
DBEst: Revisiting Approximate
Query Processing Engines with
Machine Learning Models

Presented by Kehan Wang
 Jinshu Yang

Authors

Peter Triantafillou
University of Warwick

Qingzhi Ma
University of Warwick

Agenda

● Introduction

● AQP Engine

● DBEst Architecture

● DBEst Implementation

● Evaluation

● Related Work

● Conclusion & Future works

Introduction

Background

USER DATABASEMACHINE
LEARNING

LEARNED
QUERY

OPTIMIZATION

LEARNED
TUNING

LEARNED
INDEX LEARNED

QUERY
EVALUATION

What is the problem?

 Selection Operators Aggregate Functions

Limitations?

AQP (Approximate Query Processing)

4.9 0.3

AQP State of Art

SAMPLING

AQP-Sampling

Offline Sampling Online Sampling

Assumption Workload is partially known. No assumptions

SpeedUp High Low

AQP

Can we do AQP while ensuring: ?

● Small query execution time
● Small states (memory/storage)
● High accuracy
● Low money cost

YES!

DBEst

DEFINITION:

an AQP engine supporting the analytical needs, using prebuilt, a priori state

DBEst-What are the models?

TWO MODELS

D(x) R(x)
Density Estimator Regression Function

DBEst-How?

SELECT COUNT(sales_price,x) FROM
store_sales
WHERE (sales_price,x) BETWEEN lb AND
ub;

DBEst-How?

DBEst-How?

PERCENTILE

USE BISECTION!

DBEst-How?

SELECT COUNT(x) FROM
table
WHERE x BETWEEN lb AND ub;

SELECT SUM(y) FROM
table
WHERE x BETWEEN lb AND ub;

Problem: we need y to query!

USE

DBEst-How?

SELECT AVG(sales_price) FROM
store_sales
WHERE sales_time BETWEEN lb AND ub;

SELECT AVG(y) FROM
table
WHERE x BETWEEN lb AND ub;

DBEst-How?

SELECT SUM(sales_price) FROM
store_sales
WHERE sales_time BETWEEN lb AND ub
AND sold_time BETWEEN lb AND ub ;

EXTEND REGRESSION TO MULTIVAR:

SELECT SUM(z) FROM
table
WHERE x BETWEEN lb AND ub
AND yBETWEEN lb AND ub ;

DBEst-How?

SOLUTION:
Treat each z as having its own dataset to train model
primitive on

DBEst-LIMITATIONS AND CHALLENGES

Models grow linearly with number of groups
*increase query processing time? - parallelizable
SOLUTION: create Model bundles to store model
necessary for “High-cardinality” queries
*still 10x as fast as sampling

DBEst Implementation

1. Sampling

2. Density Estimator

3. Regression Model Selection

4. Integral Evaluation

5. Parallel/Distributed Computation

Sampling

The paper mentions two sampling techniques

(i) Stratified sampling (ii) Reservoir Sampling Why?

Density Estimator

● Kernel Estimator

○ High Accurate and Efficient

● Nearest neighbor method

● Orthogonal Series Estimators

● Histograms

 Histograms Kernel Estimator

Regression Model Selection

Individual Model
Training

Evaluate Accuracy
for different
models

Using GBoost
Classifier to Select
Best Model

● LightGBM
● XGBoost
● GBoost

Someone may asking:
Select which models to build?

● Trying all combination for column
sets

● Mining query logs (e.g BlinkDB)
● Depending on users (e.g VerdictDB)

Integral Evaluation

w(.) is a weight function x1,x2,...,xn are nodes, and w1, w2, ….,
wn are weights

● Interesting accuracy-efficiency trade-offs!

So what is happening here?

SELECT COUNT(pm25 real)

FROM mdl

WHERE PRES BETWEEN 1000 AND 1020;

Reservoir
Sampling

Density
Estimators

Model
Selection

Calculate
Approximation

Parallel/Distributed Computation

● Sampling -> easily parallelizable

○ Different nodes storing dataset partitions

● Model Training -> easily parallelizable

○ GROUP BY queries

● Query Processing -> easily parallelizable

○ Additional nodes/cores

Performance Evaluation

1. Experimental Setup: Ubuntu 18.04 with Intel Xeon X5650 12-core CPU, 64GB
RAM and 4TB of SSD

2. Datasets: TPC-DS, Combined Cycle Power Plant(CCPP), Beijing PM2.5(UCI-ML)
3. Query Types:

○ Synthetic queries: w/ 0.1%, 1%, and 10% query range
○ Complex TPC-DS queries

4. Comparison:
○ w/ VerdictDB, Blink DB and MonetDB for error
○ w/ VerdictDB for time

5. Additional:
○ VerdictDB uses 12 cores while DBEst runs on 1 core(Multi-threaded DBEst

is also evaluated)
○ Performance of joins and group by

Sensitivity Analysis (Query Range & Sample Size)

● Dataset:TPC-DS
● Sample size: 100k rows
● Query Range: 0.1%, 1%, 10%

● Dataset:TPC-DS
● Query range: 1%
● Sample size: 10k, 100k, 1m, 5m

● 1 to 2 orders of
magnitude less than
VerdictDB’s

Performance comparison TPC-DS & CCPP dataset

TPC-DS CCPP

● Query range: 0.1%
● Sample size: 10k, 100k
● Response time is small

● Sample size: 10k, 100k
● Reminder: VerdictDB uses 12

cores, while DBEst uses 1
thread

Performance comparison GROUP BY

● 90 queries, 57 groups
● Sample Size: 10k

● VerdictDB has no
benefit from Parallel
version

Performance comparison Join

● Sample size: 10k, 100k, 1m for DBEst; 10m for VerdictDB

Limitation

● GROUP BY queries: As the number of group increase

○ Models ↑

○ Training time ↑

○ Query Response Time ↑

○ Space overheads ↑

● Small groups:

○ Building Models is an overkill

● No error guarantees

 DBEst

Conclusion & Future Works

● DBEst:

○ Smaller query response time

○ Higher accuracy

○ Smaller space-time overheads

○ scalability

○ All comes with low money cost!!

● Future:

○ Offering better efficiency-overheads-accuracy trade-offs(especially Joins queries)

○ categorical attributes

○ parallel/distributed DBEst

