
Vector H:
Taking SQL-on-Hadoop to
the Next Level

Xiaotong Niu, Xiaoyan Ge

Authors

Agenda
● Introduction

○ Hadoop

○ SQL on Hadoop

○ Vectorwise

● VectorH: a new SQL-on-Hadoop system on top of the fast Vectorwise analytical database system

○ Features

○ Integration

○ Transactions in Hadoop

○ Connectivity with Spark

○ Evaluation

● Related Work

● Conclusion & Future Works

Introduction

SQL-on-Hadoop system on top of the fast Vectorwise analytical database system

Hadoop

What is Hadoop?

● Collect data ----> Analyze Data

● Mainly for Big Data Clusters

● MapReduce, YN, and HDFS

Hadoop - HDFS

● Provide Rapid Data Access across the node

● Fault tolerance

● An Append-only file System

Hadoop - YARN

● Yet Another Resource Negotiator

● Resource Manager

Hadoop
Map/Reduce

● On large cluster of PCs

● Enable automatic parallelization

● Map and Reduce

MapReduce Example - Word Count

“Aaron likes to drink, sleep and play games.

Aaron does not like to do presentation. ”

File A

Map Worker 1:”Aaron, 1” , “likes, 1” , “to ,1” … etc.

Map Worker 2: “Aaron, 1” , “does, 1”, “like, 1”, “to, 1”

Reduce Worker 1: “Aaron,2”, ”to, 2”, “does, 1” etc

Question to Tackle

What if I want to use SQL on the Hadoop?

SQL-on-Hadoop system on top of the fast Vectorwise analytical database system

Hadoop

SQL-on-Hadoop

SQL on Hadoop

● Win-Win cooperation!

● Examples: Hadoop Hive, Impala

SQL-on-Hadoop system on top of the fast Vectorwise analytical database system

Hadoop

SQL-on-Hadoop

Vectorwise

Vectorwise

● Query Engine that operates on vectors of values, rather than tuple

● Advantages:

○ Reducing query interpretation overhead

○ Increase Locality

○ Allow SIMD instructions

○ Compression method: PDICT, PFOR, and PFOR-delta

○ MinMax indexes

Vectorh performs better!

Vectorh finished faster!

Vectorh touched less data!

Better Compression Scheme!

SELECT max(l_linenumber)
FROM lineitem WHERE l_shipdate<X

Vectorwise Physical Design Option

● Stored unordered or called clustered index

● Benefit when scan for range queries on index keys

● Drawback: Co-ordered Table Layout -- difficult to insert/delete

○ Resolve by Positional Delta Trees

Positional Delta Trees

● Static table(old) and SID, B+ tree, Update Table(new) and RID

● Identifies tuples by position, rather than primary key

● Store old position - SID and current position - RID

● Goal - Fasting merging by differential Update

● ln logarithmic complexity

Question to Tackle Cont.

Its good and all, but I want it to be faster!

What should I do?

SQL-on-Hadoop system on top of the fast Vectorwise

Hadoop

SQL-on-Hadoop
Vectorwise

VectorH

From Vectorwise to VectorH

● Took all the beautiful features that was mentioned before

● Take it to next level - YARN-based cluster Vectorwise with HDFS as
storage(fault tolerance)

● VectorH Integrating HDFS and YARN

VectorH

What is VectorH?

● Short for Actian Vector in Hadoop

● SQL-on-Hadoop system on top of Vectorwise

○ Query execution

○ ELASTICITY -- YARN

○ Local I/O -- HDFS

○ Updatability -PDT

○ Spark integration

STORAGE AFFINITY WITH HDFS

Original Approach: Store in a fixed compressed size and write in consecutive blocks

 One file stores: 1 column, of 1 partition, of 1 copy

Problem:
1. Unable to reuse block
2. Opening too many files

3 X 100 X 10 = 3000 files!

File-per-Partition Layout

One file stores: all the column, of 1 partition, of 1 copy

From 3000 ----> 30 files!

Split data files horizontally

You can
write
here!

Instrumenting HDFS Replication

When - When client initiates a file append, and when you need to re-balance/re-replicate copies

Where: Force it to be local

How: BlockPlacementPolicy Class and chooseTarget() method

A plus one: Able to join tables with same keys and same amount of partition

STORAGE AFFINITY WITH HDFS

YARN

● Workers and Master

● Out-of-band YARN

● Min-cost Flow Network Algorithms

Workers and Masters

● Worker: Nodes in clusters that run the Vectorwise process

● Master: One of the Worker, can be interchanged, responsible for parallel query optimization

YARN Cont.

