
Presentation By

Tarikul Islam Papon

1

Outline

Background

Existing Solutions

Write Atomic B+ Trees

Experimental Evaluations

Conclusion

2

Background

3

Persistent B+ Trees in Non-Volatile Main Memory

Background

4

Persistent B+ Trees in Non-Volatile Main Memory

Background

5

Persistent B+ Trees in Non-Volatile Main Memory

Background

6

Persistent B+ Trees in Non-Volatile Main Memory

Background

7

Persistent B+ Trees in Non-Volatile Main Memory

Main Memory Secondary Storage

Fast Slow

Volatile Non-Volatile

8

Persistent B+ Trees in Non-Volatile Main Memory

Main Memory Secondary Storage

Fast Slow

Volatile Non-Volatile

9

Persistent B+ Trees in Non-Volatile Main Memory

Main Memory Secondary Storage

Fast Slow

Volatile Non-Volatile

Image Source: https://slideplayer.com/slide/12767692/ 10

Persistent B+ Trees in Non-Volatile Main Memory

Basic Properties

- Byte-addressable reads and writes

- Performance very close to DRAM

- Requires lower power than DRAM

- Non-volatile

- Writes are generally slow

- Low endurance

11

Persistent B+ Trees in Non-Volatile Main Memory

Different Types of NVMM

o Phase Change Memory (PCM)

o STT-MRAM

o Memristor

12

Persistent B+ Trees in Non-Volatile Main Memory

Different Types of NVMM

o PCM has much slower writes (e.g., 200ns – 1µs) than reads (e.g., 50ns)

o STT-MRAM and Memristors show faster read and write performance,

but are not mature enough yet

13

Persistent B+ Trees in Non-Volatile Main Memory

Key Assumption

- NVM chip can guarantee atomic writes to aligned 8-byte words

14

Persistent B+ Trees in Non-Volatile Main Memory

Essential for instantaneous failure recovery (especially in NVMM)

In case of power failure or system crash data structure can be in

- Inconsistent state

- Non-recoverable state

15

Two General Trends

o NVMM

o Main memory database systems

Motivation of Persistent Data Structure

16

Persistent B+ Trees in Non-Volatile Main Memory

Widely used in Database Systems

• Supports equality and range-searches efficiently.

• Insert/Delete at logFN cost (F = fanout, N = #leaf pages)

• Minimum 50% occupancy (except for root)

• Each node contains d <= m <= 2d entries

17

Persistent B+ Trees in Non-Volatile Main Memory

18

Persistent B+ Trees in Non-Volatile Main Memory

Insert 22

19

Persistent B+ Trees in Non-Volatile Main Memory

Insert 8

20

Persistent B+ Trees in Non-Volatile Main Memory

After inserting 8 (Root was split)

21

Persistent B+ Trees in Non-Volatile Main Memory

Delete 19, 20

22

Persistent B+ Trees in Non-Volatile Main Memory

After deleting 19, 20 (Redistribution was performed)

Now Delete 24
23

Persistent B+ Trees in Non-Volatile Main Memory

After deleting 24 (Merging was performed)

24

Persistent B+ Trees in Non-Volatile Main Memory

• Leaf nodes are connected by sibling pointers

• For disk-based B+ Trees, the node size is a few disk pages (e.g., 4KB–

256KB)

• The node of main-memory B+ Trees is typically a few cache lines large

(e.g., 2–8 64-byte cache lines)

25

Persistent B+ Trees in Non-Volatile Main Memory

A non-leaf node contains n keys and n + 1 child pointers.

26

Persistent B+ Trees in Non-Volatile Main Memory

A non-leaf node contains n keys and n + 1 child pointers.

Suppose each tree node is eight 64-byte cache lines large. If the keys are 8-

byte integers in a 64-bit system, then what is the value of n?

(2n+1)8 = 64·8

⇒ n = 31

• A non-leaf node can hold 31 8-byte keys, 32 8-byte child pointers, and a

number field.

