Benchmarking RocksDB: Exploring Compaction Options

David Shen
Xiaoyan Ge

Outline

What is RocksDB
Project Motivation
Background Info
Methodology

Results and Discussion
Conclusion

References

NS O~

RocksDB

e RocksDB is a key-value store based on a
log-structured merge-tree (LSM tree) data
structure

e Developed by Facebook and based off of
Google’s LevelDB.

Motivation

Why benchmark a DB?

e Tuning a DB to a workload is a difficult problem
e Due to the sheer volume of configuration options, a lot of them often go

undocumented

Unfortunately, configuring RocksDB optimally is not trivial. Even
we as RocksDB developers don't fully understand the effect of
each configuration change. If you want to fully optimize
RocksDB for your workload, we recommend experiments and
benchmarking, while keeping an eye on the three amplification
factors. Also, please don't hesitate to ask us for help on the
RocksDB Developer's Discussion Group.

LSM-Tree and Merge Policies

Merge Policies/Compaction Methods

Tiering (write optimized)

4

Leveling (read optimized)

sorted
array

:74 Tiering

Leveling

RocksDB’s Compaction methods

e RocksDB implements 2 main compaction methods
o Tiered Compaction (“Universal”)
o Leveled Compaction
e RocksDB offers various tuning knobs for compaction
o Target file_size base
o Target file_size multiplier
o Compaction priority for leveled compaction

Methodology

Wanted to focus on the impact of compaction methods within RocksDB

e Create and run workloads using built in RocksDB tools
e Measure statistics using RocksDB tools and Linux command line tools (time,
jostat)

e Benchmarking metrics
o Response time
o Throughput
o Amplification factors

Experiment Setup

RocksDB: version 6.8

CPU: 8 * Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz
Keys: 20 bytes each

Values: 400 bytes each (200 bytes after compression)
Entries: 10 million entries

Tries: S tries, take average

Tuning for write heavy workloads

Trading read performance for write performance
Workload:

e Fill a database with 10,000,000 key-value pairs in sequential order
(fillseq)
Read the data sequentially (readseq)

e Run each workload against both compaction methods

Type
340

318.9

305.1

M B/S 260

220
200

180

Before Tune

160

20 18.0 18.0

0 - -

fillseq_Leveled fillseq_Universal readseq_Leveled readseq_Universal

Trading Writing and Reading

e Doubled Target file based at level 1

e Doubled write buffer_size before compaction

e Double max bytes for level 1 and multiplier to 8

e Pin_I0 filter_and_index_blocks in_cache =1

e Bytes per_sync: sync SST files to disk while they are being written

e Bloom_bits = 10 bits for each key

Type
340

After Tuning

[
[£5]
o

260

240 2353
- 230.2

Lo Tune 7

Sy
o

n
o

Fillseq_Leveled fillseg_Universal readseq_Leveled readseq_Universal

o

Value

340

320

300

280

260

240

160

140

120

100

80

60

40

V]

fillseq_Leveled

Type

fillseq_Universal readseq_Leveled readseqg_Universal

318.9
305.1
2353
230.2
58.8
450

18.0 18.0 I
Before After Before After Before After Before fter
Tune Tune Tune Tune Tune Tune Tune Tune

Compaction Priority

e Used in Level-based compaction
e Determines how level compaction chooses which files to be compacted in each compaction
e Four options in RocksDB
o kByCompensatedSize (prioritize files with the most tombstones)
o kOldestLargestSeqFirst (for workloads that update some hot keys in small ranges)
o kOldestSmallestSeqFirst (for uniform updates across the key space)
o kMinOverlappingRatio (looks at ratio between overlapping size in next level and its size)

Tuning Priority
Tiered vs Leveled, varying compaction priority in Leveled

e Response time
e \Write Amplification

We wanted to see if we could find a write-heavy workload that runs better using a
specific priority in leveled compaction vs tiered compaction. Measure performance
in terms of response time and write amplification.

Write Amplification

Write Amplification of Compaction Styles

35
T
o]
= 3
=
5
m 25
O
.
c
L4
£ 2
z
5
m 15
a
c
o
=] 1
°
&
G 05
=
=y
L4
£ 0
Z Tiered Leveled Leveled Leveled Leveled

kByCompensatedSze kOldestLargestSeqFirs kOldestSmallestSeqFirst kM nOverlappingRaio
Compaction Style

Response Time

Response Time of Compaction Styles

) I I I I I
0

Tiered Leveled Leveled Leveled
kByCompensatedSeze kOldestLargestSeqFirst kOldestSmallestSeqFirst

8

Response Time (s)
[w
3 3

Leveled
kM nOverlappingR&io
Compaction Sytle

Conclusion

Reinforces that finding an optimal tuning is a difficult problem.

e \What is generally true may no longer hold

e Difficult to document what happens when a knob is turned
o Have to either run the experiment or look at the source code

References

e https://qgithub.com/facebook/rocksdb

e https://rocksdb.org/

e Dayan, Niv; Idreos, Stratos: The Log-Structured Merge-Bush & the Wacky
Continuum, SIGMOD 2019. https://doi.org/10.5446/42955 (LSM-Tree
background information)

https://github.com/facebook/rocksdb
https://doi.org/10.5446/42955

