
Morsel-Driven Parallelism: A NUMA-Aware Query
Evaluation Framework for the Many-Core Age

Viktor Leis, Peter Boncz, Alfons Kemper, Thomas Neumann

Lunhao Liang, Dezhou Wang



Agenda
● What’s the Morsel-Driven Parallelism? 

● How does Morsel-Driven execute

● How does Dispatcher schedule parallel pipeline tasks

● Parallel Operator Details

● Evaluation

● Conclusion



What’s the Morsel-Driven Parallelism?



Problems for modern parallel query
Modern computer architecture evolves 

Multi Cores CPU Cache Hierarchy NUMA















Problems for modern parallel query
Problems for modern parallel query

Only use one core for query 
pipeline

Algorithm can not take 
advantage of multi cores

Dividing the work evenly in 
CPU is difficult



Related research on parallel query
Volcano parallelism framework for database in 1990s (Plan-Driven)

● Statically determine at query compiling time how many threads should be use

● Instantiates one query operator plan for each thread at first for one time

Core 0 Core 1 Core 2 Core 3

Input Data



Morsel-Driven Parallelism
The paper presents the “morsel-driven” query to solve the problem for the 
database “HyPer”

✓ Divide input data into small fragments a.k.a. “Morsels”

✓ A “Dispatcher” dispatches morsels to cores

✓ Dynamically and Elastically change parallelism during query execution by 
dispatcher

✓ Use NUMA-local memory

Entire table

A Morsel



How does Morsel-Driven execute?



Morsel-Driven Parallelism
The Three-Way-Join query example in paper

● Table R is the largest table (optimizer chooses R as probe input)

● T is the Base Relation table, S is the Argument table

● Slicing the R in to small fragments “Morsels” stored in NUMA-local storage and 
build other two hash tables HT(S) and HT(T) based on T and S by using a tool 
called “QEPobject”



Morsel-Driven Parallelism
The Three-Way-Join query example in paper

Build the hash table 
HT(T) of base relation 

T

Build the hash table 
HT(S) or argument S

Dividing R into 
“Morsels”, probing 
HT(S) and HT(T), 
storing the result 

tuples

QEPobject

DispatcherDispatcherDispatcher



How does QEPobject build
hash table H(T) and H(S)?

NUMA 
partitions



How does probe
phase work?



Example of morsel-driven parallelism



Overall Idea of morsel-driven parallelism



How does Dispatcher schedule parallel 
pipeline tasks?



Goals for Dispatcher
Dispatcher is working to control and assign the compute resources to the parallel 
pipelines by assigning tasks to different worker threads.

NUMA-Locality Elasticity Load balancing 



Elasticity of Dispatcher
● Different priority of the tasks will influence the degree of parallelism 

● Assume the priority is the same for all tasks in this paper

● Work-stealing mechanism when cores finish in different time



Architecture of the 
Dispatcher



Another question

● What size is the best morsal size to improve 
this system’s performance? Big size morsal or 
small size morsal?



Morsel size in Dispatcher



Parallel Operator Details
Parallelize each pipeline

Operators that 
have already 
started

Operators that 
start a new 
pipeline



Hash Table Construction
2 phases

A thread-local storage area

Build input tuples

size

Dynamically growing 
hash tables

Each thread

tuples

Insert pointers

Atomic compare-and 
swap instruction



Outer Join
Variation of phase 2

Tuple Marker

Unnecessary 
contention

Match occurred

No match



Radix Join
http://www.vldb.org/pvldb/vol7/p85-balkesen.pdf

Basic optimized
Software-managed 
buffers

TLB: translation look-aside buffers Copy overhead

http://www.vldb.org/pvldb/vol7/p85-balkesen.pdf


Benefit of single-table hash join

Compared to Radix Join
Larger input relation

Good team player

Input
Input&

Skewed key 
distributions

No care about tuple size

No care about hardware



Choose which?
A single-table hash join

Complex query processing

Radix join

Higher locality



Lock-Free Tagged Hash Table

Early-filtering optimization

A hash bucket 
list

tag

1-bit

CAS: atomic compare-and-swap operation



Bloom filters
Incur multiple reads

May not fit into cache

Hash tagging
Low overhead



Proposed hash table
Only store pointers

2x size of the input

Reduce collisions

Allow for tuples of variable 
size

Probe misses fast

Large virtual memory 
pages

Reduced number of TLB 
misses

Avoid scalability problems

Allocate with Unix 
mmap



In order to implement NUMA-local table scans
Do relations need to be distributed over the memory nodes?



NUMA-Aware Table Partitioning

Round-robin 
assignment

“Important” attribute

Better alternative

Reside on the same socket

Less cross-socket communication

Same hash function



Grouping/Aggregation
Number of groups

performance

determines



In main memory
Are hash-based algorithms usually faster than sorting?



Sorting
Sort-based join or aggregation

Order by or top-k clause



Evaluation
Linux

32 cores

64 threads





NUMA 
Awareness
Vectorwise

Not NUMA optimized



NUMA-awareness



Elasticity



Elasticity cont.

elastic



Star Schema Benchmark



Related Work
Multi-core join or aggregation

Radix hash join

NUMA

IBM BLU query engine

Microsoft’s Apollo project

Seminal Volcano model

Papers



Conclusion

HyPer

Bottlenecks for many-core

load-balancing

Thread synchronization

Memory access locality

Resource elasticity

Priority-based schedulingNo hardware parameters



Future Work

Underlying hardware

Further optimizations

Remote NUMA access


