Vector H:
Taking SQL-on-Hadoop to
the Next Level

Xiaotong Niu, Xiaoyan Ge

Authors

Andrei Costea! Adrian lonescu! Bogdan Riducanu? Michat Switakowski! Cristian Barca?
Juliusz Sompolskit Alicja tuszczak: Michat Szafranskit

Giel de Nijs* Peter Boncz®
Actian Corp.* CWIE

Agenda

e Introduction
o Hadoop
o SQLonHadoop
o Vectorwise

e VectorH: anew SQL-on-Hadoop system on top of the fast Vectorwise analytical database system

o Features

o Integration

o Transactionsin Hadoop
o Connectivity with Spark

o Evaluation

° Related Work

e Conclusion & Future Works

Introduction

SQL-on-Hadoop system on top of the fast Vectorwise analytical database system

What is Hadoop? o~

c' Data
Flair

e Collectdata----> Analyze Data Storage Layer

e Mainly for Big Data Clusters

Resource
Management

How Does %
Hadoop Work?

e MapReduce, YN, and HDFS

Application

i Hadoop
. ~'MapReduce Layer

Hadoop - HDFS

e Provide Rapid Data Access across the node
e Faulttolerance

e AnAppend-only file System

D HDFS Architecture

Block Ops
DataNodes

DataNodes

Replication

Hadoop - YARN

e Yet Another Resource Negotiator

e Resource Manager

User

H ad Oo p Program
Map/ Reduce “)fo..rﬁ‘.___.- e ""---(ff_"""

: @2 - ~ (@
e Onlarge cluster of PCs assign assign
: _~map reduce

e Enable automatic parallelization
e Mapand Reduce

split 0 / }((6) write output
" (2 file 0
split 1 (4) local write e
= (3) read
split 2
split 3 tput
outpu
split 4 file 1
Input Map Intermediate files Reduce Output

files phasr (on local disks) phase files

MapReduce Example - Word Count

File A map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate(w, “17);

“Aaron likes to drink, sleep and play games.

Aaron does not like to do presentation.”

reduce(String key, Iterator values):
/| key: a word
// values: a list of counts
int result = O;
Reduce Worker 1: “Aaron,2”, "to, 2", “does, 1” etc for:eadh Vi values;
result += ParseInt(v);

Emit(AsString(result));

Map Worker 1:"Aaron, 1”7, “likes, 1", “to,1” ... etc.

Map Worker 2: “Aaron, 1", “does, 1”, “like, 1”, “to, 1”

Question to Tackle

What if | want to use SQL on the Hadoop?

SQL-on-Hadoop

SQL-on-Hadoop system on top of the fast Vectorwise analytical database system

SQL on Hadoop

e Win-Win cooperation!

e Examples: Hadoop Hive, Impala

SQL-on-Hadoop

SQL-on-Hadoop system on top of the fast Vectorwise analytical database system

Vectorwise

e Query Engine that operates on vectors of values, rather than tuple
e Advantages:

o Reducing query interpretation overhead

o Increase Locality

o Allow SIMD instructions

o Compression method: PDICT, PFOR, and PFOR-delta

o MinMax indexes

Vectorh performs better!

a) Query time (hot)

SELECT max(l_linenumber)

FROM lineitem WHERE |_shipdate<X

[impala(parquet) B presto(orc

ect&rHfAnEliedFaster!

1T TT TN TNJN

H=

b) Data read

abadle

3!

0.3
Predicate selectlwty

o

Compress@ize (GB)

N

—_
n

ot

ORC (19 GB)

int32
N int64

string
Bl float32

Parquet (18 GB)

sion Schem:¢

VectorH (11 GB)

A |

 ©

Vectorwise Physical Design Option

e Stored unordered or called clustered index
e Benefit when scan for range queries on index keys
e Drawback: Co-ordered Table Layout -- difficult to insert/delete

o Resolve by Positional Delta Trees

Positional Delta Trees

e Static table(old) and SID, B+ tree, Update Table(new) and RID
e I|dentifies tuples by position, rather than primary key

e Storeold position - SID and current position - RID

e Goal - Fasting merging by differential Update

e Inlogarithmic complexity

UpdateTable sip VAL RID

StableTable 0falo
SID VAL RID Updates o Es
[INS a BEFORE A DELTA |3 (1| -
0880 INS & BEFORE A CHILD 0
a

1[B|1 CINTO b) 9

2|C|2 | INSdBEFOREG 2

3|D|3 | INGSBEFORES
N M DEL H sD |5|7 sbD |[9]- 3

= INS | BEFORE J DELTAR 1 |3 | -1 DELTA |2 | -1 - 4
SENS CHILD CHILD 8
~
6/G|6 | MODJintom £ ' i 2R 5
MOD K INTO n

7(H|7 DELL 7
8l |8 8 10
oM sipb |o|o[2]3 sib |5]/6]6]6 sp |7]8]9]- sb [9]9]9]- sip |10 11 - -

