Workload-Driven Horizontal Partitioning

Lina Qiu, Zichen Zhu

Overview

• Proposed a workload-driven horizontal partitioning scheme

- Implemented two baselines
 - Equal-size k-means
 - Skipping-oriented partitioning [1]

[1] L. Sun, M. J. Franklin, S. Krishnan, and R. S. Xin. Fine-grained partitioning for aggressive data skipping. In SIGMOD, pages 1115–1126, 2014.

Focus & Assumptions

- Workloads consist of range queries
- The training workload used to do partitioning is consistent with the test workload
- Not support data updates

Workload-Driven Partitioning

What we know in advance:

- 1. The qualification of every data tuple for every query in the training workload
- 2. The selectivity of every query
- 3. The number of occurrences of every distinct query (freq)

Workload-Driven Partitioning

Steps:

1. Sort queries by $f_q(1-s_q)$

We obtain a sequence of queries $q_1, q_2, \ldots, q_t, \ldots$

1. Do query-driven partition until the size of a partition is less or equal to a page

Equal-size k-Means

Desired cluster size: page_size

k = num_data / page_size

Difference:

Assign a data tuple to the closest cluster that hasn't reached the max capacity

Break if max_iter is reached, or rss is below our specified threshold (set to 0)

Skipping-oriented Partitioning

1. Select top k most frequently queried filters

$$W=(f_{q_1},f_{q_2},\ldots,f_{q_k})$$

1. Build a k-dimension bit vector for each tuple (0: unqualified, 1:qualified)

$$v_t=(0,1,..0)$$

1. Solve the optimization problem (approximate solution with Ward's method) $\arg \max_{\mathcal{P}} \sum_{P_i \in \mathcal{P}} |P_i| W (I - \bigcup_{t \in P_i} v_t)^T$ subject to $|P_i| = p \ \forall P_i \in \mathcal{P}$

Workflow

noise

			#data	10,000
Evaluation				vary
		Training time in ms	page_size	250
		 Workload-Driven kMeans Skipping-Oriented 	dimension	2 (uni, uni)
	10000			
	5000			
(ms)	. 1000 -			
time	500			
	100			
		num_queries=200 num_queries=400 num_queries=600 num_queries=8	800	

Future Work

- Take raw data similarity into consideration
- Build index for filling data to reduce extra memory footprint
- Tile-based partition
- How to support update/When should we do repartition