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Persistent B+ Trees in Non-Volatile Main Memory

Basic Properties

- Byte-addressable reads and writes

- Performance very close to DRAM

- Requires lower power than DRAM

- Non-volatile

- Writes are generally slow

- Low endurance
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Persistent B+ Trees in Non-Volatile Main Memory

Different Types of NVMM

o Phase Change Memory (PCM)

o STT-MRAM

o Memristor
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Persistent B+ Trees in Non-Volatile Main Memory

Different Types of NVMM

o PCM has much slower writes (e.g., 200ns – 1µs) than reads (e.g., 50ns)

o STT-MRAM and Memristors show faster read and write performance,

but are not mature enough yet
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Persistent B+ Trees in Non-Volatile Main Memory

Key Assumption

- NVM chip can guarantee atomic writes to aligned 8-byte words
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Persistent B+ Trees in Non-Volatile Main Memory

Essential for instantaneous failure recovery (especially in NVMM)

In case of power failure or system crash data structure can be in

- Inconsistent state

- Non-recoverable state
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Two General Trends

o NVMM

o Main memory database systems

Motivation of Persistent Data Structure
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Persistent B+ Trees in Non-Volatile Main Memory

Widely used in Database Systems

• Supports equality and range-searches efficiently.

• Insert/Delete at logFN cost (F = fanout, N = #leaf pages)

• Minimum 50% occupancy (except for root)

• Each node contains d <= m <= 2d entries
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Persistent B+ Trees in Non-Volatile Main Memory
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Persistent B+ Trees in Non-Volatile Main Memory

Insert 22
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Persistent B+ Trees in Non-Volatile Main Memory

Insert 8
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Persistent B+ Trees in Non-Volatile Main Memory

After inserting 8 (Root was split)
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Persistent B+ Trees in Non-Volatile Main Memory

Delete 19, 20
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Persistent B+ Trees in Non-Volatile Main Memory

After deleting 19, 20 (Redistribution was performed)

Now Delete 24
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Persistent B+ Trees in Non-Volatile Main Memory

After deleting 24 (Merging was performed)

24



Persistent B+ Trees in Non-Volatile Main Memory

• Leaf nodes are connected by sibling pointers

• For disk-based B+ Trees, the node size is a few disk pages (e.g., 4KB–

256KB)

• The node of main-memory B+ Trees is typically a few cache lines large

(e.g., 2–8 64-byte cache lines)
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Persistent B+ Trees in Non-Volatile Main Memory

A non-leaf node contains n keys and n + 1 child pointers. 
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Persistent B+ Trees in Non-Volatile Main Memory

A non-leaf node contains n keys and n + 1 child pointers.

Suppose each tree node is eight 64-byte cache lines large. If the keys are 8-

byte integers in a 64-bit system, then what is the value of n?

(2n+1)8 = 64·8

⇒ n = 31

• A non-leaf node can hold 31 8-byte keys, 32 8-byte child pointers, and a

number field.

• A leaf node has space for 31 8-byte keys, 31 8-byte record pointers, a

number field, and an 8-byte sibling pointer. 27



Persistent B+ Trees in Non-Volatile Main Memory

Key Assumptions

- NVM chip can guarantee atomic writes to aligned 8-byte words

- Both key and value/record pointer are 8 byte

- If not otherwise mentioned, each node is eight 64-byte cache lines large
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PCM-friendly B+ tree

Chen et al. proposed PCM-friendly B+-Tree
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PCM-friendly B+ tree

Chen et al. proposed PCM-friendly B+-Tree
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PCM-friendly B+ tree

Chen et al. proposed PCM-friendly B+-Tree
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PCM-friendly B+ tree

• Sorted non-leaf nodes and unsorted leaf nodes with bitmap

• Requires linear search, but reduces number of NVM writes.
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Data Structure Inconsistency Problem

Normal sequence of actions:

• Move 9, 7 and 4 one slot to the right

• Insert 3

• Increment the number field
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Challenge: CPU Cache Hierarchy

• Limited control over CPU cache

• Can NOT guarantee when and in which order dirty cache line is written
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clflush and mfence Instructions

clflush: invalidates the cache line on all levels of cache and broadcasts

invalidation to all CPUs.
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clflush and mfence Instructions

mfence: guarantees that all writes and reads that happened before mfence

are globally visible before any of writes or reads that happen after mfence.
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clflush and mfence Instructions
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clflush and mfence Instructions

• cflush significantly slows down sequential writes

• cflush has negligible impact on random writes

• Reducing the relative frequency of mfence is desirable 39



Metrics for Persistent Data Structures

Nw – number of writes

Nclf – number of cflush

Nmf – number of mfence

40



Challenges

• Limited control of CPU cache

o Can NOT guarantee when and in which order dirty cache line is written

o Needs special CPU instructions (clflush and mfence) which have non-

trivial overhead

• Different NVM technologies have different characteristics

Undo-Redo Logging and Shadowing can both incur drastic overhead because 

of extensive additional NVM writes and cache line flush instructions. 
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Challenges
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Existing Solutions
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Existing Solution