«dKl 10 [TPE [1 |1 [m[D tvee (M1 [1]) TYPE [D|D[1 |- TYPE [1 [1 [m]- TYPE |M|D| -] - i’ n
L]y |VALUE |a[a|b]- VALUE [c|d|d]|e VALUE |-([-[g]|- VALUE |h|i |m|- VALUE |[h|-|-]- 1 12
L] 13

AD [0]1]4]s] 6]7]8]9] EIEEETEN 1213914 - | (1519 - |

Question to Tackle Cont.

Its good and all, but | want it to be faster!

What should | do?

Q. W

SQL-on-Hadoop

SQL-on-Hadoop system on top of the fast Vectorwise

From Vectorwise to VectorH

e Took all the beautiful features that was mentioned before

e Takeitto nextlevel - YARN-based cluster Vectorwise with HDFS as
storage(fault tolerance)

e VectorH Integrating HDFS and YARN

VectorH

What is VectorH?

e Short for Actian Vector in Hadoop

e SQL-on-Hadoop system on top of Vectorwise

o

O

Query execution

ELASTICITY -- YARN
Local I/O -- HDFS
Updatability -PDT

Spark integration

STORAGE AFFINITY WITH HDFS

Original Approach: Store in a fixed compressed size and write in consecutive blocks

One file stores: 1 column, of 1 partition, of 1 copy

Problem:
1. Unable toreuse block
2. Opening too many files

3 X100 X 10 = 3000 files!

File-per-Partition Layout

One file stores: all the column, of 1 partition, of 1 copy
You can

From 3000 ----> 30 files! write
here!

S

Split data files horizontally

J
J
"
J
)
J
J
)
]
|
]

D HDFS Architecture

Block Ops
DataNodes

DataNodes

Replication

Instrumenting HDFS Replication

When - When client initiates a file append, and when you need to re-balance/re-replicate copies
Where: Force it to be local
How: BlockPlacementPolicy Class and chooseTarget() method

A plus one: Able to join tables with same keys and same amount of partition

nodel

node2

noded

STORAGE AFFINITY WITH HDFS

noded

RO1 RO2 RO3
S01 S02 So03
R10aRl1laR12a
S10a Sl1lla S12a
RO7b ROSbR09b
S07b SO8b S09b

RO04 RO5 RO6
S04 S05 S06
ROla R02a R03a
S01la S02a S03a
R10bR11bR12b
S10b S11b S12b

RO7 RO8 RO09
S07 S08 S09
R0O4a R05a R0O6a
S04a S05a S06a
RO1bR0O2bR0O3b
S01b S02b S03b

R10 R11 R12
S10 S11 S12
R0O7a R0O8a R09a
S07a S08a S09a
R0O4bR0O5bRO6b
S04b S05b S06b

PR 7 PN

.

v Fadlaiwens

Figure 2: Partition Affinity Mapping for the 12 par-
titions of table R,S before (top) & after (bottom)
node4 failure. Responsible partitions in bold; a/b
are the second/third copy (R=3).

YARN

e Workers and Master
e Out-of-band YARN

e Min-cost Flow Network Algorithms

Workers and Masters

e Worker: Nodes in clusters that run the Vectorwise process

e Master: One of the Worker, can be interchanged, responsible for parallel query optimization

Data

Flair

C

........... L
.~
it — S
- E - .
client : -
~ . -
S d v i
B K™] i smee s
; Resource €<= "* ="
- I€ivaaiyiiisn.,
- Manager |ttt
-— - $ Mool s,
P -~
“. -~ -
—~—
~—
~
~
—

Map Reduce Status

Job Submission
Node Status

Resource Request

Node
Manager

........
.....

.....

App
_ Master

Node
Manager

|
1} App ~ Container
| Master \ : —

‘. g7 xl Node
Manager
P s

YARN - Out of Band

Why? - cannot run in the container, and also we are not able to modify container’s resource, Do not want
to Stop and restart every time.

