
LeoDB
Sid Premkumar & Emmanuel Amponsah



Introduction & Background
What motivated our research?

01

Experiment
How we setup and conducted our 

experiments.

03

LeoDB
How does LeoDB address our 

problem?

02

Results & Conclusion
What we found & next steps.

04



Introduction and Background

Motivation
What motivated our research?

01
Project Set-up

How does LeoDB address our 
problem?

02



Motivation

Lots of databases have to pick between 
either being read or write optimized, but 
what if you can get both? Can we create 
an on-demand database that switches 
between read and write optimized?



Project Set Up

Standard Library

Implementation

Google benchmark

Experiments

Google Tests

Unit and Integration Tests

Loguru

Error Tracking



LeoDB

Main Idea
Driving principles

01

Optimizer
Trade off between reading and 

writing

03

API
Features we decided to implement

02

Auxiliary Structures
Fence pointer and Bloom Filters

04



Main Idea

General Purpose Read/Write
We wanted LeoDB to be a general 

purpose database that doesn’t only 
store int

We wanted LeoDB to be able to 
optimize for our current workload 

without having to stop and tune the 
database



API Overview
Put/Get/Delete

Built an in-memory database that 
supports basic operators

Optimize
Configure 

LSM-Hybrid database

Max/Min
Basic metadata for 

number based entries

Scan
Performs a search 

over a range

Avg/StdDev
Data for number based 

entries



         

         

         

Tiering
Write Performance

LeoDB
Best Overall Performance

Leveling
Read Performance

A hybrid mix between 
Leveling and Tiering.

Write favorable as no 
merging and sorting 

has to be done.

Read favorable as we 
merge and sort each 

level.

Optimizer



Auxiliary Structures

                  

Bloom Filter
Oracle

Prevents us from 
doing unnecessary 
searches when the 
value is not in the 

table

         

Fence Pointer
Lookup table

Improves read 
performance by 

allowing us to map 
values to the files 
they’re stored in



Experiment Setup

Alpine Linux

OS

512Mi

Memory

One CPU

CPU

Only LeoDB was running on 
machine

State



Results & Conclusion

Benchmarks
Graphs and Results from 

benchmarks

01

Conclusion
Wrap Up

03

Learnings
What did we learn?

02



Leveling only results in bad write times



Leveling only results in good read times



Tiering only database has relatively fast writes



Tiering only database has relatively good 
reads



Optimizer ensures that read/writes are optimized based on workload





Optimizer was able to determine out which values were being 
read frequently 



Lesson Learned - Implementation

On demand tuning is expensive

Buffers are often too big to fit in memory

Real world solutions are hard to implement



Conclusions

General Purpose is Hard
Building a database for any use 

case is a messy process

01

More structures, more complexity
Auxiliary structures like bloom 

filters and fence pointers improve 
the design of your database but 

add a lot of overhead in complexity

03

Optimizer Overload
So many ways to decide how your 
optimizer should be implemented 

and it’s hard to test all these 
methods

02