• Logging

• Shadowing
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Undo-Redo Logging

• One clflush and a mfence per NVM write

• Multiple NVM writes to the log (three extra 8-byte writes for each 8-

byte update)
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NewRedo and CommitNewRedo

• Writes in unused location, thus reducing some overhead

• Fewer clflush and mfence call

• Failure recovery easier because of using unused location.
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Redo-Only Logging

It is applicable only if a newly written value is not to be accessed again before commit. 
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Terminology
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Insertion Cost Analysis of Logging (Basic B+ Tree)

Sorted leaf B+ tree (without node splits) using Undo-Redo Logging

• Moves on avg m/2 entries, inserts new entry, and increments the number.

• This requires writing m + 3 words (Each entry = 2 words)

• For each word write, Undo-Redo incurs 3 extra writes, a clflush and mfence.

Nw = 4m + 12

Nclf = Nmf = m + 3 49



For both packed unsorted and with bitmap,

• Writes the new index entry to an unused location using NewRedo

• Updates the number/bitmap using WriteUndoRedo

Nw = 2*3 + 1*4 = 10

Nclf = Nmf = 2

Insertion Cost Analysis of Logging (PCM-Friendly B+ Tree)
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• For a packed unsorted leaf node, a deletion needs to move the last entry to fill

the hole which must use WriteUndoRedo. Hence, Nw = 3*4 = 12

• For an unsorted leaf node with bitmap, only the bitmap needs to be

overwritten. Hence, Nw = 4.

Deletion Cost Analysis of Logging (PCM-Friendly B+ Tree)
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Shadowing

• Create copy of the node, update copy, flush copy, and commit. Update

node’s parent pointer as well.

• Propagate the same procedure to root.

• Short-circuit Shadowing: Use atomic in-place write instead of copying

• Problem: What about leaf sibling pointer?

52

Use clflush and mfence to solve this problem



Shadowing
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Insertion Cost Analysis of Shadowing (Basic B+ Tree)

• 2m + 4 writes for copying the entries, the number field, and the sibling pointer

field, and inserting the new entry.

• The two WriteRedoOnlys require 4 word writes, and the actual pointer

updates require 2 writes.

• AllocNode will require an additional log write, clflush, and mfence to ensure

persistence of the allocation operation.

Nw = 2m + 11

Nclf = (2m + 4)
!

"#
+ 1 + 1 = 0.25m + 2.5

Nmf = 2
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Cost Analysis of Shadowing (PCM Friendly B+ Tree)

• Since shadowing requires copying the whole node, unsorted leaves do not

provide advantage.

• Deletion cost is similar
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Write-Atomic B+ Trees (wB+ trees)
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Design Goals

• Atomic write to commit all changes

• Minimize the movement of index entries

• Good search performance
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wB+ Trees

Previous Proposal

• Write atomicity possible if bitmap size is less than 8-byte word

• Binary search impossible because of unsortedness

Can we achieve both write atomicity and good search performance? 
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Slot Array

• A small indirection array to a bitmap-only unsorted node

• The indirection slot array remembers the sorted order

• Slot 0 records the number of valid entries in the node.

• Lowest bit of the bitmap to indicate whether the slot array is valid.
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Slot Array: Optimization

• If the tree node size is small (number of index entry < 8), no need for

bitmap. Entire slot array can fit into 8-byte word.

• Write atomicity can be achieved
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wB+ Trees in This Paper

When the node size is small 

When the node size is large 
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Space Overhead Analysis

• An 8-byte bitmap can support up to 63 index entries

• 1-byte sized slots can support up to 255 index entries

If an index entry is 16-byte large (with 8-byte keys and 8-byte pointers), then 

a slot + bitmap node can be as large as 1KB (16 cache lines)
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Insertion

• Find insert position

• Find unused position

• Write

• cflush and mfence

• Generate up-to-date slot array

• Atomic write to update slot array

Nw = 3

Nclf = Nmf = 2

Similar algorithm for bitmap-only nodes
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Insertion

• Recover slot array if it is invalid

• Mark slot array as invalid

• Write and flush new entry

• Modify and flush slot array

• mfence to make new entry and slot array stable

• Update bitmap atomically and mfence
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Search

• Usage of slot array allows the logarithmic complexity of the search

• Slot array is especially useful for non-leaf nodes

• Slot array dereference overhead is nontrivial!!!

o Optimize it by stopping binary search when range is narrow (<8 slot)

o Retrieve everything in 8-byte integer

o Use shift and logic operation

65



Deletion

• Similar to insertion

• No need to move any entries

• Simply update slot array and/or the bitmap

• Either atomic writes or redo-only logging can be employed
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Comparison
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Comparison

68

Nw Nclf Nmf Nw Nclf Nmf

B+ Tree (log) 4m + 12 m + 3 m + 3 4m m m

PCM B+ w/o bitmap (logging) 10 2 2 12 3 3

PCM B+ with bitmap (logging) 10 2 2 4 1 1

B+ Tree (Shadow) 2m + 11 0.25m + 2.5 2 2m + 7 0.25m+2 2

wB+ Tree !

