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Introduction



SQL-on-Hadoop system on top of the fast Vectorwise analytical database system



What is Hadoop? o~

c' Data
Flair

e Collectdata----> Analyze Data Storage Layer

e Mainly for Big Data Clusters

Resource
Management

How Does %
Hadoop Work?

e MapReduce, YN, and HDFS

Application

i Hadoop
. ~'MapReduce Layer




Hadoop - HDFS

e Provide Rapid Data Access across the node
e Faulttolerance

e AnAppend-only file System



D HDFS Architecture

Block Ops
DataNodes

DataNodes

Replication



Hadoop - YARN

e Yet Another Resource Negotiator

e Resource Manager



User

H ad Oo p Program
Map/ Reduce “)fo..rﬁ‘.___.- e ""---(ff_"""

: @2 - ~ (@
e Onlarge cluster of PCs assign assign
: _~map reduce

e Enable automatic parallelization
e Mapand Reduce

split 0 / }( (6) write output
" ( 2 file 0
split 1 (4) local write e
= (3) read
split 2
split 3 tput
outpu
split 4 file 1
Input Map Intermediate files Reduce Output

files phasr (on local disks) phase files



MapReduce Example - Word Count

File A map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate(w, “17);

“Aaron likes to drink, sleep and play games.

Aaron does not like to do presentation.”

reduce(String key, Iterator values):
/| key: a word
// values: a list of counts
int result = O;
Reduce Worker 1: “Aaron,2”, "to, 2", “does, 1” etc for:eadh Vi values;
result += ParseInt(v);

Emit(AsString(result));

Map Worker 1:"Aaron, 1”7, “likes, 1", “to,1” ... etc.

Map Worker 2: “Aaron, 1", “does, 1”, “like, 1”, “to, 1”



Question to Tackle

What if | want to use SQL on the Hadoop?




SQL-on-Hadoop

SQL-on-Hadoop system on top of the fast Vectorwise analytical database system



SQL on Hadoop

e Win-Win cooperation!

e Examples: Hadoop Hive, Impala




SQL-on-Hadoop

SQL-on-Hadoop system on top of the fast Vectorwise analytical database system



Vectorwise

e Query Engine that operates on vectors of values, rather than tuple
e Advantages:

o Reducing query interpretation overhead

o Increase Locality

o Allow SIMD instructions

o  Compression method: PDICT, PFOR, and PFOR-delta

o MinMax indexes



Vectorh performs better!
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Vectorwise Physical Design Option

e Stored unordered or called clustered index
e Benefit when scan for range queries on index keys
e Drawback: Co-ordered Table Layout -- difficult to insert/delete

o Resolve by Positional Delta Trees



Positional Delta Trees

e Static table(old) and SID, B+ tree, Update Table(new) and RID
e I|dentifies tuples by position, rather than primary key

e Storeold position - SID and current position - RID

e Goal - Fasting merging by differential Update

e Inlogarithmic complexity
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Question to Tackle Cont.

Its good and all, but | want it to be faster!

What should | do?

Q. W




SQL-on-Hadoop

SQL-on-Hadoop system on top of the fast Vectorwise



From Vectorwise to VectorH

e Took all the beautiful features that was mentioned before

e Takeitto nextlevel - YARN-based cluster Vectorwise with HDFS as
storage(fault tolerance)

e VectorH Integrating HDFS and YARN




VectorH



What is VectorH?

e Short for Actian Vector in Hadoop

e SQL-on-Hadoop system on top of Vectorwise

o

O

Query execution

ELASTICITY -- YARN
Local I/O -- HDFS
Updatability -PDT

Spark integration



STORAGE AFFINITY WITH HDFS

Original Approach: Store in a fixed compressed size and write in consecutive blocks

One file stores: 1 column, of 1 partition, of 1 copy

Problem:
1. Unable toreuse block
2. Opening too many files

3 X100 X 10 = 3000 files!



File-per-Partition Layout

One file stores: all the column, of 1 partition, of 1 copy
You can

From 3000 ----> 30 files! write
here!
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D HDFS Architecture

