FITing—Tree: A Data—aware Index Structurell!

Alex Galakatos® Michael Markovitch”
Carsten Binnig Rodrigo Fonseca Tim Kraska

Reported by

Zichen Zhu

Agenda

Introduction

Segmentation

00

—va

KUpPS & Inserts

uation

Conclusion

Agenda

Introduction

Segmentation

00

—va

KUps & Inserts

uation

Conclusion

1 Introduction — Motivation

Existing index structures fail to exploit data patterns

Day Data Types: \/

Weekend Time ser_les
« Geospatial

Data Patterns: X
« Day/Night
e Class schedule

o Summer/Winter break

el * Finals week
Example: Internet of Things (1oT)

1 Introduction — Motivation

Memory footprint is uncontrollable as data grows

Primary Secondary
Tuples Indexes Indexes

TPC-C 42.5% 33.5% 24.0%
Articles 64.8% 22.6% 12.6%
Voter 45.1% 54.9% 0%

Percentage of the memory usage for tuples, primary indexes, and secondary
indexes in H-Store using the default indexes (B tree) with DB size ~10 GB!2!

Performance: \/ Storage Overhead: X
« Lookup « Budgetable
« Update Tradeoff navigation with performance

1 Introduction — Overview

Weekend

Timestamp Timestamp

error = max(|pred(k) — true(k)|)Vk € keys

1 Introduction — Overview

/ Segment 1 \ separators
Inner Nodes
Segment 2 separators - == separators

Segment 3

Leaf Nodes " w

Table Pages
K : (Sorted) Segment 1 Segment 2 Segment 3

Agenda

Introduction

Segmentation

00

—va

KUps & Inserts

uation

Conclusion

2 Segmentation

A segment Is a region of the key space that can be represented by a linear
function whereby all keys are within a bounded distance (error) from
their linearly interpolated position.

loc ¢

(%2, y2) (x3;y3)
) & p

Ve
e
v
e

> error”’ A segment from (x4, y;) to (x3,y3) IS
2 not valid if (x,, y,) is further than
. error from the interpolated line.

rd
Ve

~
Ve
Id
4

(x1,.y1)

2 Segmentation

A fast and efficient algorithm but not an optimal one for segmentation
© (x4y4)

P (x2,0%) © (x3,y3)

® ® ®

Starting with A point (x5, v5) A point (x3,y3)
a segment with is added is added
only one point (x4, y;)

What happens if

a point (x4, y4)
IS added

Agenda

Introduction

Segmentation

_ 00

—va

KUpPS & Inserts

uation

Conclusion

3 Lookups & Inserts

Query the segment index and execute binary searching within a range

Lookup(6)

Segment |

®

Inner Nodes

separators

separators

/

Leaf Nodes

T~

separators

L]
ey + ey + " EE
slope

Table Pages

pred_loc = (key — min) * slope Sorted) | Seament 1

@

Segment 2

Segment 3

3

5

5

6

\

J

{

[pred_loc — error, pred_loc + error]

3 Lookups & Inserts

Range query Is executed by a point query of the starting key and the sequential scan

@ LOO ku p (6) separators
Lookup([6,100]) Inner Nodes e T

@ separators T separators

Segment |

Leaf Nodes

]
ey + | key + | key + " om
@ slope | slope | slope

: Table Pages
pred_loc — (key e mln) * Slope (Sorted) Segment 1 Segment 2 Segment 3

@

(5) Sequential Scan until 100

3 5 6 919 Segment i+1 Segment |

\ J
||

[pred_loc — error, pred_loc + error]

3 Lookups & Inserts

?: What is the problem of inserting in FITing-Tree?
® |

—pe—

Inserting in B+ Tree

= In-place update if

the page is not full
- B In-place update and
split if the page is full

3 Lookups & Inserts

?: What is the problem of inserting in FITing-Tree?
® |

awr—

i (2) Is predicted error still bounded? !

Lookup(6)
pred_loc = (key — min) * slope
Inserting in B+ Tree e
213131455167 7]18]8]|81]9

\ J
|

loc(6) € [pred_loc — error,pred_loc + error]

A newly inserted key

5

= In-place update if
the page is not full

2131314]15]5]|5]|6]|7]7]|8]8]8

B In-place update and

split if the page is full loc(6) ¢ [pred_loc — error,pred_loc + error]

3 Lookups & Inserts

Leave 2¢ free space for inserting and re-approximate segmentation once it is full

A newly inserted key

Lookup(6)

31415 6

L J
T

[pred_loc — error, pred_loc + error]

\ J
|

[pred_loc — error — €, pred_loc + error + €] error' = error + €

A

5

Lookup(6)

3 Lookups & Inserts

Bounded error is now maintained by e but how about efficiency?

A newly inserted key

Choose the side with less element movement!

