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LSM - trees are everywhere

Fast writes

Fast reads



RocksDB structure
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How to achieve fast 
deletes?

Out-of place!
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Same process for both range and point deletes
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Optimization
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D.S. desired properties

•No false positives 

• Small memory footprint 

• Support for fast inserts and reads



Our method vs caching

•Better control of what we store 

• Tunable memory footprint 

•Both could work together



Experimentation



Required Tools

•Program that uses the RocksDB API 

•Workload generator with multiple options 

•Automated shell script to run experiments



Application vs Filesystem 
cache

Filesystem cache

Application cache

Disabled filesystem cache -> no OS interference



Repetitive queries on range 
deleted key

Both Filesystem and Application cache disabled



Measuring range deletes I/Os
Inserts: 1.000.000 
Queries: 500.000 

Repetitive Queries: 40% 
Entry size: 1MB 

Application Cache (Block Cache) size: 8MB 
Variable: range deleted portion of the DB
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Measuring range deletes I/Os
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Thank you!


