
Column Stores and Row
Stores

Are they really that different?
By Sid Premkumar, Emmanuel Amponsah

CS591 - Feb 4, 2020

Agenda

Intro to Row and Column Stores
(What are these? Pros and Cons of each design?)

Problem & Motivation

Context
(Background for experiment)

Implementing Row-Stores as Column Stores
(Why don’t we just make row stores behave like column stores?)

Column Store Execution
(What are the optimizations for the Column Store?)

Row Store

What is it?

Storing data in successive blocks

Pros and Cons?

+ Easy to append new records
- Reads unnecessary data

Column Store

What is it?

Store data in separate pages

Pros and Cons?

+ Only read relevant data
- Tuple writes may require multiple seeks

Problem & Motivation

What is the problem and why is it important?

● Lots of legacy systems are built in row stores (would be
expensive, time consuming to switch)

● It would be a game changer because then people could switch
from column/row storage quickly

Why can’t row-store just emulate column store?

● This is what the paper is trying to figure out

https://svitla.com/blog/data-warehouse-vs-database

https://svitla.com/blog/data-warehouse-vs-database

Context

How are we storing our data?

Star Schema

Where is the data coming from?

Generated in accordance with the Star Scheme

https://www.pilosa.com/use-cases/retail-a
nalytics/

https://www.pilosa.com/use-cases/retail-analytics/
https://www.pilosa.com/use-cases/retail-analytics/

Context

Experiment setup

System X - Our Row Store Machine

C-Store - Our Column Store Machine

Each system has a materialized view (MV)
View version

https://www.wikiwand.com/en/Red_Hat_Enterprise_Li
nux

https://www.wikiwand.com/en/Red_Hat_Enterprise_Linux
https://www.wikiwand.com/en/Red_Hat_Enterprise_Linux

Implementing Row Store as Column Store
What are some approaches for row stores to
emulate column stores?

Vertical Partitioning

Index only plans

Materialized Views

https://slideplayer.com/slide/3422355/

https://www.wikiwand.com/en/Bin
ary_tree

https://slideplayer.com/slide/3422355/
https://www.wikiwand.com/en/Binary_tree
https://www.wikiwand.com/en/Binary_tree

Vertical Partitioning

What is it?

To fully emulate vertical partitions, you add a
position column to every table

Creates one physical table for each column in
the schema, where the ith table has two
columns one for the schema and the other for
position column

Vertical Partitioning (cont.)

How do we join this partitioned data (what type of joins can we use)?

We can pick from:

- Hash Joins
- Index Joins
- Sort Merge Joins

Hash Joins

What is a Hash Join?

A hash join is performed by using one dataset into memory based on join
columns and reading and probing the hash tables for matches

This happens in two steps; first a hash table is created using the contents of one
relation (build)

After the build stage, scan the other relation for reach row probe the relevant
rows by looking at the hash table (probe)

Index Joins

What is an Index Join?

An index join is a join that uses an index intersection with two or more relations to
fulfil a query completely

Sort-Merge Joins

What is a sort-merge join?

A sort merge join is performed by sorting the data sets that are going to be
joined, by a join key and then merging them together

What is more expensive here, sorting or merging?

Merging a cheap operation, but sorting can be expensive since data can be on
the disk

Vertical Fragmentation

Index Only Plans

What kind of data structure
could we use?

B+ Trees (used by the paper)

B Trees

Hash Indexes

Index Only Plans (cont.)

What are Index Only Plans?

- Emulating the column store index feature

How does this compare to vertical fragmentation?

+ Better in terms of space
+ Row stores have large headers so vertical partitioning waste memory
- Expensive Joins

Materialized Views

What is it?

Creating an optimal set of tables for
every query flight in the workload

Materialized Views (cont.)

What are some benefits of this?

- Quick query satisfaction

Limitations?

- You have to have a deep understanding of the data
- Think hard coding

Implementing Row Store as Column Store

Which is the best?

Tradiational!

Row Store is less efficient when we try
to emulate column store

Column Stores

What are some column store optimizations that make it better than a row
store?

- Compression
- Late Materialization
- Block Iteration
- Invisible Joins

Compression

What are ways for us to compress our data?

- Frequency
- Sorted

What are the benefits?

- Improved query performance
- Data stored in a column lends itself to being compressed, and is more

compressible when the data is sorted

Compression (cont.)

What happens if we remove this optimization?

We lose our computation gained from skipping I/O

Late Materialization

What is it?

Late materialization is the process of waiting to construct the table of results until
the end instead of reconstructing your tuples every time

What is tuple re-construction?

Rebuilding the tuple of qualifying data

LM (cont.)

Why is this effective for column stores?

+ Low tuple overhead
+ Stitch data together from column

Block Iteration

What is it?

Query for a block of the select statement, push your data to the next node to
perform whatever work is left

What is this similar to?

Pipelining in row-stores

Invisible Joins

What is it and how does it work?

- Optimize join predicates
- Bitmaps

What makes it effective for Star Schema?

- Joins with the fact table

Conclusion

Topic Review

Column Store and Row Stores

Vertical Partitioning

Index Only Plans

Materialized Views

Tuple Reconstruction

Late/Early Materialization

Block Iteration

Compression

Hash Joins

Index Joins

Sort-Merge Joins

Invisible Joins

Star Schema

Pros & Cons

Pros

- Dissecting the reasons for why column store is more
efficient

- Exploring beyond just the topic of the paper (i.e.
Invisible Joins)

- Good job in fully fleshing out their experiments

Pros & Cons

Cons

- Did not clearly define the difference between
‘Materialized Views’ and ‘Late Materialization’

- They chalked up a lot of performance problems to
limitations in ability to tune their database

- Exploring the cost/benefit analysis of using two
separate databases (one column, one row)

Final Thoughts

- This paper definitely does a good job around helping the reader understand the fundamental
differences between column and row stores. As well as the certain optimizations that column
stores have that row-stores cannot accomplish due to their underlying design.

- Overall this paper does a good job of highlighting the differences and helping us understand why
we can’t emulate row-stores as column stores

