CS591 - Feb 4, 2020

Column Stores and Row

Stores

Are they really that different?
By Sid Premkumar, Emmanuel Amponsah

Agenda

Intro to Row and Column Stores
(What are these? Pros and Cons of each design?)

Problem & Motivation

Context
(Background for experiment)

Implementing Row-Stores as Column Stores
(Why don’t we just make row stores behave like column stores?)

Column Store Execution
(What are the optimizations for the Column Store?)

Row Store

Storing data in successive blocks

+ Easy to append new records
Reads unnecessary data

Column Store

Store data in separate pages

+ Only read relevant data
Tuple writes may require multiple seeks

Problem & Motivation

e Lots of legacy systems are built in row stores (would be
expensive, time consuming to switch)

e It would be a game changer because then people could switch
from column/row storage quickly

e Thisis what the paper is trying to figure out

https://svitla.com/blog/data-warehouse-vs-database

https://svitla.com/blog/data-warehouse-vs-database

Context

How are we storing our data?
Star Schema

Where is the data coming from?

Generated in accordance with the Star Scheme

https://www.pilosa.com/use-cases/retail-a
nalytics/

https://www.pilosa.com/use-cases/retail-analytics/
https://www.pilosa.com/use-cases/retail-analytics/

Context

System X - Our Row Store Machine
C-Store - Our Column Store Machine

Each system has a materialized view (MV)
View version

https://www.wikiwand.com/en/Red Hat Enterprise Li
nux

https://www.wikiwand.com/en/Red_Hat_Enterprise_Linux
https://www.wikiwand.com/en/Red_Hat_Enterprise_Linux

Implementing Row Store as Column Store

i

Vert|ca| Part|t|on|ng Vertical Fragmentation
Index only plans S
]
Materialized Views - 1
orizontal Fragmentation

https://slideplayer.com/slide/3422355/

https://www.wikiwand.com/en/Bin

https://slideplayer.com/slide/3422355/
https://www.wikiwand.com/en/Binary_tree
https://www.wikiwand.com/en/Binary_tree

Vertical Partitioning

To fully emulate vertical partitions, you add a
position column to every table

Creates one physical table for each column in
the schema, where the ith table has two
columns one for the schema and the other for
position column

Vertical Partitioning (cont.)

We can pick from:

- Hash Joins
- Index Joins
- Sort Merge Joins

Hash Joins

A hash join is performed by using one dataset into memory based on join
columns and reading and probing the hash tables for matches

This happens in two steps; first a hash table is created using the contents of one
relation (build)

After the build stage, scan the other relation for reach row probe the relevant
rows by looking at the hash table (probe)

Index Joins

An index join is a join that uses an index intersection with two or more relations to
fulfil a query completely

Sort-Merge Joins

A sort merge join is performed by sorting the data sets that are going to be
joined, by a join key and then merging them together

Merging a cheap operation, but sorting can be expensive since data can be on
the disk

Vertical Fragmentation

Flight |
1.0 ight
1.0 1
= 21
3 ¥
£
g eod
8
iE 400 1
001
o~ | U
T | MV | v Al
e . ! il o
mQ 2.7 99 10 697 172
;IQIJ 20 1.0 ‘ Lo ’ 360 503
loQL3 15] 02 360 485
Flight 3
G000 o
S000 4
§ 4000 4
£ 3000 4
B
E 2000 4
1000
an -
T T(B) MV P Al
(Wi a0 914 16.1 139.1 4138
lmQaz a8 65.3 69 619 407
[0Qas 51.2 3.2 64 a2 Sit4
sl &5 65 30 470 65.5

Figure 6: (a) Performance numbers for different variants of the row-store by query flight. Here, T is traditional, T
(bitmap), MV is materialized views, VP is vertical partitioning, and Al is all indexes. (b) Average performance acro

Flight 2

(a)

