
Workload-Driven Horizontal

Partitioning

Lina Qiu, Zichen Zhu

Overview

● Proposed a workload-driven horizontal partitioning scheme

● Implemented two baselines

○ Equal-size k-means

○ Skipping-oriented partitioning [1]

[1] L. Sun, M. J. Franklin, S. Krishnan, and R. S. Xin. Fine-grained partitioning for aggressive data

skipping. In SIGMOD, pages 1115–1126, 2014.

Focus & Assumptions

● Workloads consist of range queries

● The training workload used to do partitioning is consistent with the test

workload

● Not support data updates

Workload-Driven Partitioning

What we know in advance:

1. The qualification of every data tuple for every query in the training workload

2. The selectivity of every query

3. The number of occurrences of every distinct query (freq)

Workload-Driven Partitioning

Steps:

1. Sort queries by

We obtain a sequence of queries

1. Do query-driven partition until the size of a partition is less or equal to a page

Raw data

Equal-size k-Means

Desired cluster size: page_size

k = num_data / page_size

Difference:

Assign a data tuple to the closest cluster that hasn’t reached the max capacity

Break if max_iter is reached, or rss is below our specified threshold (set to 0)

Skipping-oriented Partitioning

1. Select top k most frequently queried filters

1. Build a k-dimension bit vector for each tuple (0: unqualified, 1:qualified)

1. Solve the optimization problem (approximate solution with Ward’s method)

Workflow

Evaluation

#data 10,000

#query 400

page_size 250

dimension 2 (uni, uni)

Evaluation

#data vary

#query 400

page_size 250

dimension 2 (uni, uni)

Evaluation

#data 10,000

#query vary

page_size 250

dimension 2 (uni, uni)

Future Work

● Take raw data similarity into consideration

● Build index for filling data to reduce extra memory footprint

● Tile-based partition

● How to support update/When should we do repartition

