
Efficient Deletes in
LSM Engines

Dimitris Staratzis

LSM - trees are everywhere

Fast writes

Fast reads

RocksDB structure

L1

L3

L2

L0

SST File

Page 1

Page 2

Page 3

Page n

Properties Block, Filter
Block, Range Tombstone

Block, Index Block,
Footer

MB

get(5)

L1
L2
L3 5

Bloom

Filters

Fence

Pointers

Read-Path

skip runs and
file accesses

How to achieve fast
deletes?

Out-of place!

Deletes

96 7

2 5

L2

L1

3 4

6*1MB

6 7

Deletes

5 6* 71 2

L2

L1

3 4

MB

96 7

Deletes

95 7

71 2

L2

L1

3 4

MB

Same process for both range and point deletes

MB

get(5)

L1
L2
L3 5*

Bloom

Filters

Fence

Pointers

Read-Path for Point
Deletes

5 is deleted

MB

get(5)

L1
L2
L3 5

Bloom

Filters

Fence

Pointers

Read-Path for Range
Deletes

[2-10] is deleted

[2-10]*

Need for an auxiliary structure!

The Skyline

se
qu

en
ce

 #

key domain

se
qu

en
ce

 #

key domain

skyline

MB

get(5)

L1
L2
L3 5

Bloom

Filters

Fence

Pointers

Read - Path Overview
se

qu
en

ce
 #

key domain

5 is deleted by a range or
point delete

MB

get(5)

L1
L2
L3 5

Bloom

Filters

Fence

Pointers

Proposed solution
se

qu
en

ce
 #

key domain

5 is deleted by a range or
point deleteD.S.

MB

get(5)

L1
L2
L3 5

Bloom

Filters

Fence

Pointers

Proposed solution in action
se

qu
en

ce
 #

key domain

5 is deleted by a range or
point deleteD.S.

Optimization

SST File

Page 1

Page 2

Page 3

Page n

Properties Block, Filter
Block, Range

Tombstone Block,
Index Block, Footer

OR

OR

OR

MB

get(5)

L1
L2
L3 5

Bloom

Filters

Fence

Pointers

Optimization benefit
se

qu
en

ce
 #

key domain

5 is deleted by a range or
point deleteD.S.

MB

get(5)

L1
L2
L3 5

Bloom

Filters

Fence

Pointers

Optimization benefit
se

qu
en

ce
 #

key domain

5 is deleted by a range or
point deleteD.S.

D.S. desired properties

•No false positives

• Small memory footprint

• Support for fast inserts and reads

Our method vs caching

•Better control of what we store

• Tunable memory footprint

•Both could work together

Experimentation

Required Tools

•Program that uses the RocksDB API

•Workload generator with multiple options

•Automated shell script to run experiments

Application vs Filesystem
cache

Filesystem cache

Application cache

Disabled filesystem cache -> no OS interference

Repetitive queries on range
deleted key

Both Filesystem and Application cache disabled

Measuring range deletes I/Os
Inserts: 1.000.000
Queries: 500.000

Repetitive Queries: 40%
Entry size: 1MB

Application Cache (Block Cache) size: 8MB
Variable: range deleted portion of the DB

I/Os

0

500000

1000000

1500000

2000000

2500000

3000000

Range deletes percentage changes

0% 5% 15% 30% 45% 60%

Measuring range deletes I/Os
Inserts: 1.000.000
Queries: 500.000

Range deleted portion of the DB: 15%
Entry size: 1MB

Application Cache (Block Cache) size: 8MB
Variable: percentage of repetitive queries

I/Os

0

500000

1000000

1500000

2000000

2500000

3000000

Repetitive queries percentage changes

10% 20% 30% 40% 50% 60% 70%

Thank you!