4000 Average
3500 4 250.0 +
3o -
2500 <
2000 ¢
1500 200.0
1000 <
sSan <
an .___._‘ 1 LL
T T(8) MV Ve Al
[wozi| asx 919 155 5.1 1508 = 1500
j. Q.2 4 T84 135 458 464 -2
i |23l aso 304.1 15 9.0 439 8
2
Flight 4 2
2000 - . E
= 100.0 -
G000
5000 <
4000
3000
s 50.0 -
2000 -
1000 <
an ._-—_L_____. -
T T(B) MV VP Al .
(moa1! as4 4.4 292 8.6 6239 0.0 +— | -
lmge2l 141 253 224 1504 290.1 T | T(B) MV VP Al ‘
[DQesl 122 212 64 863 439

|M Average| 25.7 ‘ 640 | 102

(b)

799 | 2212 |

is traditional
queries.

Index Only Plans

1m0 gt 000 L Average
3500 1 250.0
1m0 1
§ 2500 |
“@0o 1 2000
1500 1 200.0 4
wo 1
-
B+ Trees (used by the paper) IR s s e e | g 1o
lmai2| 20 o 10 wr T s s P 2
loosl s | us | ez swo | o | us | we | ss | g
g
i 3 Ll + g
= 1000
rees
k. a0 | <00
Hash Indexes
5 | T | T | My | v | A an .L_L_-_
mQy)| 40 914 161 1391 FEn (8) [v T a 1]
moiz| s &3 69 619 w7 [mour] wa M4 292 26 &9 0.0 —
@ 3 w2 | e | a2 | sma looxz| 141 24 | 1o | 20 T | 1B | MV Al |
logal 65 | 65 | 30 | s a5 | loesl 122 64 | &3 | 239 ==

[mAverage| 257 | 640 | 102 \ 799 | 2212 |

(a) (b)

Figure 6: (a) Performance numbers for different variants of the row-store by query flight. Here, T is traditional, T(B) is itional
(bitmap), MV is materialized views, VP is vertical partitioning, and Al is all indexes. (b) Average performance across all ies.

Index Only Plans (cont.)

Emulating the column store index feature

+ Better in terms of space
+ Row stores have large headers so vertical partitioning waste memory

Expensive Joins

Materialized Views

10 Flight | 000 Riga2 Average
1wo 3500 1 250.0
g o 20
i w0
E o 150 200.0
w0 a0
|
oy T(B) MV VP Al
wary| 27 99 X s) 155 s T Z 1500 |
lsoizl 20 | ma | 1o wi e Bs | as | s 2
loqual as o | o2 | | | logasl a0 | som | us | w0 | ws | g
Creating an optimal set of tables for 1|
. . 000 1 6000 < :
every query flight in the workload g
£ 20 | 50.0
Wi @0 | ma | w61 | w1 | s | I v [T [wv [v | a | l
moiz| s &3 69 619 w07 |woa1] asa M4 22 26 &9 0.0 —
ws| w2 | w2 | e | w2 | swa loosz| 161 | 23 | 24 | 1me | 20 T | 1B | MV | v | Al |
logral & | es | 30 | e a5 | lnoeal 122 n2 | 6a | ss3 | 23 T

[mAverage| 257 | 640 | 102 | 799 | 2212 |

(a) (b)

Figure 6: (a) Performance numbers for different variants of the row-store by query flight. Here, T is traditi , T(B) is traditional
(bitmap), MV is materialized views, VP is vertical partitioning, and Al is all indexes. (b) Average performand@cross all queries.

Materialized Views (cont.)

- Quick query satisfaction

- You have to have a deep understanding of the data
- Think hard coding

Implementing Row Store as Column Store

Figat 1
1m0 L 400

Bl Average
1m0 3500 2500 [
—;s 0e 2500 1
g o 2000
E ool 1500 { 200.0
. . 01 san
Tradiational! o — | ll | e i I
ol 27 99 o w1 | 12 | s 919 155 | et 1508 =z 1500 1
moi2 20 o 10 340 wr e s s a4 2
Quil s Ls o 360 wo | o | us | w0 | s | g
2
) .. H
Row Store is less efficient when we try -
5000 1 H000 < "
to emulate column store _
S 20004 3000 < 50.0
v 5 [v [[w [w | a | o kL_L_-_V l
FEA IR R e e i o M_H m
Q3 w2 w2 64 2 4 |moez2| 11 253 24 1504 0.1 T | T(B) MV ‘ VP Al ‘
lmgae| s s | 30 | @& a5 | lnoeal 122 n2 | s | w3 | 2w3s — 4 =

[WAverage| 257 | 640 | 102 | 799 | 2212 |
(a) (b)

Figure 6: (a) Performance numbers for different variants of the row-store by query flight. He

is traditional, T(B) is traditional
(bitmap), MV is materialized views, VP is vertical partitioning, and Al is all indexes. (b) Avera

erformance across all queries.

