DaisyDB: Heuristic LSM Tree

Read-Write Optimization
— By Benjamin Borden —




Motivation

The traditional LSM Tree implementation is divided between:

e Leveling: read optimized - better for large amounts of stationary
data.
e Tiering: write optimized - better for frequent updates.

Who chooses the correct implementation?
Traditionally someone with knowledge of:

e the use case
e the correctimplementation for the type of use case



Motivation "
Why is this a problem? S QL ite

e LSM Trees becoming more mainstream!
e Amateurs, students, and hobbyists are using said products!
e Non-professionals are expecting a plug-and-play solution!

. mongo.)5




Problem Statement

Can a heuristic toggle between tiering and leveling based
systems create performance benefits on a read or write

performance heavy workload? And can those benefits be
created on a more balanced workload as well?




Knobs

LSM Tree Knobs

Main-memory_max_size - Number of valu I u
Component_file_size - Number of values allowed for in a single file.
Num_bits_per_value - the number of bits in the bloom filter per value stored.
Layer_size_multiplier - The number of times larger the next layer is than the previous.
Number_of_bloom_hashes - The number of hashed values per insert.

Mode - tier or level

Swap Based Knobs:

e Level_tier_swap_boundary - the point over which a swap system switches between
leveled and tiered merges

e Swap_cushion - the buffer over the swap boundary to prevent constant swaps
Running_average_size - number of operations to measure read-write heaviness




Buffer

e Storesvaluesin main memory prior to being loaded to disk

e Implemented in the code as a binary tree based key-value map:

o Keeps the keys sorted!
o Gets are quick!
o The tree isn't always balanced, but the buffer stores a relatively small number of values

e Once full, buffer is written to disk in a file and moved down into the disk
hierarchy through offloadMainMemory()!

Difficulties: Data Structure Implementation, maintaining a sorted order,
implementing deletes!



File Structure

The disk storage is made of layers of organized .data files!

The number of layers expands to accommodate the amount of data!
Files are organized into ‘components’ which are sorted runs of data.
Each file is static and sorted!

Each layer can contain "Layer_size_multiplier as many files as the prev

| DaisyDB_Layer_00000001_0000000000000000.data
~ DaisyDB_Layer_00000001_0000000000000001.data
| DaisyDB_Layer_00000002_0000000000000000.data
| DaisyDB_Layer_00000002_0000000000000001.data
 DaisyDB_Layer_00000002_0000000000000002.data




File Moving

e Groups of files make up layers of the LSM tree
When a layer reaches a size capacity, determined by

layer_size_multiplierAlayer_num
Then the layer is moved down to the next layer by retagging it

DaisyDB implements layering and tiering based on where merging the files
occurs in the file moving

e Merging the layer prior to retagging the files = tiering
e Merging the layer after retagging the files = leveling



Fence Pointers & Bloom Filters

e Each file retains its own fence pointers and bloom filters

e stored in main memory and are assigned based on a key made of:
o pair<int,int> = first int represents the layer, second int represents the file

Difficulties: How to reassign fence pointers after a merger? How to keep fence
pointers and bloom filters persistent?



Heuristic Switching

e Arunning average of the last number of operations is kept in memory
o Measures the number of writes vs reads under the workload
o If avg swings into the write heavy category, it switches to tiered & vice versa

e Puts = Write

e Deletes = Write Difficulties: Scans are very expensive, how do they
e Scans = Read factor into the avg?

e Gets =Read



Observations

e Extremely write heavy workloads see a lot of benefit from Tier-Level
swapping when mis-implemented

e Read heavy workloads see much less drastic benefit, until enough writes are
made to restructure the file tree.

Write Heavy Workload Read Heavy Workload
® Level @ Swap Tier ® Level @ Swap @ Tier

60 20

15
40 /

20

Seconds
Seconds

0 250000 500000 750000 1000000 0 250000 500000 750000 1000000

Operations Operations




Observations from along the way

e Mixed read-write workloads see little benefit, but even reads and writes
favor tiered systems due to the writes being more expensive than reads in

this system
e Scans are difficult to adjust for due to being more expensive than normal

reads



Pending Items

e Increase testing to measure the rate of performance change based on

workload
e Re-examine the file merging methodology, in attempt to optimize for

semi-sorted data.



Contributions

e [SM-based Storage Techniques: A Survey - Luo, Carey
e The Log-Structured Merge-Bush & the Wacky Continuum - Dayan, Idreos
e The Log-Structured Merge-Tree (LSM-Tree) - O'Neil, Cheng, Gawlick, O'neil