3 Lookups & Inserts

Delta Inserts ~ Leave ¢ free space for buffer and once it is full, merge with the segment and re-
approximate segmentation

A newly inserted key

€E=06 Lookup(6) 5

011123131415

[pred_loc — error,pred_loc + error] Inserting in LSM-Tree

=) crror’ = error + €

Latency = c[log,(|S|) + log,(error) + log,(€)]:
Size = |S|10gb(|5|) -16B + |S]| - (e + 24B) Merge with the next level and

re-program bloom filter to
maintain lookup efficiency

Agenda

Introduction

Segmentation

00

—va

KUps & Inserts

uation

Conclusion

4 Evaluation

Weblogs

Dataset is Important!

Index

Clustered Index

Clustered Index

Non-clustered Index

Patterns

Day/Night

Class schedule

4 Evaluation

(1) Lookup Latency vs Index Size

B STX-tree (B* tree implementation)

B Baselines
B Full index (a dense index, there is an index
pointer for each data record)
Fixed-size paging (a sparse index, index
records are not created for every key)

o
=
kv
o
<)
-
1
o,
o
—_
m
c
v
£
l—

102 10' 10° 108 10% 10° 10* 10°

Binary search Index Size (MB)

loT Dataset

4 FIndings

(1) Lookup Latency vs Index Size

1
— T
— Fixed

\ —— Full

e,

it

/N
Y

T

—

= = =
o I =
= o o
=] = =]
= = =
o M =
o = o
[=] (= [=]

P

™

"‘\\\ ‘\\‘

S

.,_|_‘\H'

N\

—_—

"l-.______‘_

at——

3

=3
=
a
=]
=]
-
=
w
=3
-
i
=
w
E
=

Time (ns) per Lookup
Time (ns) per Lookup

-1 2 4

0 1 2 5 K K K - - =
10" 10° 100 10° 107 10 10° 107 10t 10° 100 10° 10° 10* 10 10° 107 100 10" 100 10° 10

Index Size (MB) Index Size (MB) Index Size (MB)

(a) Weblogs (b) IoT (c) Maps

1 3 4 5 -3 2 3 4

10

FITing-Tree offers very low lookup latency with significant space saving

4 FIndings

(2) Throughput for Inserts vs Error

=
o
=
[=]

e
@

e
&

o
@

2
=

o
=
e
F=Y

=]
Pt

e
[

e

e
o

W
-
[
2
=
L
=
o
£
o
a
o
e
£
=
L
1
U
I
=

Insert Throughput (Million/s)
Insert Throughput (Million/s)

3

= o
=]
et
=
o

10° 10
Error

(a) Weblogs

FIT does not provide the highest write throughput due to extra cost on segmentation

4 FIndings

(3) Insertion Strategy Microbenchmark

=
[=]

=
=

— Delta
== |n-Place (low) |7

— Delta
= In-Place (low)]
— In-Place (high)||

= [elta
— In-Place (low) []
== |n-Place (high}|]

o
w

e
o

=— In-Place (high)||

e
o
e
o

e
B

e
s

_\\m

x\
T~ —
——

10? 10°

T~

X\

10° 10° 10
Error

[=]
58]
[=]
o

O
>

N
-
c
=]
=
e
S 0.
o
&
o
=]
(=]
-
£
=
t
1]
(]
E

Insert Throughput (Million/s)
Insert Throughput (Million/s)

o
= O
[=]

4

e
=)

Tt
=]

2 3 4

i

2

10 10 10 10

Error Error

(a) Weblogs (b) IoT (c) Maps

In-place strategy with a low fill factor offers the highest insert performance

Agenda

Introduction

Segmentation

00

—va

KUps & Inserts

uation

Conclusion

5 Conclusion

* FITing-Tree uses piece-wise linear functions to approximate the distribution to
support efficient lookup

* FITing-Tree presents an index that introduces a tunable parameter € to balance the
tradeoff between lookup performance and space consumption of an index

 The segment-based structure can be easily integrated with many existing index
structures (e.g. B* tree and FAST) and thus has potential application prospects

5 Conclusion

Can we do better?

« Delta-insert strategy can allow buffer is unsorted to improve the write
efficiency in OLTP workload

« A few meta data can be added to support efficient aggregate query such as
MAX/SUM query

« Segmentation algorithm should consider the indexing structure to derive a
more suitable segmentation scheme.

Citations

[1] Galakatos, A., Markovitch, M., Binnig, C., Fonseca, R. and Kraska, T., 2019, June. Fiting-tree:
A data—aware index structure. In Proceedings of the 2019 International Conference on
Management of Data (pp. 1189-1206).

[2] Zhang, H., Andersen, D.G., Pavlo, A., Kaminsky, M., Ma, L. and Shen, R., 2016, June.
Reducing the storage overhead of main—-memory OLTP databases with hybrid indexes.
In Proceedings of the 2016 International Conference on Management of Data (pp. 1567-1581).

Thanks

Reported by

Zichen Zhu