"
+ 4.25

!

#$
+ 3

%

&'

3 !

"
+ 2

!

#$
+ 2 3

wB+ Tree (bitmap-only) 3 2 2 1 1 1

wB+ Tree (slot-only) 3 2 2 1 1 1



wB+ Trees for Variable Sized Keys

• Contains 8-byte keys (key pointers), which are pointers to the actual variable

sized keys.

• A slot+bitmap node has two indirection layers

o First indirection layer is the key pointers

o Second indirection layer is the slot array.
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Experimental Evaluations
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Experiment Setup

• Real machine modeling DRAM-like fast NVMM

o Achieve up to 8.8x speedup

• Simulation modeling PCM-based NVMM

o Achieve up to 27.1x speedup

• Full system experiment: replaced Memcached’s internal hash on real machine

o Achieve up to 3.8x improvements
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B+ Tree Implementations

Implemented 9 B+ tree solutions for fixed-size keys

• btree (volatile)

• btree log: employ undo-redo logging for btree

• unsorted leaf log: employ undo-redo logging for B+-Tree with unsorted leaf nodes

• uleaf bmp log: employ undo-redo logging for B+-Tree with bitmap-only unsorted leaf nodes

• btree shadow: employ shadowing for btree

• unsorted leaf shadow: employ shadowing for B+-Tree with unsorted leaf nodes

• uleafbmp shadow: employ shadowing for B+-Tree with bitmap-only unsorted leaf nodes

• wbtree: wb+ tree

• wbtree w/bmp-leaf : wB -Tree with bitmap-only leaf nodes.

** If the node size ≤ 2 cache lines, they used wB+-Tree with slot-only nodes to replace both (8)

and (9), and report results as wbtree.
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Experimental Results

• wB+-Tree achieves similar search 

performance as baseline

• Bitmap-only leaf nodes see up to 16% 

slowdowns because of the sequential 

search overhead in leaf nodes
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• Undo-redo logging is extremely slow 

• Shadowing is also slow

• wbtree w/bmp-leaf achieves slightly better 

insertion and deletion performance than 

wbtree, but sees worse search performance.



Experimental Results
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• Bits written for wbtrees are much less

• Slightly higher clflush than PCM-friendly B+ trees. 
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Difference between Real Machine and Simulation

• Bar charts of the simulation have similar shape to the bits modified charts

• Bar charts of the real machine results have similar shape to the clflush charts

PCM writes play a major role in determining the elapsed times on PCM based NVMM

Cache line flushes are the major factor in elapsed time on fast DRAM-like NVMM



Experimental Results
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• Searches are costly than fixed-size



Experimental Results
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• wbtree is the best persistent tree solution.



Experimental Results
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• wbtree w/bmp-leaf has significantly poorer performance



Experimental Results
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• Performance difference across solutions is smaller because of the communication overhead



Experimental Results
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• The shorter search time is outweighed more by the communication overhead



Experimental Results
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• wbtree achieves the highest throughput for insertions among persistent tree structures



Conclusion
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Conclusion

• Persistence is crucial for NVMM data structures

• Undo-redo logging and shadowing perform extensive NVM writes and

cacheline flushes

• Leaving leaves unsorted reduces writes, but makes search less effective

• The factors affecting performance have different weights for different

NVM technologies

• Proposed wB+-Trees improve the insertion and deletion performance,

while achieving good search performance
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Questions?
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Insertion with Node Splitting

• Allocate new node and balance entries between old and new node

• No need to move entries in old node (because unsorted)

• Write bitmap/slot fields and sibling pointer of the new node

• Update bitmap/slot field and sibling pointer of old node. (redo-logging)

• Insert new lead node to parent node using insertion algorithm and

commit redo writes.
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Workload

• 8-byte integer keys for fixed-sized keys and 20-byte strings for variable sized keys

• B is large enough so that the tree size is much larger than LLC

• For simulation, B = 20 million, for real machine experiments, B = 50 million

• Total size of valid leaf entries is 320MB in simulation and 800MB on the real machine

• For variable sized keys, they perform only real-machine experiments, B = 50 million

• There will be an additional 1GB memory space for storing the actual strings on the real machine
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