Block Ops
DataNodes

DataNodes

Replication



Instrumenting HDFS Replication

When - When client initiates a file append, and when you need to re-balance/re-replicate copies
Where: Force it to be local
How: BlockPlacementPolicy Class and chooseTarget() method

A plus one: Able to join tables with same keys and same amount of partition
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STORAGE AFFINITY WITH HDFS
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Figure 2: Partition Affinity Mapping for the 12 par-
titions of table R,S before (top) & after (bottom)
node4 failure. Responsible partitions in bold; a/b
are the second/third copy (R=3).



YARN

e Workers and Master
e Out-of-band YARN

e Min-cost Flow Network Algorithms



Workers and Masters

e Worker: Nodes in clusters that run the Vectorwise process

e Master: One of the Worker, can be interchanged, responsible for parallel query optimization
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YARN - Out of Band

Why? - cannot run in the container, and also we are not able to modify container’s resource, Do not want
to Stop and restart every time.

How?- out of band, separate the process from container



Min-cost Flow Network Algorithms

. . Partitions edge: cost/capacity Workers
When? When it first start, or node failed and need recover —_—

cn 1
Why? Ensure most resources and most locality
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Figure 3: The flow network (bipartite graph) model
used to determine the responsibility assignment.
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PARALLELISM WITH MPI

e Implementation of Xchg operators - achieve parallelism

o  Onlyredistributing streams, not altering

o Encapsulate parallelism

e Serve as Synchronization point as between producer and consumer.

e Examples: XchgHashSplit, XChgUnion
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Figure 4: DXchg Operator Implementation

Use the MPI(Message Passing Interface)
for high performance and well-defined
point to point communication
Producers is sending data to all
consumers with double buffering
Originally using thread-to-thread, but it
cost too much.

Now using thread-to-node, with a
column specify which receiver

#ifanout: num_nodes * num_cores
#memory: 2* num_nodes*num_cores” 2



SELECT FIRST 10 s_suppkey, s_name, count(*) as 1l_count
FROM lineitem, orders, supplier
WHERE 1_orderkey=o_orderkey AND 1_suppkey=s_suppkey AND

Toph (final) [I_count] 1_discount>0.03 AND
o_orderdate BETWEEN ’1995-03-05’ AND ’1997-03-05’
Dechatiaion GROUP BY s_suppkey, s_name

ORDER BY 1_count

TopN (partial) [I_count]

|Aggr (final) [s_sup;key,s_name][l_count]

[DXchgHashsSplit[s_suppkey]

\ hggr (partial) [s_suppkey 's_nam][l_countll _—

Query Optimization

HashJoin[|_suppkey][s_suppkey]

XchgHashSplit [|_suppkey]| |XchgHashSplit [s_suppkey]

5.02s->26.14s

> [Hash3oinl_orderkey][o_orderkey]| [ Scansupplier] (replicated
1 1

Select [I_discount>0.03]
1

[select[o_orderdate in ..]

Scan [lineitem] (partitioned)

Scan([orders] (partitioned) EE—

Figure 5: Example Distributed Query Plan



Transactions in Hadoop

e Vectorwise transaction management
o Differences stored in Positional Delta Trees(PDTs)
Stackable
m  Trans-PDT -> Read-PDT -> Write-PDT

@)

(e}

Snapshot Isolation
Serialized Trans-PDT
m  Writteninto Write Ahead Log(WAL)

O

m for persistence

“* vectorwise



Transactions in Hadoop (cont.)

e Distributed Transactions in VectorH

o  Table partition-specific WALs
m  Update table partition at responsible nodes
m  Modified PDT/HDFS

o 2 Phase Commit(2PC)
s ACID



Transactions in Hadoop (cont.)

