
LSM-Tree Structured 
Storage 

by Yinxuan Feng and Xiaotong Niu



Interfaces

Put/update

Get

Scan (not implemented yet)

Delete



Important techniques

● Level structure

● B+ tree indexing

○ Split implementation

○ Persistence policy (save and restore)

● Merge

● Write to component from memory



Level structure

● Constant number of levels

● Meta information file per level: all the components

● Each component has

○ A .bpt file for indexing

○ A .data file for actual data



B+ Tree

● Self-balanced tree

● Split and recursive insert

● Serialization and deserialization (recursive)

● One key per tree

○ Update delete only changes the value

● Only leaves have data (indexes) 



Merge

● for all the components of the level

○ While there is something to read

■ Get the first kv pair

■ Append the latest pair with the smallest key to temp file

■ Also set up B+ tree

● If leveling and too large: 

○ copy temp file to the next level as component

● If tiering:

○ copy temp file to the next level as component



Write to component from memory

● Only write to level 1 as component

● Sort kv map inside memory

○ (no more than 1 value per key)

○ Insert in order to component

○ Set up B+ tree



Benchmark

● Large (enough) number of operations on disk

● Check multiple files on disk every time when read?

● Write data to Log

○ Query and write latency

● Generate data larger than memory size