How?- out of band, separate the process from container

Min-cost Flow Network Algorithms

. . Partitions edge: cost/capacity Workers
When? When it first start, or node failed and need recover —_—

cn 1
Why? Ensure most resources and most locality

0/RMax cn
/ o 0/PCap
/ \'@\ \

>V 4

0/1 ORMax chn —" 0/PCap
RMax _— . = 0/PCaf
*1'-:: orCep

0/RMax
Figure 3: The flow network (bipartite graph) model
used to determine the responsibility assignment.

nodel

node2

node3

node4

RO01 R02 RO3
S01 S02 S03
R10aR1laR12a
S10a Slla S12a
RO7b RO8b R09b
S07b S08b S09b

RO04 RO5 RO6
S04 S05 S06
R01la R02a R03a
S01la S02a S03a
R10bR11bR12b
S10b S11b S12b

RO7 R0O8 R09
S07 S08 S09
R04a R05a R06a
S04a S05a S06a
R0O1bR02b R03b
S01b S02b S03b

R10 R11 R12
S10 S11 S12
RO7a R08a R09a
S07a S08a S09a
R04bR05b R0O6b
S04b S05b S06b

after nod

e4 failure:

ROla R02a R0O3
S0la S02a S03
R10 R11 R12
S10 S11 S12
RO7b RO8b R09b
S07b SO8b S09b

R04 RO05 R06a
S04 S05 S06a
RO1 RO2 RO3a
S01 S02 S03a
R10bR11bR12b
S10b S11b S12b

RO7 RO8 RO9
S07 S08 S09
R04a R05a R0O6
S04a S05a S06
RO1bR02bR03b
S01b S02b S03b

R04b RO5bR0O6b
S04b S05b S06b

R0O7a R08a R09a
S07a S08a S09a

R10aR11aR12a

S10a S1lla S12a

nodel

node2

node3

re-replicated
partitions

Figure 2: Partition Affinity Mapping for the 12 par-
titions of table R,S before (top) & after (bottom)
noded4 failure. Responsible partitions in bold; a/b
are the second/third copy (R=3).

PARALLELISM WITH MPI

e Implementation of Xchg operators - achieve parallelism

o Onlyredistributing streams, not altering

o Encapsulate parallelism

e Serve as Synchronization point as between producer and consumer.

e Examples: XchgHashSplit, XChgUnion

Distributed Exchange

A /' i
™ <
2 parent parent parent S
o operator operator operator O
= [[y [} <
=3 | next() =3 | next() =3 | next()
receiver receiver receiver
L 7k 71
K \ \\\ \ / \‘ ,‘ J
\\ SRR Mf’l buffer\x — 7}(
- A7 B =y q’b,\
o 3 =y // = =
"S E \\ 7/ 4// N
) : T =
5 &/ TN)
o - | sender =
ct)) P
vector - =
of tuplesn next() =3 | next() é
£
- child child I
© ® o
T operator opera_t_or -
0 - :ET"'_) » o
= =
Figure 4: DXchg Operator Implementation

Use the MPI(Message Passing Interface)
for high performance and well-defined
point to point communication
Producers is sending data to all
consumers with double buffering
Originally using thread-to-thread, but it
cost too much.

Now using thread-to-node, with a
column specify which receiver

#ifanout: num_nodes * num_cores
#memory: 2* num_nodes*num_cores” 2

SELECT FIRST 10 s_suppkey, s_name, count(*) as 1l_count
FROM lineitem, orders, supplier
WHERE 1_orderkey=o_orderkey AND 1_suppkey=s_suppkey AND

Toph (final) [I_count] 1_discount>0.03 AND
o_orderdate BETWEEN ’1995-03-05’ AND ’1997-03-05’
Dechatiaion GROUP BY s_suppkey, s_name

ORDER BY 1_count

TopN (partial) [I_count]

|Aggr (final) [s_sup;key,s_name][l_count]

[DXchgHashsSplit[s_suppkey]

\ hggr (partial) [s_suppkey 's_nam][l_countll _—

Query Optimization

HashJoin[|_suppkey][s_suppkey]

XchgHashSplit [|_suppkey]| |XchgHashSplit [s_suppkey]

5.02s->26.14s

> [Hash3oinl_orderkey][o_orderkey]| [Scansupplier] (replicated
1 1

Select [I_discount>0.03]
1

[select[o_orderdate in ..]

Scan [lineitem] (partitioned)

Scan([orders] (partitioned) EE—

Figure 5: Example Distributed Query Plan

Transactions in Hadoop

e Vectorwise transaction management
o Differences stored in Positional Delta Trees(PDTs)
Stackable
m Trans-PDT -> Read-PDT -> Write-PDT

@)

(e}

Snapshot Isolation
Serialized Trans-PDT
m Writteninto Write Ahead Log(WAL)

O

m for persistence

“* vectorwise

Transactions in Hadoop (cont.)

e Distributed Transactions in VectorH

o Table partition-specific WALs
m Update table partition at responsible nodes
m Modified PDT/HDFS

o 2 Phase Commit(2PC)
s ACID

Transactions in Hadoop (cont.)

e Log Shipping

o Broadcast changes

oV reuse

Transactions in Hadoop (cont.)

