
Benchmarking RocksDB: Exploring Compaction Options
David Shen
Xiaoyan Ge

Outline
1. What is RocksDB
2. Project Motivation
3. Background Info
4. Methodology
5. Results and Discussion
6. Conclusion
7. References

RocksDB
● RocksDB is a key-value store based on a

log-structured merge-tree (LSM tree) data
structure

● Developed by Facebook and based off of
Google’s LevelDB.

Motivation
Why benchmark a DB?

● Tuning a DB to a workload is a difficult problem
● Due to the sheer volume of configuration options, a lot of them often go

undocumented

LSM-Tree and Merge Policies

Leveling (read optimized)

Merge Policies/Compaction Methods
Tiering (write optimized)

RocksDB’s Compaction methods
● RocksDB implements 2 main compaction methods

○ Tiered Compaction (“Universal”)
○ Leveled Compaction

● RocksDB offers various tuning knobs for compaction
○ Target_file_size_base
○ Target_file_size_multiplier
○ Compaction priority for leveled compaction

Methodology
Wanted to focus on the impact of compaction methods within RocksDB

● Create and run workloads using built in RocksDB tools
● Measure statistics using RocksDB tools and Linux command line tools (time,

iostat)
● Benchmarking metrics

○ Response time
○ Throughput
○ Amplification factors

Experiment Setup
RocksDB: version 6.8

CPU: 8 * Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz

Keys: 20 bytes each

Values: 400 bytes each (200 bytes after compression)

Entries: 10 million entries

Tries: 5 tries, take average

Tuning for write heavy workloads

Trading read performance for write performance

Workload:

● Fill a database with 10,000,000 key-value pairs in sequential order
(fillseq)

● Read the data sequentially (readseq)
● Run each workload against both compaction methods

MB/s

Trading Writing and Reading

● Doubled Target file based at level 1

● Doubled write_buffer_size before compaction

● Double max bytes for level 1 and multiplier to 8

● Pin_l0_filter_and_index_blocks_in_cache = 1

● Bytes_per_sync: sync SST files to disk while they are being written

● Bloom_bits = 10 bits for each key

After Tuning

Compaction Priority
● Used in Level-based compaction
● Determines how level compaction chooses which files to be compacted in each compaction
● Four options in RocksDB

○ kByCompensatedSize (prioritize files with the most tombstones)
○ kOldestLargestSeqFirst (for workloads that update some hot keys in small ranges)
○ kOldestSmallestSeqFirst (for uniform updates across the key space)
○ kMinOverlappingRatio (looks at ratio between overlapping size in next level and its size)

Tuning Priority
Tiered vs Leveled, varying compaction priority in Leveled

● Response time
● Write Amplification

We wanted to see if we could find a write-heavy workload that runs better using a
specific priority in leveled compaction vs tiered compaction. Measure performance
in terms of response time and write amplification.

Write Amplification

Response Time

Conclusion
Reinforces that finding an optimal tuning is a difficult problem.

● What is generally true may no longer hold
● Difficult to document what happens when a knob is turned

○ Have to either run the experiment or look at the source code

References
● https://github.com/facebook/rocksdb
● https://rocksdb.org/
● Dayan, Niv; Idreos, Stratos: The Log-Structured Merge-Bush & the Wacky

Continuum, SIGMOD 2019. https://doi.org/10.5446/42955 (LSM-Tree
background information)

https://github.com/facebook/rocksdb
https://doi.org/10.5446/42955

