
Learning Multi-dimensional Indexes
Vikram Nathan*, Jialin Ding*, Mohammad Alizadeh, Tim Kraska

ML for Systems

ML for Systems
● Why ML?

○ Systems rely on heuristics and hand-tuning
○ Systems don’t adapt to specific data/workload

ML for Systems
● Why ML?

○ Systems rely on heuristics and hand-tuning
○ Systems don’t adapt to specific data/workload

● Examples
○ Query optimization
○ Job scheduling
○ Indexing
○ Sorting

ML for Systems
● Why ML?

○ Systems rely on heuristics and hand-tuning
○ Systems don’t adapt to specific data/workload

● Examples
○ Query optimization
○ Job scheduling
○ Indexing
○ Sorting

ML for Systems
● Why ML?

○ Systems rely on heuristics and hand-tuning
○ Systems don’t adapt to specific data/workload

● Examples
○ Query optimization
○ Job scheduling
○ Indexing
○ Sorting

● Differences with “mainstream” ML:
○ Objectives beyond accuracy (e.g., latency,

space usage, cost)
○ Want 10X, not 10%

ML for Systems
● Why ML?

○ Systems rely on heuristics and hand-tuning
○ Systems don’t adapt to specific data/workload

● Examples
○ Query optimization
○ Job scheduling
○ Indexing
○ Sorting

● Differences with “mainstream” ML:
○ Objectives beyond accuracy (e.g., latency,

space usage, cost)
○ Want 10X, not 10%
○ Implication: favor creative uses of simple

models

Outline
1. Completed work: Flood (SIGMOD 2020)
2. Future work: column correlations, query skew, categorical attributes

