
FITing-Tree: A Data-aware Index Structure[1]

Alex Galakatos* Michael Markovitch*
Carsten Binnig Rodrigo Fonseca Tim Kraska

Reported by

Zichen Zhu

Agenda

Introduction1

Segmentation2

Lookups & Inserts3

Evaluation4

Conclusion5

Agenda

Introduction1

Segmentation2

Lookups & Inserts3

Evaluation4

Conclusion5

Introduction - Motivation1

Motivation 1 Existing index structures fail to exploit data patterns

Example: Internet of Things (IoT)

Data Types: √
• Time series

• Geospatial

Data Patterns: ×
• Day/Night

• Class schedule

• Summer/Winter break

• Finals week

Motivation 2 Memory footprint is uncontrollable as data grows

Introduction - Motivation1

Percentage of the memory usage for tuples, primary indexes, and secondary

indexes in H-Store using the default indexes (B tree) with DB size ≈10 GB[2]

Performance: √
• Lookup

• Update

Storage Overhead: ×
• Budgetable

• Tradeoff navigation with performance

Introduction - Overview1

Function Approximation

𝑒𝑟𝑟𝑜𝑟 = max 𝑝𝑟𝑒𝑑 𝑘 − 𝑡𝑟𝑢𝑒 𝑘 ∀𝑘 ∈ 𝑘𝑒𝑦𝑠

Introduction - Overview1

Clustered Segment Index

Segment 1

Segment 2

Segment 3

Segment n

…

Agenda

Introduction1

Segmentation2

Lookups & Inserts3

Evaluation4

Conclusion5

Segmentation2

Example

A segment from 𝑥1, 𝑦1 to (𝑥3, 𝑦3) is

not valid if (𝑥2, 𝑦2) is further than

error from the interpolated line.

Definition A segment is a region of the key space that can be represented by a linear

function whereby all keys are within a bounded distance (error) from

their linearly interpolated position.

Segmentation2

Starting with

a segment with

only one point 𝑥1, 𝑦1

A point 𝑥2, 𝑦2
is added

A point 𝑥3, 𝑦3
is added

What happens if

a point 𝑥4, 𝑦4
is added

Shrinking Cone A fast and efficient algorithm but not an optimal one for segmentation

key

loc

𝑥1, 𝑦1

key

loc

𝑥1, 𝑦1

𝑥2, 𝑦2

key

loc

𝑥1, 𝑦1

𝑥2, 𝑦2 𝑥3, 𝑦3

𝑥4, 𝑦4

Agenda

Introduction1

Segmentation2

Lookups & Inserts3

Evaluation4

Conclusion5

Lookups & Inserts3

Lookups Query the segment index and execute binary searching within a range

Lookup(6)

Segment i

0 1 2 3 43 5 5 6 7 87 8 8 99

𝑝𝑟𝑒𝑑_𝑙𝑜𝑐 = 𝑘𝑒𝑦 −𝑚𝑖𝑛 ∗ 𝑠𝑙𝑜𝑝𝑒

[𝑝𝑟𝑒𝑑_𝑙𝑜𝑐 − 𝑒𝑟𝑟𝑜𝑟, 𝑝𝑟𝑒𝑑_𝑙𝑜𝑐 + 𝑒𝑟𝑟𝑜𝑟]

①

②

③

④

Lookups & Inserts3

Lookups Range query is executed by a point query of the starting key and the sequential scan

Lookup([6,100])

Segment i

0 1 2 3 43 5 5 6 7 87 8 8 99

𝑝𝑟𝑒𝑑_𝑙𝑜𝑐 = 𝑘𝑒𝑦 −𝑚𝑖𝑛 ∗ 𝑠𝑙𝑜𝑝𝑒

[𝑝𝑟𝑒𝑑_𝑙𝑜𝑐 − 𝑒𝑟𝑟𝑜𝑟, 𝑝𝑟𝑒𝑑_𝑙𝑜𝑐 + 𝑒𝑟𝑟𝑜𝑟]

①

②

③

④

Lookup(6)

Segment i+1 Segment j…

⑤ Sequential Scan until 100

Lookups & Inserts3

 In-place update if

the page is not full

 In-place update and

split if the page is full

Inserting in B+ Tree

What is the problem of inserting in FITing-Tree?

(1) Expensive for segment-based organization

Seg 1 Seg 2 Seg 3

Seg 2

A newly inserted key … …

Lookups & Inserts3

 In-place update if

the page is not full

 In-place update and

split if the page is full

Inserting in B+ Tree

What is the problem of inserting in FITing-Tree?

(2) Is predicted error still bounded?

Lookup(6)

0 1 2 3 43 5 5 6 7 87 8 8 99

𝑝𝑟𝑒𝑑_𝑙𝑜𝑐 = 𝑘𝑒𝑦 −𝑚𝑖𝑛 ∗ 𝑠𝑙𝑜𝑝𝑒

𝑙𝑜𝑐 6 ∈ [𝑝𝑟𝑒𝑑_𝑙𝑜𝑐 − 𝑒𝑟𝑟𝑜𝑟, 𝑝𝑟𝑒𝑑_𝑙𝑜𝑐 + 𝑒𝑟𝑟𝑜𝑟]

