
Automatic Database Manage System 
Tuning Through Large-scale Machine 

Learning
Reviewed by Yinxuan Feng



Table of Content
● About
● Why is it hard?
● Contribution of this paper
● System overview
● Assumptions and limitations
● Workload characterization

○ Statistics collection
○ Pruning redundant metrics

● Selecting knobs
○ Lasso and preprocessing

● Automated Tuning
○ Workload mapping
○ Configuration recommendation

● Evaluation



What is this paper about?
● Goal: DBMSs need tuning to optimize
● Problem: Tuning is 

○ Required
○ Hard
○ Expensive 

● The paper: uses ML to
○ Find knobs
○ Find similar workloads
○ Give configurations

● OtterTune https://db.cs.cmu.edu/projects/ottertune/

https://db.cs.cmu.edu/projects/ottertune/


http://www.vldb.org/pvldb/vol11/p1910-zhang.pdf

http://www.vldb.org/pvldb/vol11/p1910-zhang.pdf


Why is it hard?
● NP-hard.
● Knobs are 

○ Not standardized
○ Not independent
○ Not have universal effects
○ Continuous

● Their effects are 
○ not documented
○ expensive to learn

● Require expensive human experts
● And they could fail
● More knobs over time



More difficulties



Why is it hard? Continued
● Previous attempts are not general-purposed. 
● Some attempts still require manual operations

○ Deploy a second copy
○ Map dependencies between knobs
○ Guide training process

● Knowledge cannot be transferred.
● Old way: trial and error. 

○ Tedious, expensive, inefficient



Contributions of this paper
1. Automated approach that continuously

a. Collects data
b. Optimize the DBMS

2. Uses supervised and unsupervised ML
a. Select knobs
b. Map workloads
c. Recommend knob settings



System Overview
1. Sets target
2. Observation period
3. Stores in repository
4. Computer config



Assumptions and Limitations
● Priviledge
● No restart time considered
● Knows whether knobs need restart
● Database is reasonable.

○ Proper indexes
○ Materialized views
○ etc.



 Workload Characterization
1. Distinguish the target workload

a. Analyze the target workload at the logical level. 
i. Schema -> metrics

1. Number of tables/columns accessed per query
2. Read/write ratio of transactions

ii. “what-if” optimizer API
b. Internal runtime metrics.

i. Number of pages read/written
ii. Query cache utilization
iii. Locking overhead.



Statistics collection
1. Reset
2. Collects all numeric metric
3. Stores the data into the repository.
4. Prefix the name of the sub-element to the metric’s name.



Pruning redundant metrics
● Need 

○ Smallest set of metrics
○ Most variability
○ Robust estimation
○ Full data will fit into the memory.

● Redundant metrics includes:
○ The same metric but different granularities.
○ Dependent components

● Two techniques for pruning
○ Factor analysis (FA)
○ k-means



Techniques for pruning
● FA

○ Dimensionality reduction
○ Each factor has unit variance
○ Uncorrelated with all other factors

● K-means
○ One metric per cluster

■ Drawback: requires the optimal number of clusters
■ use heuristic to automate K selection

○ Interesting finding:
■ OtterTune clusters useless metrics



https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c

https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c


Interesting finding: OtterTune tends to group together useless metrics (e.g., SSL 
connection data)



Selecting knobs
● Identifies the most impactful knobs
● Find correlation to performance. 
● The number of knobs selected increases dynamically.

○ Ordinary least squares (OLS)

● Instead, Lasso is a regularized version of least squares
● https://www.google.com/url?sa=i&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FLinear_regression&psig=AOvVaw1_phiJyscdvHstV32

Hj27b&ust=1587005062164000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCPCzttu06egCFQAAAAAdAAAAABAD



Lasso
● More interpretable, stable and computationally efficient
● L1 penalty
● Get order of importance of the knobs. 
● Impact on the target metric



Data preprocessing
● Want:

○ Continuous features
○ Same order of magnitude
○ Similar variances

● Do:
○ Categorical data into binary “dummy” variable
○ Standardize the data



https://www.google.com/url?sa=i&url=https%3A%2F%2Ftowardsdatascience.com%2Fall-about-categorical-variable-encoding-305f3361fd02
&psig=AOvVaw24JZ1afCs1ysftqgjI3YK0&ust=1587005407431000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCOiy2IC26egCFQAAAA
AdAAAAABAD



Automated Tuning
● What is available now: 

○ non-redundant matrics
○ most impactful knobs
○ data from previous tuning sessions.

● Executes a two-step analysis:
○ Workload mapping
○ Configuration Recommendation



Workload Mapping
● Dynamic mapping scheme
● Build a set S of N matrices

○ Rows: workloads
○ Columns: DBMS configuration

● Calculates the Euclidean distance
● Computes the score for each workload



Configuration recommendation
● Uses Gaussian Process (GP) regression

○ Good trade off between 
■ exploration
■ exploitation

● Provide confidence intervals.
● Gradient descent



Experimental Evaluation
● Used TensorFlow and scikit-learn
● Three different DBMSs used: 

○ MySQL, Postgres, and Actian Vector (OLAP)

● Deployment on Amazon EC2
● Each experiment consists of two instances

○ Controller with OLTP-Bench framework. 
○ Deployed on m4.large instances

■ 4 vCPUs and 16 GB RAM
○ M3.xlarge instances

■ 4 vCPUs and 15 GB RAM

● OtterTune’s tuning manager and repository
○ 20 cores and 128 GB RAM



Workloads
● YCSB
● TPC-C
● Wikipedia
● TPC-H (Only OLAP)
● For OLTP workloads, OtterTune uses five-minute observation periods and 

assign the target metric to be the 99%-tile latency



Number of Knobs

● Best for Postgres: incremental, 4, 8
● Best for Vector: incremental, 8, 16



Tuning Evaluation



Execution Time Breakdown



Efficacy Comparison
DBA: human expert
RDS-config: config given by Amazon Relational Database Service
Tuning script: tools that recommend knob configurations


