DBEst: Revisiting Approximate
Query Processing Engines with
Machine Learning Models

Pre tdbyKth
Jinshu Yan

Authors

Qingzhi Ma
University of Warwick

Peter Triantafillou
University of Warwick

Agenda

Introduction

AQP Engine

DBEst Architecture

DBEst Implementation
Evaluation

Related Work

Conclusion & Future works

Introduction

Background

USER > MACHINE) DATABASE
LEARNING

LEARNED
QUERY
OPTIMIZATION

LEARNED

INDEX LEARNED

QUERY

LEARNED EVALUATION

TUNING

What is the problem?

Selection Operators Aggregate Functions

SELECT AF(y) FROM T
WHERE x BETWEEN 1b AND ub

Limitations?

AQP (Approximate Query Processing)

|
8
21
g 13
S 11
o
Histogram: L;l: e -
= SELECT COUNT(x) WHERE 5.1 < x < 10.3
= Exact answer: 21 0 — 4

0 5 10 15 20

49 03

AQP State of Art

SAMPLING

AQP-Sampling

Offline Sampling Online Sampling
Assumption Workload is partially known. No assumptions

SpeedUp High Low

AQP

Can we do AQP while ensuring: ?

Small query execution time
Small states (memory/storage)
High accuracy

Low money cost

YES!

DBEst

DEFINITION:

an AQP engine supporting the analytical needs, using prebuilt, a priori state

DBEst QP Engine Data Store
Samples —
Exact QP
v A
Catalog : 4
¢ < % v
Models Approx QP

DBEst-What are the models?

TWO MODELS
D(x) R(x)

Density Estimator Regression Function

DBEst-How?

SELECT COUNT(sales_price,x) FROM

store_sales
WHERE (sales_price,x) BETWEEN Ib AND

ub;

ub
COUNT(y) = N - / D(x)dx
lb

DBEst-How?

VARIANCE_x(x) = E [x*] - [E [x]]?
B flzb x> Dix)dx [flzb xD(x)dx] 2
[Dax | [Dx)dx

STDDEV _x(x) = YVARIANCE_x(x)

ub ub

_ » x2D(x)dx _[7 xD(x)dx]2
ub ub
, D(x)dx ;, D(x)dx

DBEst-How?

PERCENTILE

Plx < a)v: 14

[D(x)dx = p
F(x) =p <=3 USEBISECTION!

DBEst-How?

SELECT COUNT(x) FROM

table

WHERE x BETWEEN Ib AND ub;
@ Problem: we need y to query!
SELECT SUM(y) FROM

table USE Ry (CE)

WHERE x BETWEEN Ib AND ub;

DBEst-How?

SELECT AVG(sales_price) FROM fEI;ECT AVG(y) FROM
aple

store_sales .
WHERE sales_time BETWEEN Ib AND ub; YWWHERE x BETWEEN Ib AND ub;

AVG(y) = Ely] "
o f(z)D(x) dz
~ B |R(x E —
) S = T b
b D(x)R(x)dx

/lzb D(x)dx

DBEst-How?

EXTEND REGRESSION TO MULTIVAR:

SELECT SUM(sales_price) FROM >
store_sales

WHERE sales_time BETWEEN Ib AND ub
AND sold_time BETWEEN Ib AND ub;

SELECT SUM(z) FROM

table

WHERE x BETWEEN Ib AND ub
AND yBETWEEN Ib AND ub ;

Rz(’ o Y

DBEst-How?

SELECT =z, AVG(y) FROM T
WHERE x BETWEEN 1b AND ub
GROUP BY z;

SOLUTION:
Treat each z as having its own dataset to train model
primitive on

DBEst-LIMITATIONS AND CHALLENGES

Models grow linearly with number of groups
*increase query processing time? - parallelizable
SOLUTION: create Model bundles to store model
necessary for “High-cardinality” queries

*still 10x as fast as sampling

DBEst Implementation

1. Sampling

2. Density Estimator

3. Regression Model Selection
4. Integral Evaluation

5. Parallel/Distributed Computation

Sampling

The paper mentions two sampling techniques

O[QT0
nan (X3
® O

BEEE ¢ - @
o0 e s
= [] SR E
e ee
B o] w0 |
Population Population
(i) Stratified sampling (ii) Reservoir Sampling Why?

v

Density Estimator

e Kernel Estimator / Sample(1 |2 |3 |4 |5 |6

o High Accurate and Efficient R =1 13041951 /6.2

e Nearest neighbor method
wn wn
s] s]
e Orthogonal Series Estimators
. 5o §o
e Histograms : :
-y 8 g
o o
o o
= 1 I : 2
-5 0 5 10
X X

Histograms Kernel Estimator

Regression Model Selection

a I
e LightGBM
e XGBoost
e GBoost
- U
a I
Individual Model
Training
_ J

Someone may asking:

Select which models to build?
e Tryingall combination for column
sets
e Mining query logs (e.g BlinkDB)
e Dependingon users (e.g VerdictDB)

a I
Evaluate Accuracy
for different
models

\ J

N

-

Using GBoost
Classifier to Select
Best Model

_

~

)

Integral Evaluation

@‘ SciPy

e Interesting accuracy-efficiency trade-offs!