• A leaf node has space for 31 8-byte keys, 31 8-byte record pointers, a

number field, and an 8-byte sibling pointer. 27

Persistent B+ Trees in Non-Volatile Main Memory

Key Assumptions

- NVM chip can guarantee atomic writes to aligned 8-byte words

- Both key and value/record pointer are 8 byte

- If not otherwise mentioned, each node is eight 64-byte cache lines large

28

PCM-friendly B+ tree

Chen et al. proposed PCM-friendly B+-Tree

29

PCM-friendly B+ tree

Chen et al. proposed PCM-friendly B+-Tree

30

PCM-friendly B+ tree

Chen et al. proposed PCM-friendly B+-Tree

31

PCM-friendly B+ tree

• Sorted non-leaf nodes and unsorted leaf nodes with bitmap

• Requires linear search, but reduces number of NVM writes.

32

Data Structure Inconsistency Problem

Normal sequence of actions:

• Move 9, 7 and 4 one slot to the right

• Insert 3

• Increment the number field

33

Data Structure Inconsistency Problem

Normal sequence of actions:

• Move 9, 7 and 4 one slot to the right

• Insert 3

• Increment the number field

34

Challenge: CPU Cache Hierarchy

• Limited control over CPU cache

• Can NOT guarantee when and in which order dirty cache line is written

35

clflush and mfence Instructions

clflush: invalidates the cache line on all levels of cache and broadcasts

invalidation to all CPUs.

36

clflush and mfence Instructions

mfence: guarantees that all writes and reads that happened before mfence

are globally visible before any of writes or reads that happen after mfence.

37

clflush and mfence Instructions

38

clflush and mfence Instructions

• cflush significantly slows down sequential writes

• cflush has negligible impact on random writes

• Reducing the relative frequency of mfence is desirable 39

Metrics for Persistent Data Structures

Nw – number of writes

Nclf – number of cflush

Nmf – number of mfence

40

Challenges

• Limited control of CPU cache

o Can NOT guarantee when and in which order dirty cache line is written

o Needs special CPU instructions (clflush and mfence) which have non-

trivial overhead

• Different NVM technologies have different characteristics

Undo-Redo Logging and Shadowing can both incur drastic overhead because

of extensive additional NVM writes and cache line flush instructions.

41

Challenges

42

Insert/Delete Cost

Persistence
Search

Existing Solutions

43

Existing Solution

• Logging

• Shadowing

44

Undo-Redo Logging

• One clflush and a mfence per NVM write

• Multiple NVM writes to the log (three extra 8-byte writes for each 8-

byte update)

45

NewRedo and CommitNewRedo

• Writes in unused location, thus reducing some overhead

• Fewer clflush and mfence call

• Failure recovery easier because of using unused location.

46

Redo-Only Logging

It is applicable only if a newly written value is not to be accessed again before commit.

47

Terminology

48

Insertion Cost Analysis of Logging (Basic B+ Tree)

Sorted leaf B+ tree (without node splits) using Undo-Redo Logging

• Moves on avg m/2 entries, inserts new entry, and increments the number.

• This requires writing m + 3 words (Each entry = 2 words)

• For each word write, Undo-Redo incurs 3 extra writes, a clflush and mfence.

Nw = 4m + 12

Nclf = Nmf = m + 3 49

For both packed unsorted and with bitmap,

• Writes the new index entry to an unused location using NewRedo

• Updates the number/bitmap using WriteUndoRedo

Nw = 2*3 + 1*4 = 10

Nclf = Nmf = 2

Insertion Cost Analysis of Logging (PCM-Friendly B+ Tree)

50

• For a packed unsorted leaf node, a deletion needs to move the last entry to fill

the hole which must use WriteUndoRedo. Hence, Nw = 3*4 = 12

• For an unsorted leaf node with bitmap, only the bitmap needs to be

overwritten. Hence, Nw = 4.