e Log Shipping

o  Broadcast changes

oV reuse



Transactions in Hadoop (cont.)

e Update Propagation
o  Flushing PDTs to the compressed column store
o PDT sizes, tuple fractions
m Better performance

m tailinserts vs. other updates



Transactions in Hadoop (cont.)

e Referential Integrity

o Key uniqueness

o Node-local verification



Transactions in Hadoop (cont.)

e MinMax Indexes

o  Divide tables -> keep Min Max
o  Storedin WAL

o Prevent data accesses



Connectivity with Spark

e vwload
o Load data from HDFS
e Spark-VectorH Connector
SparkSQL
ExternalScan, External Dump
o  VectorH RDD extends Spark’s RDD
m getPreferredLocations()
o NarrowDependency
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External Scan
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Evaluation in TPC-H SFi1000 \

e Setup
o 10 nodes with Hadoop 2.6.0
m 1 node runs Hadoop namenode

m  9nodesfor SQL-on-Hadoop experiments

e VectorHvs. Impala

Apache Hive

HAWQ
SparkSQL
S APACHE K



1000
mHawk MSpark ®Impala EHive

Q1 Q2 Q3 Q4 Qs Q6 Q7 Q8 Q9 Q

10 Qi1 Q12 Q13 Q14 Q15 Qle Q17 Q18 Q19 Q20 Q21 Q22
VectorH | 1.5 |1.14|3.16| 0.17 |1.94(0.31|2.75|1.31|11.11|1.21(1.69|0.34(3.66|0.83|1.63|1.68| 1.24 |0.99|1.32|2.15|1.48| 2.84
HAWQ 158.2(21.46(32.06( 38.21 [36.38]20.19]|44.74|48.38| 766.4 [32.97(12.48|31.75]|27.97|19.47|31.58|14.17| 173.2 |87.08]24.82]|42.84| 84.7 | 29.44
SparkSQL|155.4|74.98(62.38( 68.27 |146.5| 5.1 [180.2[174.6] 264.0 [56.62(30.28[66.97|47.65] 6.92 |11.16{33.81| 244.9 |254.7|24.89]31.56[ 1614 | 91.18
Impala 585.4|81.81|167.7|163.18(242.5] 1.81 [369.0]|276.2|1242.9(69.97|35.04(45.67|180.8|13.95|15.19|47.52|581.53| 1234 |714.7|74.25|880.8| 34.81

10

o

ey
o

1

Hive 490.1163.57|266.6[ 59.08 | DNF'|63.63[721.8(/625.6] 1077 [230.5[246.1|65.78|140.7]|53.23]|556.5[92.51| 711.7 |454.5| 1010 [100.5(247.7| 81.11
after executing updates: Hive: RF1=34s RF2=112s GeoDiff=138.2% - VectorH: RF1=17.8s RF2=8.4s GeoDiff=102.8%
VectorH |[1.68[0.943.21] 0.23 | 1.9 [0.27]2.74] 1.4 |11.62[1.21]1.44]0.37| 3.9 |0.81|1.57]1.64| 1.27 |]0.95| 1.5 [2.25[1.78 | 2.82

Hive 608.4| 80.8 |335.7[ 205.4 | DNF'|128.0[{690.7(719.8| 1150 [334.4[{218.7[170.5[143.8]130.7]|596.7[101.4| 891.2 |594.6| 1167 |153.3[275.6| 67.85

Figure 7: Table: TPC-H SF1000 results (seconds). Chart: How many times faster is VectorH?




Related Work

Previous Works

o  High-performance vectorized query engine

o Parallel query optimization using Xchg operators
o  VectorwiseMPP project

o  Creatingelastic DBMS in YARN

e ORCand Parquet
e HAWQ
e |mpala

e Previous Version of VectorH



Conclusion & Future Works



Conclusion

e Mature SQL support
e 1-3orders of magnitude faster
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Future Works

e Integration

o  Spark-VectorH connector