5

A newly inserted key

0 1 2 3 43 5 5 6 7 87 8 8 995

𝑙𝑜𝑐 6 ∉ [𝑝𝑟𝑒𝑑_𝑙𝑜𝑐 − 𝑒𝑟𝑟𝑜𝑟, 𝑝𝑟𝑒𝑑_𝑙𝑜𝑐 + 𝑒𝑟𝑟𝑜𝑟]

Lookups & Inserts3

In-place Inserts Leave 2𝜖 free space for inserting and re-approximate segmentation once it is full

Lookup(6)

0 1 2 3 43 5 5 6 7 87 8 8 99

[𝑝𝑟𝑒𝑑_𝑙𝑜𝑐 − 𝑒𝑟𝑟𝑜𝑟, 𝑝𝑟𝑒𝑑_𝑙𝑜𝑐 + 𝑒𝑟𝑟𝑜𝑟]

𝜖 = 3

[𝑝𝑟𝑒𝑑_𝑙𝑜𝑐 − 𝑒𝑟𝑟𝑜𝑟 − 𝜖, 𝑝𝑟𝑒𝑑_𝑙𝑜𝑐 + 𝑒𝑟𝑟𝑜𝑟 + 𝜖] 𝑒𝑟𝑟𝑜𝑟′ = 𝑒𝑟𝑟𝑜𝑟 + 𝜖

0 1 2 3 43 5 5 6 7 87 8 8 995

5

A newly inserted key

Lookup(6)

Lookups & Inserts3

In-place Inserts Bounded error is now maintained by 𝜖 but how about efficiency?

0 1 2 3 43 5 5 6 7 87 8 8 99𝜖 = 3

0 1 2 3 43 5 5 6 7 87 8 8 995

5

A newly inserted key

0 1 2 3 43 5 5 6 7 87 8 8 995

Case 1:

Case 2:

…

…

Choose the side with less element movement!

Lookups & Inserts3

Delta Inserts Leave 𝜖 free space for buffer and once it is full, merge with the segment and re-

approximate segmentation

Lookup(6)

0 1 2 3 43 5 5 6 7 87 8 8 99

[𝑝𝑟𝑒𝑑_𝑙𝑜𝑐 − 𝑒𝑟𝑟𝑜𝑟, 𝑝𝑟𝑒𝑑_𝑙𝑜𝑐 + 𝑒𝑟𝑟𝑜𝑟]

𝜖 = 6 5

A newly inserted key

5

Inserting in LSM-Tree

Merge with the next level and

re-program bloom filter to

maintain lookup efficiency

FULL!𝑒𝑟𝑟𝑜𝑟′ = 𝑒𝑟𝑟𝑜𝑟 + 𝜖

𝑳𝒂𝒕𝒆𝒏𝒄𝒚 = 𝒄[𝐥𝐨𝐠𝒃 |𝑺| + 𝐥𝐨𝐠𝟐 𝒆𝒓𝒓𝒐𝒓 + 𝐥𝐨𝐠𝟐(𝝐)]

𝑺𝒊𝒛𝒆 = 𝑺 𝐥𝐨𝐠𝒃 𝑺 ⋅ 𝟏𝟔𝑩 + 𝑺 ⋅ (𝝐 + 𝟐𝟒𝑩)

Agenda

Introduction1

Segmentation2

Lookups & Inserts3

Evaluation4

Conclusion5

Dataset is Important!

Evaluation4

Weblogs

IoT

Size Index Patterns

715M

5M

Clustered Index

Clustered Index

Day/Night

Class schedule

Maps 2B Non-clustered Index -

(1) Lookup Latency vs Index Size

 STX-tree (B+ tree implementation)

 Baselines

 Full index (a dense index, there is an index

pointer for each data record)

 Fixed-size paging (a sparse index, index

records are not created for every key)

 Binary search

Evaluation4

IoT Dataset

Findings4

(1) Lookup Latency vs Index Size

FITing-Tree offers very low lookup latency with significant space saving

Findings4

(2) Throughput for Inserts vs Error

FIT does not provide the highest write throughput due to extra cost on segmentation

Findings4

(3) Insertion Strategy Microbenchmark

In-place strategy with a low fill factor offers the highest insert performance

Agenda

Introduction1

Segmentation2

Lookups & Inserts3

Evaluation4

Conclusion5

Conclusion5

• The segment-based structure can be easily integrated with many existing index

structures (e.g. B+ tree and FAST) and thus has potential application prospects

• FITing-Tree uses piece-wise linear functions to approximate the distribution to

support efficient lookup

• FITing-Tree presents an index that introduces a tunable parameter 𝝐 to balance the

tradeoff between lookup performance and space consumption of an index

Conclusion5

• Delta-insert strategy can allow buffer is unsorted to improve the write

efficiency in OLTP workload

• A few meta data can be added to support efficient aggregate query such as

MAX/SUM query

Can we do better?

• Segmentation algorithm should consider the indexing structure to derive a

more suitable segmentation scheme.

Citations

[1] Galakatos, A., Markovitch, M., Binnig, C., Fonseca, R. and Kraska, T., 2019, June. Fiting-tree:
A data-aware index structure. In Proceedings of the 2019 International Conference on
Management of Data (pp. 1189-1206).

[2] Zhang, H., Andersen, D.G., Pavlo, A., Kaminsky, M., Ma, L. and Shen, R., 2016, June.
Reducing the storage overhead of main-memory OLTP databases with hybrid indexes.
In Proceedings of the 2016 International Conference on Management of Data (pp. 1567-1581).

Thanks
Reported by

Zichen Zhu