»ub n
Ly[Ib,ub]f = w(x) f(x)dx L, [Ib. ub]f ~ Z wif(xx) {Rn ,En },k=1,2,..,N
lb k=1
w(.) is a weight function x1,x2,...xn are nodes, and w1, w2,,

wn are weights

Sampling

v

SELECT COUNT(pm25 real) [Densny }

So what is happening here? [Reservow

Estimators
FROM mdl

WHERE PRES BETWEEN 1000 AND 1020; @

Model
Selection

Approximation

[Calculate

Parallel/Distributed Computation

e Sampling -> easily parallelizable problem instructions
llll '

N 3 2

o Different nodes storing dataset partitions
e Model Training -> easily parallelizable
o GROUP BY queries

e Query Processing -> easily parallelizable

o Additional nodes/cores

Performance Evaluation

w N

Experimental Setup: Ubuntu 18.04 with Intel Xeon X5650 12-core CPU, 64GB
RAM and 4TB of SSD
Datasets: TPC-DS, Combined Cycle Power Plant(CCPP), Beijing PM2.5(UCI-ML)
Query Types:

o Synthetic queries: w/ 0.1%, 1%, and 10% query range

o Complex TPC-DS queries
Comparison:

o w/VerdictDB, Blink DB and MonetDB for error

o w/VerdictDB for time
Additional:

o VerdictDB uses 12 cores while DBEst runs on 1 core(Multi-threaded DBEst

is also evaluated)
o Performance of joins and group by

Sensitivity Analysis (Query Range & Sample Size)

10.0%
0.1% query range 10k 102 ~
1.0% query range Look Gyap] — DBESt 2 —— DBEst Bl
" BN 10.0% query range = - ;: s 1401 . verdictoB § 10t] — VerdicLDl? ',/(/, ~
= 5 E120 / o o
g 5 5 _ § 10 it AT
‘s 1.0% > -— A
% 1.0% % E 100 3 7
3 E £ 50 8 107
“ u = a ?
. - 0 -
163 164 165 16 0 107 105 10
i Sample Size Sample Size
& & « A IS & & ¥ & 3 ko o i .
N 73 & §F o < S & & £ ¢ % (a) Training Time (b) Space Overhead
S B g < 7
& <
Figure 5: Influence of Query Range on Relative Error Figure 2: Influence of Sample Size on Relative Error Flgure 4: DBEst vs VerdictDB Overheads

e Dataset:TPC-DS e Dataset:TPC-DS e 1to2ordersof
e Samplesize: 100k rows e Queryrange: 1% magnitude less than
e QueryRange:0.1%, 1%,10% e Sample size: 10k, 100k, 1m, 5m VerdictDB'’s

Performance comparison TPC-DS & CCPP dataset

TPC-DS CCPP

DBEst_10k 0.40 D
14.09 =" gkl dict 10° o
14.0% VerdiciDB_10k VeIcia0s - DBEst_10k o DBES_100k
! DBEst 100k .. 0.351 5 VerdictDB_10k 205 VerdictDB_100k
12.0% i @ Y 2
I VerdictDB_100k %030 - Foa
£ 100% g p 3
8 4; 0.25 5‘; 1 :‘: 0.3
& Bso% 5 i 3
g g 0.201 f "i 2
=] 3 5 g~
3.0 2015 & go1
= 5
Y 102 0.0
4.0% < 0.104 COUNT SUM AVG OVERALL COUNT SUM AVG OVERALL
2.0% I l 0.051 (a) 10k sample size (b) 100k sample size
0.0% , ! | . ! .00 - .
COUNT UM VG OVERALL

Figure 9: Response Time for CCPP Dataset
Figure 10: Relative Error: DBEst vs VerdictDB Figure 11: Response Time: DBEst vs VerdictDB

o e Samplesize: 10k, 100k
e Queryrange:0.1% e Reminder: VerdictDB uses 12

e Samplesize: 10k, 100k cores, while DBEst uses 1
e Responsetimeis small thread

Performance comparison GROUP BY

80
—15.0% DBEst L
) s VerdictDB » 601
5 5
£ 10.0% 9 50
- 3
5 3 40
05 i e
= 5.0% é’ 30 1
= E
20 1
0.0% GUNT SUM AVG OVERALL 101 k
(a) Relative Error 50% 100% 15.0%
Relative Error (%)
e 90queries, 57 groups
e Sample Size: 10k

DBEst
m VerdictDB

20.0% 25.0%

w o
o o

i
o

N
o

Total Qeury Response Time (<)
.- “
o o

[=3

-

———

VerdictDB_10k
VerdictDB_100k

»~ DBEst_10k

- -

DBEst_100k

4 1 8 10 12
Number of Processas
VerdictDB has no
benefit from Parallel

version

Performance comparison Join

6.0% DBEst 10k
DBEst_100k =
5.0% BN DBEst 1m f]
’ B VerdictDB_10m & & 4
- = - o 10
éfl 4.0% g i % 10
:;_J: 30% 5, é
}3 20% = $— $é‘ Cf $ *?* .?Q* Cf i
: & ¥ & &’ & oy ¥ il
al &§ ¢ ¢ £ & & & ¢
< RY BN
0.0% - (a) Response Time (b) Space Overhead
COUNT SUM AVG OVERALL
. . . Figure 21: Join Performance Comparison
Figure 20: Join Accuracy Comparison

e Samplesize: 10k, 100k, 1m for DBEst; 10m for VerdictDB

Limitation

GROUP BY queries: As the number of group increase
o Models 1
o Trainingtime 1
o Query Response Time 1
o Space overheads 1

Small groups:
o Building Models is an overkill

No error guarantees

/A CAUTION

DBEst

Conclusion & Future Works

e DBEst:

o Smaller query response time
o Higher accuracy

o Smaller space-time overheads
o scalability

o All comes with low money cost!!
e Future:
o Offering better efficiency-overheads-accuracy trade-offs(especially Joins queries)

o categorical attributes

o parallel/distributed DBEst