Deletion Cost Analysis of Logging (PCM-Friendly B+ Tree)

51

Shadowing

• Create copy of the node, update copy, flush copy, and commit. Update

node’s parent pointer as well.

• Propagate the same procedure to root.

• Short-circuit Shadowing: Use atomic in-place write instead of copying

• Problem: What about leaf sibling pointer?

52

Use clflush and mfence to solve this problem

Shadowing

53

Insertion Cost Analysis of Shadowing (Basic B+ Tree)

• 2m + 4 writes for copying the entries, the number field, and the sibling pointer

field, and inserting the new entry.

• The two WriteRedoOnlys require 4 word writes, and the actual pointer

updates require 2 writes.

• AllocNode will require an additional log write, clflush, and mfence to ensure

persistence of the allocation operation.

Nw = 2m + 11

Nclf = (2m + 4)
!

"#
+ 1 + 1 = 0.25m + 2.5

Nmf = 2
54

Cost Analysis of Shadowing (PCM Friendly B+ Tree)

• Since shadowing requires copying the whole node, unsorted leaves do not

provide advantage.

• Deletion cost is similar

55

Write-Atomic B+ Trees (wB+ trees)

56

Design Goals

• Atomic write to commit all changes

• Minimize the movement of index entries

• Good search performance

57

wB+ Trees

Previous Proposal

• Write atomicity possible if bitmap size is less than 8-byte word

• Binary search impossible because of unsortedness

Can we achieve both write atomicity and good search performance?

58

Slot Array

• A small indirection array to a bitmap-only unsorted node

• The indirection slot array remembers the sorted order

• Slot 0 records the number of valid entries in the node.

• Lowest bit of the bitmap to indicate whether the slot array is valid.
59

Slot Array: Optimization

• If the tree node size is small (number of index entry < 8), no need for

bitmap. Entire slot array can fit into 8-byte word.

• Write atomicity can be achieved

60

wB+ Trees in This Paper

When the node size is small

When the node size is large

61

Space Overhead Analysis

• An 8-byte bitmap can support up to 63 index entries

• 1-byte sized slots can support up to 255 index entries

If an index entry is 16-byte large (with 8-byte keys and 8-byte pointers), then

a slot + bitmap node can be as large as 1KB (16 cache lines)

62

Insertion

• Find insert position

• Find unused position

• Write

• cflush and mfence

• Generate up-to-date slot array

• Atomic write to update slot array

Nw = 3

Nclf = Nmf = 2

Similar algorithm for bitmap-only nodes

63

Insertion

• Recover slot array if it is invalid

• Mark slot array as invalid

• Write and flush new entry

• Modify and flush slot array

• mfence to make new entry and slot array stable

• Update bitmap atomically and mfence

64

Search

• Usage of slot array allows the logarithmic complexity of the search

• Slot array is especially useful for non-leaf nodes

• Slot array dereference overhead is nontrivial!!!

o Optimize it by stopping binary search when range is narrow (<8 slot)

o Retrieve everything in 8-byte integer

o Use shift and logic operation

65

Deletion

• Similar to insertion

• No need to move any entries

• Simply update slot array and/or the bitmap

• Either atomic writes or redo-only logging can be employed

66

Comparison

67

Comparison

68

Nw Nclf Nmf Nw Nclf Nmf

B+ Tree (log) 4m + 12 m + 3 m + 3 4m m m

PCM B+ w/o bitmap (logging) 10 2 2 12 3 3

PCM B+ with bitmap (logging) 10 2 2 4 1 1

B+ Tree (Shadow) 2m + 11 0.25m + 2.5 2 2m + 7 0.25m+2 2

wB+ Tree !

"
+ 4.25

!

#$
+ 3

%

&'

3 !

"
+ 2

!

#$
+ 2 3

wB+ Tree (bitmap-only) 3 2 2 1 1 1

wB+ Tree (slot-only) 3 2 2 1 1 1

wB+ Trees for Variable Sized Keys

• Contains 8-byte keys (key pointers), which are pointers to the actual variable

sized keys.

