
Manos: A Benchmarking
Client for RocksDB

(And Other Findings)

Benchmarking Client

Use our benchmarking client command line interface to...

- Create your custom workloads (e.g define proportion of range/point queries,
deletes, inserts, updates, etc).

- Easily tune various RocksDB parameters .
- Run aggregated experiments.
- Run single experiments with using predefined experiment classes.
- Create your own experiments !

https://github.com/mdesilva/Manos

https://github.com/mdesilva/Manos

How does RocksDB work ?

In RocksDB, new writes are first sent to the memtable , an in-memory data
structure, and optionally written to a logfile.

As the data stored in the memtable is not persistent, writes can be sequentially
appended to a logfile in the case a crash or system shutdown calls for a recovery.

When the memtable is full, it is flushed to the sstfile (static sorted file), on storage,
and the corresponding logfile can be deleted.

What are some knobs/parameters that we can tune ?

Memtable size

Compaction strategy

Size of the LRU cache

Number of memtables

Bloom filters

Allocation of Threads

*Experiments performed on total dataset sizes from 50K tuples to 10M tuples

Memtable size

● Memtable: a set of in-memory write buffers
● Important to account for when dealing with bulk loading data
● More Memtable size -> Less flushing to disk -> Increase in write time

LRU cache size

RocksDB utilizes a block cache to cache data in-memory for reads that are
served from disk.

By default, it uses a LRU (least recently used) cache with a 8MB capacity.

By increasing the size of the LRU cache, we can increase the number of
cache hits, and decrease read times (read amplification).

Aggregated Experiments
Write Optimized parameters

LRU cache: Default

Memtable size: Default

Bloom filter size: Default

of memtables: 5

Universal style compaction

Read Optimized parameters

LRU cache: 512MB

Memtable size: 256MB

Bloom filter size: 100 bits

of memtables: Default

Level style compaction

RocksDB Supporting Apache Flink

● Flink is an open source Apache project designed for handling data streams.
● In production settings, it relies on RocksDB to support it’s data storage needs
● Latency vs Accuracy when determining how many checkpoints to implement?

Additional Slides

Number of Memtables

All writes to RocksDB start by being inserted into a memtable. Once the
current memtable is full, a new one is created, and the former becomes read
only (immutable). The immutable memtables are then queued to be flushed to
storage. Writes can be stalled if the current memtable is filled and there’s no
allocation for more, while read performance can deteriorate if the required
amount to merge is set too low.

Bloom filters

● Keys are stored across SST files once merged to disk
● Reads may have to traverse multiple files to get a value.
● Bloom filters are bit arrays that can determine if a key exists in a SST file.
● Bloom filters can prevent extra reads of files
● Especially useful for point lookups.

We found that increasing the bloom filter size did not significantly reduce read times, even though the number of false positives
prevented increased.

Allocation of Threads

● There are two main processes in RocksDB
● Flush
● Compaction
● More compaction threads, slower writes

Compaction style

● RocksDB supports two types of compaction.
● Level-style takes up less space - optimizing read amplification
● Universal style take more temporary space - optimzing write amplification

What is amplification ?

Write amplification - # of bytes written to storage: # of bytes written to database

Read amplification - # of disk reads: query

Space amplification - size of database files on disk: data size

