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Introduction



Background
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What is the problem?

        Selection Operators        Aggregate Functions

Limitations?



AQP (Approximate Query Processing)

4.9 0.3



AQP State of Art

SAMPLING



AQP-Sampling

Offline Sampling Online Sampling

Assumption Workload is partially known. No assumptions

SpeedUp High Low



AQP

Can we do AQP while ensuring: ?

● Small query execution time
● Small states (memory/storage)
● High accuracy
● Low money cost

YES!



DBEst

DEFINITION:

an AQP engine supporting the analytical needs, using prebuilt, a priori state



DBEst-What are the models?

TWO MODELS

D(x) R(x)
Density Estimator Regression Function



DBEst-How?

SELECT COUNT(sales_price,x) FROM
store_sales
WHERE (sales_price,x) BETWEEN lb AND 
ub;



DBEst-How?



DBEst-How?

PERCENTILE

USE BISECTION!



DBEst-How?

SELECT COUNT(x) FROM
table
WHERE x BETWEEN lb AND ub;

SELECT SUM(y) FROM
table
WHERE x BETWEEN lb AND ub;

Problem: we need y to query!

USE



DBEst-How?

SELECT AVG(sales_price) FROM
store_sales
WHERE sales_time BETWEEN lb AND ub;

SELECT AVG(y) FROM
table
WHERE x BETWEEN lb AND ub;



DBEst-How?

SELECT SUM(sales_price) FROM
store_sales
WHERE sales_time BETWEEN lb AND ub
AND sold_time BETWEEN lb AND ub ;

EXTEND REGRESSION TO MULTIVAR:

SELECT SUM(z) FROM
table
WHERE x BETWEEN lb AND ub
AND yBETWEEN lb AND ub ;



DBEst-How?

SOLUTION:
Treat each z as having its own dataset to train model 
primitive on



DBEst-LIMITATIONS AND CHALLENGES

Models grow linearly with number of groups
*increase query processing time? -  parallelizable
SOLUTION: create Model bundles to store model 
necessary for “High-cardinality” queries
*still 10x as fast as sampling



DBEst Implementation

1. Sampling

2. Density Estimator

3. Regression Model Selection

4. Integral Evaluation 

5. Parallel/Distributed Computation



Sampling

The paper mentions two sampling techniques

(i) Stratified sampling (ii) Reservoir Sampling Why?



Density Estimator

● Kernel Estimator

○ High Accurate and Efficient

● Nearest neighbor method

● Orthogonal Series Estimators

● Histograms

            Histograms         Kernel Estimator



Regression Model Selection

Individual Model 
Training

Evaluate Accuracy 
for different 
models 

Using GBoost 
Classifier to Select 
Best Model

● LightGBM
● XGBoost
● GBoost

Someone may asking:
Select which models to build?

● Trying all combination for column 
sets

● Mining query logs (e.g BlinkDB)
● Depending on users (e.g VerdictDB)



Integral Evaluation

w(.) is  a weight function x1,x2,...,xn are nodes, and w1, w2, …., 
wn are weights

● Interesting accuracy-efficiency trade-offs!



So what is happening here?

SELECT COUNT(pm25 real)

FROM mdl

WHERE PRES BETWEEN 1000 AND 1020;

Reservoir 
Sampling

Density 
Estimators

Model 
Selection

Calculate 
Approximation



Parallel/Distributed Computation

● Sampling -> easily parallelizable

○ Different nodes storing dataset partitions

● Model Training -> easily parallelizable

○ GROUP BY queries

● Query Processing -> easily parallelizable

○ Additional  nodes/cores



Performance Evaluation 

1. Experimental Setup: Ubuntu 18.04 with Intel Xeon X5650 12-core CPU, 64GB 
RAM and 4TB of SSD 

2. Datasets: TPC-DS, Combined Cycle Power Plant(CCPP), Beijing PM2.5(UCI-ML)
3. Query Types:

○ Synthetic queries: w/ 0.1%, 1%, and 10% query range
○ Complex TPC-DS queries

4. Comparison: 
○ w/ VerdictDB, Blink DB and MonetDB for error
○ w/ VerdictDB for time

5. Additional:
○ VerdictDB uses 12 cores while DBEst runs on 1 core( Multi-threaded DBEst 

is also evaluated)
○ Performance of joins and group by



Sensitivity Analysis (Query Range & Sample Size)

● Dataset:TPC-DS
● Sample size: 100k rows
● Query Range: 0.1%, 1%, 10%

● Dataset:TPC-DS
● Query range: 1%
● Sample size: 10k, 100k, 1m, 5m

● 1 to 2 orders of 
magnitude less than 
VerdictDB’s



Performance comparison TPC-DS & CCPP dataset

TPC-DS CCPP

● Query range: 0.1%
● Sample size: 10k, 100k
● Response time is small

● Sample size: 10k, 100k
● Reminder: VerdictDB uses 12 

cores, while DBEst uses 1 
thread



Performance comparison GROUP BY

● 90 queries, 57 groups
● Sample Size: 10k

● VerdictDB has no 
benefit from Parallel 
version  



Performance comparison Join

● Sample size: 10k, 100k, 1m for DBEst; 10m for VerdictDB



Limitation

● GROUP BY queries: As the number of group increase

○ Models ↑

○ Training time ↑

○ Query Response Time ↑

○ Space overheads  ↑

● Small groups:

○ Building Models is an overkill

● No error guarantees

 DBEst 



Conclusion & Future Works

● DBEst:

○ Smaller query response time

○ Higher accuracy

○ Smaller space-time overheads

○ scalability 

○ All comes with low money cost!!

● Future:

○ Offering better efficiency-overheads-accuracy trade-offs(especially Joins queries)

○ categorical attributes

○ parallel/distributed DBEst


