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Spanner

What is Spanner?

Spanner is a database with some extremely useful features from the
distributed systems domain:

Scalable

Multi-versioned

Globally distributed

Synchronously replicated

Supporting external consistent read writes
Globally consistent reads

And more



Scalable and globally distributed




Synchronously replicated, externally consistent
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TrueTime

Why TrueTime?

Clocks are never in absolute sync

Timestamps are the main way to order based on time



TrueTime

What is TrueTime?

Novel API

Exposes clock uncertainty

Guarantees Spanner’s timestamps are bound




Spanner

What is Spanner?

Spanner is a database with some extremely useful features from the
distributed systems domain:

e Semi-relational tables
e Query language

e Spanner:. Becoming a SQL System David F. Bacon et al.



Spanner Implementation
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Figure 1: Spanner server organization.




Storage Data Model

(key:string, timestamp:int64) — string

100-1000 instances
Colossus

State machines store metadata



Why Paxos?

The Consensus Problem

Collection of computers
We want them to agree on something
Consensus means agreement

Reasons we might want consensus: mutual exclusion, elections, state machine
replication

Most frequently for replication

e Replication is useful for fault tolerance and scalability




What is Paxos?

e Algorithm to achieve consensus

e Developed by Leslie Lamport (LaTeX, Byzantine fault tolerance, Lamport
timestamps, Turing award winner)

e Set of computers that either are unreliable or their connection is unreliable

e Widely used (Google in Spanner, Chubby and Megastore, Yahoo in ZooKeeper)

e First consensus algorithm to be formally proven to be correct
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Data Model
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Two Phase Commit

e ACID Databases - Atomicity,
Consistency, Isolation, Durability

e 2PC-Two Phase Commit

e Role of Paxos

Coordinator

Force Write
Decision Record

Write non-forced
End Record

Prepare

Decision

Participant

Force Write
Prepared Record

Force Write
Decision Record
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Data Model

Order
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An Example

CREATE TABLE Users {
uid INT64 NOT NULL, email STRING
} PRIMARY KEY (uid), DIRECTORY;

rAMRV-Hterleave?

uid INT64 T NULL aid INTe64 NOT NULL,
name STRING
} PRIMARY KEY (uid, aid),
INTERLEAVE IN PARENT Users ON DELETE CASCADE;




TrueTime

TTinterval instead of e.g. seconds
Varying between 2-14ms
Spanner works reliably with clock uncertainty

g is the instantaneous error and half of interval’s width



TruelTime API

| Method Returns |

TT.now() TTinterval: [earliest, latest]
TT.after(t) true if ¢ has definitely passed
TTbefore(t) || true if ¢ has definitely not arrived

TrueTime API. The argument t is of type TTstamp
Tt=TT.now()

Tt.earliest <= a <= Tt.latest



TrueTime time references

But how TrueTime stays within those strict bounds?

e Global Positioning System (GPS)
e Atomic clocks

Why those two?

Completely different failure modes

GPS fails mainly due to antenna and receiver failures
Atomic clocks fail mainly due to frequency error
There is no correlation between them



TrueTime hierarchy

e Time Master
e Timeslave Daemon

e Majority of masters have GPS
e Remaining have atomic clocks

e Masters and slaves communicate with Marzullo’s algorithm



TrueTime synchronizations and bounds calculation

Instantaneous error bound or €

€ is derived by:

o Worst case local clock drift
o Masters’ uncertainty
o Communication overhead



TrueTime synchronizations and bounds values

Slave polling frequency is every 30 seconds
Worst expected clock drift is 200us every 1s
200us * 30s = bms
Communication overhead accounts for 1s

Total worst case maximum € of 7ms



TrueTime issues

But when TrueTime fails?

Time - master unavailability
Network overload

Machines overload



Concurrency Control




Timestamp Management

Read-write transactions
Read-only transactions

Snapshot reads



Commit Wait and Replication
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RW Transactions - Commit Wait and 2PC
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Read-Only Transactions

e 2 Phases:
o  Assign atimestamp -> S_read
o  Execute reads as snapshot reads

e Snapshot reads can execute at any replica that is up to date with respect to
S_read



Schema-Change Transactions

e Truelime enables atomic schema changes

7-




Evaluation




Microbenchmarks

latency (ms) throughput (Kops/sec)
replicas write | read-only transaction | snapshot read write | read-only transaction | snapshot read
D 9.4+.6 — — 40+3 — —
1 14.4£1.0 14+.1 3L 41+.05 10.9+.4 13.5%.1
3 13.9+.6 1341 1.2+:1 2.2:5 13.84+3.2 38.5£3
5 144+ 4 1.4+.05 1.3+.04 2.8:E3 25.3+£52 50.0+1.1

Scheduling units of 4GB RAM and 4 cores (AMD
Barcelona 2200MHz)

50 Paxos groups with 2500 directories. Operations

were standalone reads and writes of 4KB,

Table 3: Operation microbenchmarks. Mean and standard deviation over 10 runs. 1D means one replica with commit wait disabled.

Clients were run on separate machines.
Each zone contained one spanserver




Availability

Test universe is divided into 5 zones each
with 25 spanner servers. All leaders were
placed in Z1
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Figure 5: Effect of killing servers on throughput.



TrueTime

Fig represents truetime data at
several thousand spanserver
machines upto 2200 km apart.
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Figure 6: Distribution of TrueTime e values, sampled right
after timeslave daemon polls the time masters. 90th, 99th, and
99.9th percentiles are graphed.



F1

| # fragments || # directories |

latency (ms)

operation mean | std dev | count

all reads 8.7 376.4 21.5B
single-site commit 723 1128 | 31.2M
multi-site commit 103.0 52.2 32.1M

1 >100M
24 341
5-9 5336

10-14 232
15-99 34
100-500 7

Table 5: Distribution of directory-fragment counts in F1. course of 24 hours.

Table 6: Fl-perceived operation latencies measured over the




Related work

Megastore

DynamoDB

. DynamoDB
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Conclusion

From the databases community perspective:

An easy-to-use, semi-relational interface that serves transactions utilizing an
SQL-based query language



Conclusion

From the distributed systems community perspective:

Exceptional scalability, automatic sharding, fault tolerance, consistent replication,
external consistency and wide area distribution



Conclusion

The linchpin of Spanner’s feature set is TrueTime

By accepting and exploiting bounded clock uncertainty we can build distributed
systems with much stronger time semantics



