
DaisyDB: Heuristic LSM Tree
Read-Write Optimization

By Benjamin Borden

Motivation
The traditional LSM Tree implementation is divided between:

● Leveling: read optimized - better for large amounts of stationary
data.

● Tiering: write optimized - better for frequent updates.

Who chooses the correct implementation?

Traditionally someone with knowledge of:

● the use case
● the correct implementation for the type of use case

Motivation
Why is this a problem?

● LSM Trees becoming more mainstream!
● Amateurs, students, and hobbyists are using said products!
● Non-professionals are expecting a plug-and-play solution!

Problem Statement
Can a heuristic toggle between tiering and leveling based
systems create performance benefits on a read or write
performance heavy workload? And can those benefits be
created on a more balanced workload as well?

Knobs
LSM Tree Knobs

● Main-memory_max_size - Number of values the main memory buffer can store.
● Component_file_size - Number of values allowed for in a single file.
● Num_bits_per_value - the number of bits in the bloom filter per value stored.
● Layer_size_multiplier - The number of times larger the next layer is than the previous.
● Number_of_bloom_hashes - The number of hashed values per insert.
● Mode - tier or level

Swap Based Knobs:

● Level_tier_swap_boundary - the point over which a swap system switches between
leveled and tiered merges

● Swap_cushion - the buffer over the swap boundary to prevent constant swaps
● Running_average_size - number of operations to measure read-write heaviness

Buffer
● Stores values in main memory prior to being loaded to disk
● Implemented in the code as a binary tree based key-value map:

○ Keeps the keys sorted!
○ Gets are quick!
○ The tree isn’t always balanced, but the buffer stores a relatively small number of values

● Once full, buffer is written to disk in a file and moved down into the disk
hierarchy through offloadMainMemory()!

Difficulties: Data Structure Implementation, maintaining a sorted order,
implementing deletes!

File Structure
● The disk storage is made of layers of organized .data files!
● The number of layers expands to accommodate the amount of data!
● Files are organized into ‘components’ which are sorted runs of data.
● Each file is static and sorted!
● Each layer can contain `Layer_size_multiplier` as many files as the prev

File Moving
● Groups of files make up layers of the LSM tree
● When a layer reaches a size capacity, determined by

layer_size_multiplier^layer_num
Then the layer is moved down to the next layer by retagging it

DaisyDB implements layering and tiering based on where merging the files
occurs in the file moving

● Merging the layer prior to retagging the files = tiering
● Merging the layer after retagging the files = leveling

Fence Pointers & Bloom Filters
● Each file retains its own fence pointers and bloom filters
● stored in main memory and are assigned based on a key made of:

○ pair<int,int> = first int represents the layer, second int represents the file

Difficulties: How to reassign fence pointers after a merger? How to keep fence
pointers and bloom filters persistent?

Heuristic Switching
● A running average of the last number of operations is kept in memory

○ Measures the number of writes vs reads under the workload
○ If avg swings into the write heavy category, it switches to tiered & vice versa

● Puts = Write
● Deletes = Write
● Scans = Read
● Gets = Read

Difficulties: Scans are very expensive, how do they
factor into the avg?

Observations
● Extremely write heavy workloads see a lot of benefit from Tier-Level

swapping when mis-implemented
● Read heavy workloads see much less drastic benefit, until enough writes are

made to restructure the file tree.

Observations from along the way
● Mixed read-write workloads see little benefit, but even reads and writes

favor tiered systems due to the writes being more expensive than reads in
this system

● Scans are difficult to adjust for due to being more expensive than normal
reads

Pending Items
● Increase testing to measure the rate of performance change based on

workload
● Re-examine the file merging methodology, in attempt to optimize for

semi-sorted data.

Contributions
● LSM-based Storage Techniques: A Survey - Luo, Carey
● The Log-Structured Merge-Bush & the Wacky Continuum - Dayan, Idreos
● The Log-Structured Merge-Tree (LSM-Tree) - O’Neil, Cheng, Gawlick, O’neil

