
Slalom: Coasting Through Raw Data 
via Adaptive Partitioning and Indexing

Matthaios Olma‡ Manos Karpathiotakis‡ Ioannis Alagiannis*

Anastasia Ailamaki‡Manos Athanassoulis§

Presented by Ziyu Shen



The problem

� Data generated has grown massively
� Sensor data (ex. from management, clinical studies, Financial market)
� Network monitoring data
� etc



The problem

Current analytical system not built for this much data

� Time-to-insight is high
� Dynamic
� Data-driven

� Analyzing datasets is a costly task – Need new data management systems 
� Data loading is expensive
� Traditional DBMSs need data loading and index building to offer interactive access 
� Transformation, copying, and preparation introduce delays 



Current Solution
� Queries over Raw Data

� Reduce the data-to-insight cost 
� Only logical indexes
� Physical data is never changed

� In-situ queries
� Only need a initial table scan
� Processing avoids the costly phase of data loading
� Retrieve only the relevant data

� NoDB for PostgresRaw
� Builds positional maps



Current Solution Disadvantages

Querying Raw Data Files Is Not Enough!

In-situ not suitable for large data size!

0

50

100

150

200

250

0 50 100 150 200 250

Cu
m

ul
at

iv
e 

ti
m

e 
(m

in
ut

es
)

Query Sequence

DBMS DBMS with index In-situ

Reducing data to query time

* 60GB smart meter dataset, selectivity 1%, 128GB RAM, 1 thread



So how can we combine the performance of an 
indexed system with the in-situ data-to-query time? 



Figure 1 shows the cumulative time of a DBMS system 
and a in-situ system during query sequence. 



Enhancing in situ querying

� Reduce the amount of data accessed
� Partition data to a favorable state
� Build appropriate indexes

� Enable in situ data updates



Partition manager

� Only logical partitions
� Contiguous and non-overlapping
� Iterative refinement
� Incremental splits
� Stops when partition is stable
� Splits into many smaller partitions

...

…

Q1 Qnattr1 attrN

…

Enable data skipping
Fine-grained access path selection
Capture implicit clustering
Iteratively partition dataset

1) Collect data statistics at runtime
2) Calculate number of sub-partitions

Homogeneous Query-based



Index manager

� Only applied to stable 
partitions

� Value existence
� Bloom filters
� Zone maps

� Value position
� B+ Tree

B+

Qm

...

…

attr1 attrN

What
• Value-Existence (i.e., Bloom filters)
• Value-Position (i.e., B+ Trees)

Index tuning on partition level

Choose what & when to build

When
• Based on randomized algorithm
• Cost of scan vs. cost of build + gain

Build and drop based on budget

costs vs. gains
Should I build or not?

Bf



Minimize overhead of updates

...

Store partition state
- Calculate hash value (MD5)

Monitor file for modifications

Recognize updated partitions

Fix modified partitions
- Drop/Re-build cache/index

...

attr1 attrN

Bf B+

Qm

Bf

Bf B+

Bf

Append and updates manager



THE SLALOM SYSTEM

� Dynamic partitions
� Logical partition only
� Created at runtime

� Dynamic indexes
� Bloom filters
� Zonemaps
� Bitmaps
� B+ Trees



THE SLALOM SYSTEM

� Figure 2 shows the architecture of Slalom: Slalom combines an online 
partitioning and indexing tuner with a query executor featuring in-situ 
querying techniques. 

Partition 
Manager

 Index

Index
Index

Index

Index 
Manager

Statistics Store

CachesPositional Maps

Query Executor

Query

Structure Refiner

Update Monitor

Online Tuner

Data



Experiments Architecture

Raw Data 
Access

Raw data

SQL query

Raw Data Access

Indexing 
Structures Online 

tuner

• Combine Online Tuning with Adaptive Indexing

• Adapt data access to queries and data at runtime



Hardware:

- Xeon CPU E5-2660 @ 2.20GHz, 2TB HDD - 7200RPM, 
128GB RAM

Systems:

- Disk-based: PostgreSQL

- In-Memory: DBMS X

- In situ: PostgresRAW, Slalom with Stochastic Cracking

15

Experimental Setup



Slalom query latency evolution with time

Slalom converges quickly to the fastest alternative configuration!



Experiments
� Figure 6 shows the full full workload of 1000 queries, from the raw 

data to result. 
� In-situ adaptive indexing achieves interactive access

Overall, Cracking and Slalom offer comparable raw-data to results 
response time for this workload.



Experiments
� Figure 7 plots the Memory consumption of Slalom vs. a single fully-

built B+ Tree for PostgreSQL and DBMS-X. 

Slalom consumes the minimum space among the four systems.



Experiments
� Figure 8 presents the number of tuples that Slalom accesses for each 

query in this experiment.

The experiments shows the partitioning and indexing schemes of 
Slalom converge.



Experiments
� Figure 9 shows how the minimized data access translates to reduced response time and the 

efficiency of data skipping and indexing for different data distribution and different query types, 
which tested on the workload same as Figure 4. 

Slalom avoids full access of the partition
slalom also reduces memory access or disk I/O if the partition is 

cached or not respectively.



Experiments
� Figure 10 shows the query execution times of Slalom for the workload 

given the three different memory budgets, consider working under 
memory constraints. 

The results shows that as the query sequences increase, future 
queries can benefit from the additional B+-trees, using the available 

memory budget.



Experiments
� Figure 11 presents the breakdown of memory allocation for the same 

query sequence when Slalom is given a 12GB memory budget. 

This experiment shows that Slalom can operate under limited memory 
budget gracefully managing the available resources to improve query 

execution performance.



Experiments
� Figure 12 shows the comparison between Slalom, Cracking and 

Stochastic Cracking. 

Slalom & Cracking can be used in tandem



Conclusion

� Speed-up in situ query processing
� Online logical partitioning algorithm
� Low-overhead online fine-grained index 

selection
� Performance comparable to in-memory 

DBMS

Pros
� Only compares the memory consumption on 

random workload over uniform data (Figure 
12, adaptivity efficiency)

� The DBMS X with index performs better 
than Slalom during the most queries in the 
last experiment.

Cons