e Update Propagation
o Flushing PDTs to the compressed column store
o PDT sizes, tuple fractions
m Better performance

m tailinserts vs. other updates

Transactions in Hadoop (cont.)

e Referential Integrity

o Key uniqueness

o Node-local verification

Transactions in Hadoop (cont.)

e MinMax Indexes

o Divide tables -> keep Min Max
o Storedin WAL

o Prevent data accesses

Connectivity with Spark

e vwload
o Load data from HDFS
e Spark-VectorH Connector
SparkSQL
ExternalScan, External Dump
o VectorH RDD extends Spark’s RDD
m getPreferredLocations()
o NarrowDependency

node 1

node 2

External Scan

VectorH
RDD1

node 3

node 4

External Scan|

VectorH
RDD2

Evaluation in TPC-H SFi1000 \

e Setup
o 10 nodes with Hadoop 2.6.0
m 1 node runs Hadoop namenode

m 9nodesfor SQL-on-Hadoop experiments

e VectorHvs. Impala

Apache Hive

HAWQ
SparkSQL
S APACHE K

1000
mHawk MSpark ®Impala EHive

Q1 Q2 Q3 Q4 Qs Q6 Q7 Q8 Q9 Q

10 Qi1 Q12 Q13 Q14 Q15 Qle Q17 Q18 Q19 Q20 Q21 Q22
VectorH | 1.5 |1.14|3.16| 0.17 |1.94(0.31|2.75|1.31|11.11|1.21(1.69|0.34(3.66|0.83|1.63|1.68| 1.24 |0.99|1.32|2.15|1.48| 2.84
HAWQ 158.2(21.46(32.06(38.21 [36.38]20.19]|44.74|48.38| 766.4 [32.97(12.48|31.75]|27.97|19.47|31.58|14.17| 173.2 |87.08]24.82]|42.84| 84.7 | 29.44
SparkSQL|155.4|74.98(62.38(68.27 |146.5| 5.1 [180.2[174.6] 264.0 [56.62(30.28[66.97|47.65] 6.92 |11.16{33.81| 244.9 |254.7|24.89]31.56[1614 | 91.18
Impala 585.4|81.81|167.7|163.18(242.5] 1.81 [369.0]|276.2|1242.9(69.97|35.04(45.67|180.8|13.95|15.19|47.52|581.53| 1234 |714.7|74.25|880.8| 34.81

10

o

ey
o

1

Hive 490.1163.57|266.6[59.08 | DNF'|63.63[721.8(/625.6] 1077 [230.5[246.1|65.78|140.7]|53.23]|556.5[92.51| 711.7 |454.5| 1010 [100.5(247.7| 81.11
after executing updates: Hive: RF1=34s RF2=112s GeoDiff=138.2% - VectorH: RF1=17.8s RF2=8.4s GeoDiff=102.8%
VectorH |[1.68[0.943.21] 0.23 | 1.9 [0.27]2.74] 1.4 |11.62[1.21]1.44]0.37| 3.9 |0.81|1.57]1.64| 1.27 |]0.95| 1.5 [2.25[1.78 | 2.82

Hive 608.4| 80.8 |335.7[205.4 | DNF'|128.0[{690.7(719.8| 1150 [334.4[{218.7[170.5[143.8]130.7]|596.7[101.4| 891.2 |594.6| 1167 |153.3[275.6| 67.85

Figure 7: Table: TPC-H SF1000 results (seconds). Chart: How many times faster is VectorH?

Related Work

Previous Works

o High-performance vectorized query engine

o Parallel query optimization using Xchg operators
o VectorwiseMPP project

o Creatingelastic DBMS in YARN

e ORCand Parquet
e HAWQ
e |mpala

e Previous Version of VectorH

Conclusion & Future Works

Conclusion

e Mature SQL support
e 1-3orders of magnitude faster

References

Slide 6: https://data-flair.training/blogs/how-hadoop-works-internally/

Slide 8: https://data-flair.training/blogs/hadoop-hdfs-architecture/

Slide 10: “MapReduce: Simplified Data Processing on Large Clusters” by Jeffrey Dean and Sanjay
Ghemawat

Slide 17, 35, 36,38, 39,47, 49: “VectorH: Taking SQL-on-Hadoop to the Next Level” by Andrei Costea
Slide 20: “Positional Delta Trees to reconcile updates with read-optimized data storage”’by S andor
H’eman, Niels Nes

Slide 33: https://data-flair.training/blogs/hadoop-yarn-tutorial/

https://data-flair.training/blogs/how-hadoop-works-internally/
https://data-flair.training/blogs/hadoop-hdfs-architecture/
https://data-flair.training/blogs/hadoop-yarn-tutorial/

Future Works

e Integration

o Spark-VectorH connector

