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What is this paper about?

e Goal: DBMSs need tuning to optimize

e Problem: Tuning is
o Required
o Hard
o Expensive

e The paper: uses ML to
o Find knobs
o Find similar workloads
o  Give configurations

e OtterTune https://db.cs.cmu.edu/projects/ottertune/



https://db.cs.cmu.edu/projects/ottertune/

http://www.vldb.org/pvidb/vol11/p1910-zhang.pdf

Figure 2: Tuning Session — The user can view the performance of the target
DBMS as it tries the configurations recommended throughout the tuning
session. Users can also view detailed information about the knob settings
and metric values collected during each observation period.
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Why is it hard?

e NP-hard.

e Knobs are
o Not standardized
o Not independent
o Not have universal effects
o Continuous
e Their effects are
o not documented
o expensive to learn
e Require expensive human experts
e And they could fail

e More knobs over time
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More difficulties
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Why is it hard? Continued

e Previous attempts are not general-purposed.

e Some attempts still require manual operations

o Deploy a second copy
o Map dependencies between knobs
o Guide training process

e Knowledge cannot be transferred.

e Old way: trial and error.
o Tedious, expensive, inefficient



Contributions of this paper

1.  Automated approach that continuously
a. Collects data
b. Optimize the DBMS

2. Uses supervised and unsupervised ML

a. Select knobs
b. Map workloads
c. Recommend knob settings



System Overview
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Figure 2: OtterTune Architecture — An overview of the components in
the OtterTune system. The controller connects to the DBMS and collects
information about the performance of the system. This information is then
sent to the tuning manager where it is stored in its repository. It then builds
models that are used to select an optimal configuration for the DBMS.



Assumptions and Limitations

Priviledge
No restart time considered
Knows whether knobs need restart

Database is reasonable.
o Proper indexes
o Materialized views
o eftc.



Workload Characterization

1. Distinguish the target workload
a. Analyze the target workload at the logical level.
i. Schema -> metrics
1. Number of tables/columns accessed per query
2. Read/write ratio of transactions
ii. “what-if’ optimizer API
b. Internal runtime metrics.
i.  Number of pages read/written
ii. Query cache utilization
lii. Locking overhead.



Statistics collection

1. Reset

2. Collects all numeric metric

3. Stores the data into the repository.

4. Prefix the name of the sub-element to the metric’'s name.



Pruning redundant metrics

e Need

Smallest set of metrics

Most variability

Robust estimation

Full data will fit into the memory.

e Redundant metrics includes:
o The same metric but different granularities.
o Dependent components

e Two techniques for pruning

o Factor analysis (FA)
o k-means

O O O O



Techniques for pruning

e FA

o Dimensionality reduction
o Each factor has unit variance
o Uncorrelated with all other factors

e K-means
o  One metric per cluster
m Drawback: requires the optimal number of clusters
m use heuristic to automate K selection
o Interesting finding:
m OtterTune clusters useless metrics



original data set output from PCA
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Figure 4: Metric Clustering — Grouping DBMS metrics using k-means
based on how similar they are to each other as identified by Factor Analysis
and plotted by their (f1, f2) coordinates. The color of each metric shows
its cluster membership. The triangles represent the cluster centers.

Interesting finding: OtterTune tends to group together useless metrics (e.g., SSL
connection data)



Selecting knobs

e Identifies the most impactful knobs

e Find correlation to performance.

e The number of knobs selected increases dynamically.
o Ordinary least squares (OLS)

e Instead, Lasso is a regularized version of least squares

° https://lwww.google.com/url?sa=i&url=https%3A%2F %2Fen.wikipedia.org%2Fwiki%2FLinear_regression&psig=AOvVaw1_phiJyscdvHstV32
Hj27b&ust=1587005062164000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCPCzttu06egCFQAAAAAJAAAAABAD
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Lasso

More interpretable, stable and computationally efficient
L1 penalty

Get order of importance of the knobs.

Impact on the target metric



Data preprocessing

e \Want:

o  Continuous features
o Same order of magnitude
o  Similar variances

e Do:
o Categorical data into binary “dummy” variable
o Standardize the data
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Automated Tuning

e What is available now:

o non-redundant matrics

o most impactful knobs

o data from previous tuning sessions.
e Executes a two-step analysis:

o  Workload mapping

o Configuration Recommendation



Workload Mapping

e Dynamic mapping scheme

e Build a set S of N matrices
o Rows: workloads
o Columns: DBMS configuration

e Calculates the Euclidean distance
e Computes the score for each workload



Configuration recommendation

e Uses Gaussian Process (GP) regression
o Good trade off between
m exploration
m exploitation

e Provide confidence intervals.
e Gradient descent



Experimental Evaluation

e Used TensorFlow and scikit-learn
e Three different DBMSs used:
o MySQL, Postgres, and Actian Vector (OLAP)
e Deployment on Amazon EC2
e Each experiment consists of two instances
o Controller with OLTP-Bench framework.
o Deployed on m4.large instances
m 4 vCPUs and 16 GB RAM
o Ma3.xlarge instances
m 4 vCPUs and 15 GB RAM
e OtterTune’s tuning manager and repository
o 20 cores and 128 GB RAM



Workloads

YCSB

TPC-C

Wikipedia

TPC-H (Only OLAP)

For OLTP workloads, OtterTune uses five-minute observation periods and
assign the target metric to be the 99%-tile latency



Number of Knobs
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e Best for Postgres: incremental, 4, 8
e Best for Vector: incremental, 8, 16



Tuning Evaluation
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Figure 6: Tuning Evaluation (TPC-C) — A comparison of the OLTP
DBMSs for the TPC-C workload when using configurations generated by
OtterTune and iTuned.
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Figure 7: Tuning Evaluation (Wikipedia) — A comparison of the OLTP
DBMSs for the Wikipedia workload when using configurations generated
by OtterTune and iTuned.
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Figure 8: Tuning Evaluation (TPC-H) — Performance measurements for
Vector running two sub-sets of the TPC-H workload using configurations
generated by OtterTune and iTuned.
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Figure 9: Execution Time Breakdown — The average amount of time that
OtterTune spends in the parts of the system during an observation period.

load for the current target from its repository. This corre-
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Figure 9: Execution Time Breakdown — The average amount of time that
OtterTune spends in the parts of the system during an observation period.



Efficacy Comparison

DBA: human expert
RDS-config: config given by Amazon Relational Database Service
Tuning script: tools that recommend knob configurations
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Figure 10: Efficacy Comparison (MySQL) — Throughput and latzncy Figure 11: Efficacy Comparison (Postgres) — Throughput and latency
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Lithuanian DBA Conﬁguration, and (5) Amazon RDS Conﬁguration. DBA Conﬁguration’ and (5) Amazon RDS Conﬁguration.



