
Spanner
Google’s Globally-Distributed Database

A presentation by:

Aneesh Raman, Athanasios Filippidis

For:

 CS591 A1 Data Systems Architectures @ 
Boston University



Spanner authors



Spanner authors

James C. Corbett - UMASS PhD
Lead of Google Storage Testing

Spanner, Megastore

Jeffrey Dean - UW PhD
Lead of Google AI

Spanner, Google Translate, BigTable, 
MapReduce, LevelDB, TensorFlow, Google 

Brain

Michael Epstein - Harvard BSc
Lead of Google Cloud Platform

Spanner, BigTable



Agenda

● Spanner: A Distributed Systems and a Databases perspective
● Spanner’s software stack and hierarchy
● TrueTime: an innovation in timestamping
● Spanner’s operations
● Benchmarks
● F1
● DynamoDB
● Conclusion



Spanner

What is Spanner?

Spanner is a database with some extremely useful features from the 
distributed systems domain:

● Scalable
● Multi-versioned
● Globally distributed
● Synchronously replicated
● Supporting external consistent read writes
● Globally consistent reads
● And more



Scalable and globally distributed



Synchronously replicated, externally consistent



Synchronously replicated, externally consistent



TrueTime

Why TrueTime?

Clocks are never in absolute sync

Timestamps are the main way to order based on time



TrueTime

What is TrueTime?

Novel API

Exposes clock uncertainty

Guarantees Spanner’s timestamps are bound



Spanner

What is Spanner?

Spanner is a database with some extremely useful features from the 
distributed systems domain:

● Semi-relational tables
● Query language

● Spanner: Becoming a SQL System David F. Bacon et al.



Spanner Implementation

● Universe
● Zones
● Spanservers



Storage Data Model

100-1000 instances

Colossus

State machines store metadata



Why Paxos?

The Consensus Problem

● Collection of computers
● We want them to agree on something
● Consensus means agreement
● Reasons we might want consensus: mutual exclusion, elections, state machine 

replication
● Most frequently for replication
● Replication is useful for fault tolerance and scalability



What is Paxos?

● Algorithm to achieve consensus
● Developed by Leslie Lamport (LaTeX, Byzantine fault tolerance, Lamport 

timestamps, Turing award winner)
● Set of computers that either are unreliable or their connection is unreliable
● Widely used (Google in Spanner, Chubby and Megastore, Yahoo in ZooKeeper)
● First consensus algorithm to be formally proven to be correct



Spanner Software Stack



Data Model



Two Phase Commit
● ACID Databases - Atomicity, 

Consistency, Isolation, Durability
● 2PC - Two Phase Commit
● Role of Paxos



Data Model

Directory table K + 
Descendents = Directory

Directory Table

Descendant tables



An Example

Why Interleave? 



TrueTime

TTinterval instead of e.g. seconds

Varying between 2-14ms

Spanner works reliably with clock uncertainty

ε is the instantaneous error and half of interval’s width



TrueTime API

TrueTime API. The argument t is of type TTstamp

Tt = TT.now()

Tt.earliest <= a <= Tt.latest



TrueTime time references

But how TrueTime stays within those strict bounds?

● Global Positioning System (GPS)
● Atomic clocks

Why those two?

● Completely different failure modes
● GPS fails mainly due to antenna and receiver failures
● Atomic clocks fail mainly due to frequency error
● There is no correlation between them



TrueTime hierarchy

● Time Master
● Timeslave Daemon

● Majority of masters have GPS
● Remaining have atomic clocks

● Masters and slaves communicate with Marzullo’s algorithm



TrueTime synchronizations and bounds calculation

Instantaneous error bound or ε

   ε is derived by:

○ Worst case local clock drift
○ Masters’ uncertainty
○ Communication overhead



TrueTime synchronizations and bounds values

Slave polling frequency is every 30 seconds

Worst expected clock drift is 200μs every 1s

200μs * 30s = 6ms

Communication overhead accounts for 1s

Total worst case maximum ε of 7ms



TrueTime issues

But when TrueTime fails?

Time - master unavailability

Network overload

Machines overload



Concurrency Control



Read-write transactions

Read-only transactions 

Snapshot reads

Timestamp Management



Commit Wait and Replication

TT.now().latest()

TT.now().earliest() > sS

Commit Wait



RW Transactions - Commit Wait and 2PC



Example



Read-Only Transactions

● 2 Phases: 
○ Assign a timestamp -> S_read
○ Execute reads as snapshot reads

● Snapshot reads can execute at any replica that is up to date with respect to 
S_read



Schema-Change Transactions

● TrueTime enables atomic schema changes

Assign a 
Timestamp Synchronize



Evaluation



Microbenchmarks

Scheduling units of 4GB RAM and 4 cores (AMD 
Barcelona 2200MHz)

50 Paxos groups with 2500 directories. Operations 
were standalone reads and writes of 4KB, 

Clients were run on separate machines. 
Each zone contained one spanserver



Availability

Test universe is divided into 5 zones each
with 25 spanner servers. All leaders were
placed in Z1



TrueTime

Fig represents truetime data at
several thousand spanserver
machines upto 2200 km apart. 



F1



Related work

Megastore

DynamoDB



Conclusion

From the databases community perspective:

An easy-to-use, semi-relational interface that serves transactions utilizing an 
SQL-based query language



Conclusion

From the distributed systems community perspective:

Exceptional scalability, automatic sharding, fault tolerance, consistent replication, 
external consistency and wide area distribution



Conclusion

The linchpin of Spanner’s feature set is TrueTime

By accepting and exploiting bounded clock uncertainty we can build distributed 
systems with much stronger time semantics