Column Stores

- Compression

- Late Materialization
- Block lteration

- Invisible Joins

Compression

- Frequency
- Sorted

- Improved query performance
- Data stored in a column lends itself to being compressed, and is more
compressible when the data is sorted

Compression (cont.)

We lose our computation gained from skipping I/O

Late Materialization

Late materialization is the process of waiting to construct the table of results until
the end instead of reconstructing your tuples every time

Rebuilding the tuple of qualifying data

LM (cont.)

+ Low tuple overhead
+ Stitch data together from column

Block Iteration

Query for a block of the select statement, push your data to the next node to
perform whatever work is left

Pipelining in row-stores

Invisible Joins

- Optimize join predicates
- Bitmaps

- Joins with the fact table

Conclusion

oy Flgh 1

Flighs 2
“o ! Average
o o4 45.0
g 40.0
£
g
Biso
. 350
w0
7y PRI 1 ! 30,0
oL | L L | Tl WL | TXL | GCL | TKL | el | Tk | Tl
MR T | » (w21 57 74 136 | 148 | 1so | 161 | 40s =
12 01 01 6l w22 a2 61 126 | 138 | 139 | e | 360 B 25.0
130 01 | ox on | s lozal 39 | 6s | w22 | 134 | 186 | w2 | 3s0 | § g
PR Flight 3 s Fighe 4 g 20.0
=
o e
i "o 15.0
g we
g
£ we “e
§ e 10.0 -
&
ne I e
L ne 5.0 -
W z
deL | TL | el | TeL | a | T &
‘I SR ITHETHET | L | me oCL | TCL [el | Tl | T |
112 90 | 141 | 153 | 153 | MO 158 | 170 | 300 | 300 | 663 | 0.0 [E P 0 v
126 | 75 | 126 | 135 | 136 | 3 55 69 | 204 | 214 | eas UCL | TICL| iCL | TiCL | ticL | TicL | Ticl
[%) 0s 07 i35 136 02 4l 54 IS8 169 5&4

W Average| 4.0 | 64 | 7.5 | 93 | 14.7|16.0 410

(a) (b)

Figure 7: (a) Performance numbers for C-Store by query flight with various optimizations removed. The four letter code indicates
the C-Store configuration: T=tuple-at-a-time processing, t=block processing; I=invisible join enabled, i=disabled; C=compression
enabled, c=disabled; L=late materialization enabled, I=disabled. (b) Average performance numbers for C-Store across all queries.

Topic Review

Column Store and Row Stores Block Iteration
Vertical Partitioning Compression
Index Only Plans Hash Joins
Materialized Views Index Joins

Tuple Reconstruction Sort-Merge Joins
Late/Early Materialization Invisible Joins

Star Schema

Pros & Cons

- Dissecting the reasons for why column store is more
efficient

- Exploring beyond just the topic of the paper (i.e.
Invisible Joins)

- Good job in fully fleshing out their experiments

Pros & Cons

- Did not clearly define the difference between
‘Materialized Views’ and ‘Late Materialization’

- They chalked up a lot of performance problems to
limitations in ability to tune their database

- Exploring the cost/benefit analysis of using two
separate databases (one column, one row)

Final Thoughts

- This paper definitely does a good job around helping the reader understand the fundamental
differences between column and row stores. As well as the certain optimizations that column
stores have that row-stores cannot accomplish due to their underlying design.

- Overall this paper does a good job of highlighting the differences and helping us understand why
we can’'t emulate row-stores as column stores