YARN - Out of Band

Why? - cannot run in the container, and also we are not able to modify container’s resource, Do not want

to Stop and restart every time.

How?- out of band, separate the process from container

Min-cost Flow Network Algorithms

When? When it first start, or node failed and need recover

Why? Ensure most resources and most locality

0/1

PARALLELISM WITH MPI

● Implementation of Xchg operators - achieve parallelism

○ Only redistributing streams, not altering

○ Encapsulate parallelism

● Serve as Synchronization point as between producer and consumer.

● Examples: XchgHashSplit, XChgUnion

Distributed Exchange

● Use the MPI(Message Passing Interface)

for high performance and well-defined

point to point communication

● Producers is sending data to all

consumers with double buffering
● Originally using thread-to-thread, but it

cost too much.

● Now using thread-to-node, with a
column specify which receiver

#fanout: num_nodes * num_cores
#memory: 2* num_nodes*num_cores^2
#fanout: num_nodes
#memory: 2* num_nodes*num_cores

Query Optimization

5.02s -> 26.14s

Transactions in Hadoop

● Vectorwise transaction management

○ Differences stored in Positional Delta Trees(PDTs)

○ Stackable

■ Trans-PDT -> Read-PDT -> Write-PDT

○ Snapshot Isolation

○ Serialized Trans-PDT

■ Written into Write Ahead Log(WAL)

■ for persistence

Transactions in Hadoop (cont.)

● Distributed Transactions in VectorH

○ Table partition-specific WALs

■ Update table partition at responsible nodes

■ Modified PDT / HDFS

○ 2 Phase Commit(2PC)

■ ACID

Transactions in Hadoop (cont.)

● Log Shipping

○ Broadcast changes

○ ✔ reuse

Transactions in Hadoop (cont.)

● Update Propagation

○ Flushing PDTs to the compressed column store

○ PDT sizes, tuple fractions

■ Better performance

■ tail inserts vs. other updates

Transactions in Hadoop (cont.)

● Referential Integrity

○ Key uniqueness

○ Node-local verification

Transactions in Hadoop (cont.)

● MinMax Indexes

○ Divide tables -> keep Min Max

○ Stored in WAL

○ Prevent data accesses

Connectivity with Spark

● vwload
○ Load data from HDFS

● Spark-VectorH Connector
○ SparkSQL
○ ExternalScan, External Dump
○ VectorH RDD extends Spark’s RDD

■ getPreferredLocations()
○ NarrowDependency

Evaluation in TPC-H SF1000

● Setup

○ 10 nodes with Hadoop 2.6.0

■ 1 node runs Hadoop namenode

■ 9 nodes for SQL-on-Hadoop experiments

● VectorH vs. Impala

Apache Hive

HAWQ

SparkSQL

Related Work

● Previous Works

○ High-performance vectorized query engine

○ Parallel query optimization using Xchg operators

○ VectorwiseMPP project

○ Creating elastic DBMS in YARN

● ORC and Parquet

● HAWQ

● Impala

● Previous Version of VectorH

Conclusion & Future Works

Conclusion

● Mature SQL support

● 1-3 orders of magnitude faster

References

Slide 6: https://data-flair.training/blogs/how-hadoop-works-internally/
Slide 8: https://data-flair.training/blogs/hadoop-hdfs-architecture/
Slide 10: “MapReduce: Simplified Data Processing on Large Clusters” by Jeffrey Dean and Sanjay

Ghemawat

Slide 17, 35, 36,38, 39, 47, 49: “VectorH: Taking SQL-on-Hadoop to the Next Level” by Andrei Costea

Slide 20: “Positional Delta Trees to reconcile updates with read-optimized data storage”by S´andor

H´eman, Niels Nes

Slide 33: https://data-flair.training/blogs/hadoop-yarn-tutorial/

https://data-flair.training/blogs/how-hadoop-works-internally/
https://data-flair.training/blogs/hadoop-hdfs-architecture/
https://data-flair.training/blogs/hadoop-yarn-tutorial/

Future Works

● Integration

○ Spark-VectorH connector

