Implementation

1. Sampling

2. Density Estimator

3. Regression Model Selection
4. Integral Evaluation

5. Parallel/Distributed Computation



Sampling

The paper mentions two sampling techniques
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Density Estimator

e Kernel Estimator / Sample(1 |2 |3 |4 |5 |6

o High Accurate and Efficient R =1 13041951 /6.2

e Nearest neighbor method
wn wn
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e Orthogonal Series Estimators
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Regression Model Selection

a I
e LightGBM
e XGBoost
e GBoost
- U
a I
Individual Model
Training
\_ J

Someone may asking:

Select which models to build?
e Tryingall combination for column
sets
e Mining query logs (e.g BlinkDB)
e Dependingon users (e.g VerdictDB)

a I
Evaluate Accuracy
for different
models
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Using GBoost
Classifier to Select
Best Model
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Integral Evaluation

@‘ SciPy

e Interesting accuracy-efficiency trade-offs!

»ub n
Ly[Ib,ub]f = w(x) f(x)dx L, [Ib. ub]f ~ Z wif(xx)  {Rn ,En },k=1,2,..,N
lb k=1
w(.) is a weight function x1,x2,...xn are nodes, and w1, w2, ....,

wn are weights



Sampling

v

SELECT COUNT(pm25 real) [Densny }

So what is happening here? [Reservow

Estimators
FROM mdl

WHERE PRES BETWEEN 1000 AND 1020; @

Model
Selection

Approximation

[Calculate




Parallel/Distributed Computation

e Sampling -> easily parallelizable problem instructions
llll '

N 3 2

o Different nodes storing dataset partitions
e Model Training -> easily parallelizable
o GROUP BY queries

e Query Processing -> easily parallelizable

o Additional nodes/cores



Performance Evaluation

w N

Experimental Setup: Ubuntu 18.04 with Intel Xeon X5650 12-core CPU, 64GB
RAM and 4TB of SSD
Datasets: TPC-DS, Combined Cycle Power Plant(CCPP), Beijing PM2.5(UCI-ML)
Query Types:

o Synthetic queries: w/ 0.1%, 1%, and 10% query range

o Complex TPC-DS queries
Comparison:

o w/VerdictDB, Blink DB and MonetDB for error

o w/VerdictDB for time
Additional:

o VerdictDB uses 12 cores while DBEst runs on 1 core( Multi-threaded DBEst

is also evaluated)
o Performance of joins and group by



Sensitivity Analysis (Query Range & Sample Size)
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e Dataset:TPC-DS e Dataset:TPC-DS e 1to2ordersof
e Samplesize: 100k rows e Queryrange: 1% magnitude less than
e QueryRange:0.1%, 1%,10% e Sample size: 10k, 100k, 1m, 5m VerdictDB'’s




Performance comparison TPC-DS & CCPP dataset

TPC-DS CCPP
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Figure 9: Response Time for CCPP Dataset
Figure 10: Relative Error: DBEst vs VerdictDB Figure 11: Response Time: DBEst vs VerdictDB

o e Samplesize: 10k, 100k
e Queryrange:0.1% e Reminder: VerdictDB uses 12

e Samplesize: 10k, 100k cores, while DBEst uses 1
e Responsetimeis small thread



Performance comparison GROUP BY
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Performance comparison Join
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e Samplesize: 10k, 100k, 1m for DBEst; 10m for VerdictDB



Limitation

GROUP BY queries: As the number of group increase
o  Models 1
o  Trainingtime 1
o Query Response Time 1
o  Space overheads 1

Small groups:
o  Building Models is an overkill

No error guarantees

/A CAUTION

DBEst




Conclusion & Future Works

e DBEst:

o  Smaller query response time
o Higher accuracy

o Smaller space-time overheads
o  scalability

o All comes with low money cost!!
e Future:
o  Offering better efficiency-overheads-accuracy trade-offs(especially Joins queries)

o  categorical attributes

o  parallel/distributed DBEst