• A slot+bitmap node has two indirection layers

o First indirection layer is the key pointers

o Second indirection layer is the slot array.

69

Experimental Evaluations

70

Experiment Setup

• Real machine modeling DRAM-like fast NVMM

o Achieve up to 8.8x speedup

• Simulation modeling PCM-based NVMM

o Achieve up to 27.1x speedup

• Full system experiment: replaced Memcached’s internal hash on real machine

o Achieve up to 3.8x improvements

71

B+ Tree Implementations

Implemented 9 B+ tree solutions for fixed-size keys

• btree (volatile)

• btree log: employ undo-redo logging for btree

• unsorted leaf log: employ undo-redo logging for B+-Tree with unsorted leaf nodes

• uleaf bmp log: employ undo-redo logging for B+-Tree with bitmap-only unsorted leaf nodes

• btree shadow: employ shadowing for btree

• unsorted leaf shadow: employ shadowing for B+-Tree with unsorted leaf nodes

• uleafbmp shadow: employ shadowing for B+-Tree with bitmap-only unsorted leaf nodes

• wbtree: wb+ tree

• wbtree w/bmp-leaf : wB -Tree with bitmap-only leaf nodes.

** If the node size ≤ 2 cache lines, they used wB+-Tree with slot-only nodes to replace both (8)

and (9), and report results as wbtree.
72

73

74

Experimental Results

• wB+-Tree achieves similar search

performance as baseline

• Bitmap-only leaf nodes see up to 16%

slowdowns because of the sequential

search overhead in leaf nodes

75

• Undo-redo logging is extremely slow

• Shadowing is also slow

• wbtree w/bmp-leaf achieves slightly better

insertion and deletion performance than

wbtree, but sees worse search performance.

Experimental Results

76

• Bits written for wbtrees are much less

• Slightly higher clflush than PCM-friendly B+ trees.

77

78

Difference between Real Machine and Simulation

• Bar charts of the simulation have similar shape to the bits modified charts

• Bar charts of the real machine results have similar shape to the clflush charts

PCM writes play a major role in determining the elapsed times on PCM based NVMM

Cache line flushes are the major factor in elapsed time on fast DRAM-like NVMM

Experimental Results

79

• Searches are costly than fixed-size

Experimental Results

80

• wbtree is the best persistent tree solution.

Experimental Results

81

• wbtree w/bmp-leaf has significantly poorer performance

Experimental Results

82

• Performance difference across solutions is smaller because of the communication overhead

Experimental Results

83

• The shorter search time is outweighed more by the communication overhead

Experimental Results

84

• wbtree achieves the highest throughput for insertions among persistent tree structures

Conclusion

85

Conclusion

• Persistence is crucial for NVMM data structures

• Undo-redo logging and shadowing perform extensive NVM writes and

cacheline flushes

• Leaving leaves unsorted reduces writes, but makes search less effective

• The factors affecting performance have different weights for different

NVM technologies

• Proposed wB+-Trees improve the insertion and deletion performance,

while achieving good search performance

86

Questions?

87

Insertion with Node Splitting

• Allocate new node and balance entries between old and new node

• No need to move entries in old node (because unsorted)

• Write bitmap/slot fields and sibling pointer of the new node

• Update bitmap/slot field and sibling pointer of old node. (redo-logging)

• Insert new lead node to parent node using insertion algorithm and

commit redo writes.

88

Workload

• 8-byte integer keys for fixed-sized keys and 20-byte strings for variable sized keys

• B is large enough so that the tree size is much larger than LLC

• For simulation, B = 20 million, for real machine experiments, B = 50 million

• Total size of valid leaf entries is 320MB in simulation and 800MB on the real machine

• For variable sized keys, they perform only real-machine experiments, B = 50 million

• There will be an additional 1GB memory space for storing the actual strings on the real machine

89