Motivation: scanning and filtering in analytics

Motivation: scanning and filtering in analytics

Motivation: scanning and filtering in analytics
Order
ID

Item
ID

Ship
Date

Receipt
Date

Price Quantity Discount Tax

1 42 9/14/19 9/16/19 2 1 0 5%

2 137 9/18/19 9/25/19 5 1 0 6.5%

3 314 10/3/19 10/6/19 14 2 0 5.5%

4 272 9/30/19 10/15/19 52 1 0.1 8%

5 162 10/2/19 10/4/19 13 1 0 6.5%

6 602 10/5/19 10/10/19 7 5 0.5 8.5%

7 141 10/4/19 10/9/19 150 1 0.1 7%

8 173 10/8/19 10/12/19 20 2 0 8%

Motivation: scanning and filtering in analytics
Order
ID

Item
ID

Ship
Date

Receipt
Date

Price Quantity Discount Tax

1 42 9/14/19 9/16/19 2 1 0 5%

2 137 9/18/19 9/25/19 5 1 0 6.5%

3 314 10/3/19 10/6/19 14 2 0 5.5%

4 272 9/30/19 10/15/19 52 1 0.1 8%

5 162 10/2/19 10/4/19 13 1 0 6.5%

6 602 10/5/19 10/10/19 7 5 0.5 8.5%

7 141 10/4/19 10/9/19 150 1 0.1 7%

8 173 10/8/19 10/12/19 20 2 0 8%

Query

SELECT COUNT(*)
FROM table
WHERE Price >= 10

AND Price < 100

Motivation: scanning and filtering in analytics
Order
ID

Item
ID

Ship
Date

Receipt
Date

Price Quantity Discount Tax

1 42 9/14/19 9/16/19 2 1 0 5%

2 137 9/18/19 9/25/19 5 1 0 6.5%

3 314 10/3/19 10/6/19 14 2 0 5.5%

4 272 9/30/19 10/15/19 52 1 0.1 8%

5 162 10/2/19 10/4/19 13 1 0 6.5%

6 602 10/5/19 10/10/19 7 5 0.5 8.5%

7 141 10/4/19 10/9/19 150 1 0.1 7%

8 173 10/8/19 10/12/19 20 2 0 8%

Query

SELECT COUNT(*)
FROM table
WHERE Price >= 10

AND Price < 100

Motivation: scanning and filtering in analytics
Order
ID

Item
ID

Ship
Date

Receipt
Date

Price Quantity Discount Tax

1 42 9/14/19 9/16/19 2 1 0 5%

2 137 9/18/19 9/25/19 5 1 0 6.5%

3 314 10/3/19 10/6/19 14 2 0 5.5%

4 272 9/30/19 10/15/19 52 1 0.1 8%

5 162 10/2/19 10/4/19 13 1 0 6.5%

6 602 10/5/19 10/10/19 7 5 0.5 8.5%

7 141 10/4/19 10/9/19 150 1 0.1 7%

8 173 10/8/19 10/12/19 20 2 0 8%

Query

SELECT COUNT(*)
FROM table
WHERE Price >= 10

AND Price < 100

Motivation: scanning and filtering in analytics
Order
ID

Item
ID

Ship
Date

Receipt
Date

Price Quantity Discount Tax

1 42 9/14/19 9/16/19 2 1 0 5%

2 137 9/18/19 9/25/19 5 1 0 6.5%

3 314 10/3/19 10/6/19 14 2 0 5.5%

4 272 9/30/19 10/15/19 52 1 0.1 8%

5 162 10/2/19 10/4/19 13 1 0 6.5%

6 602 10/5/19 10/10/19 7 5 0.5 8.5%

7 141 10/4/19 10/9/19 150 1 0.1 7%

8 173 10/8/19 10/12/19 20 2 0 8%

Query

SELECT COUNT(*)
FROM table
WHERE Price >= 10

AND Price < 100

Scan overhead: ratio of records
scanned to number of filtered
results

Motivation: scanning and filtering in analytics
Order
ID

Item
ID

Ship
Date

Receipt
Date

Price Quantity Discount Tax

1 42 9/14/19 9/16/19 2 1 0 5%

2 137 9/18/19 9/25/19 5 1 0 6.5%

3 314 10/3/19 10/6/19 14 2 0 5.5%

4 272 9/30/19 10/15/19 52 1 0.1 8%

5 162 10/2/19 10/4/19 13 1 0 6.5%

6 602 10/5/19 10/10/19 7 5 0.5 8.5%

7 141 10/4/19 10/9/19 150 1 0.1 7%

8 173 10/8/19 10/12/19 20 2 0 8%

Query

SELECT COUNT(*)
FROM table
WHERE Price >= 10

AND Price < 100

Scan Overhead

2

Scan overhead: ratio of records
scanned to number of filtered
results

Motivation: scanning and filtering in analytics
Order
ID

Item
ID

Ship
Date

Receipt
Date

Price Quantity Discount Tax

1 42 9/14/19 9/16/19 2 1 0 5%

2 137 9/18/19 9/25/19 5 1 0 6.5%

3 314 10/3/19 10/6/19 14 2 0 5.5%

4 272 9/30/19 10/15/19 52 1 0.1 8%

5 162 10/2/19 10/4/19 13 1 0 6.5%

6 602 10/5/19 10/10/19 7 5 0.5 8.5%

7 141 10/4/19 10/9/19 150 1 0.1 7%

8 173 10/8/19 10/12/19 20 2 0 8%

Query

SELECT COUNT(*)
FROM table
WHERE Price >= 10

AND Price < 100

Scan Overhead

2

Scan overhead: ratio of records
scanned to number of filtered
results

Lower scan overhead generally
leads to lower query time

Single-dimensional indexes
Order
ID

Item
ID

Ship
Date

Receipt
Date

Price Quantity Discount Tax

1 42 9/14/19 9/16/19 2 1 0 5%

2 137 9/18/19 9/25/19 5 1 0 6.5%

6 602 10/5/19 10/10/19 7 5 0.5 8.5%

5 162 10/2/19 10/4/19 13 1 0 6.5%

3 314 10/3/19 10/6/19 14 2 0 5.5%

8 173 10/8/19 10/12/19 20 2 0 8%

4 272 9/30/19 10/15/19 52 1 0.1 8%

7 141 10/4/19 10/9/19 150 1 0.1 7%

Query

SELECT COUNT(*)
FROM table
WHERE Price >= 10

AND Price < 100

Single-dimensional indexes
Order
ID

Item
ID

Ship
Date

Receipt
Date

Price Quantity Discount Tax

1 42 9/14/19 9/16/19 2 1 0 5%

2 137 9/18/19 9/25/19 5 1 0 6.5%

6 602 10/5/19 10/10/19 7 5 0.5 8.5%

5 162 10/2/19 10/4/19 13 1 0 6.5%

3 314 10/3/19 10/6/19 14 2 0 5.5%

8 173 10/8/19 10/12/19 20 2 0 8%

4 272 9/30/19 10/15/19 52 1 0.1 8%

7 141 10/4/19 10/9/19 150 1 0.1 7%

Query

SELECT COUNT(*)
FROM table
WHERE Price >= 10

AND Price < 100

Scan Overhead

1

Single-dimensional indexes
Query

SELECT COUNT(*)
FROM table
WHERE Price >= 10

AND Price < 100

SELECT COUNT(*)
FROM table
WHERE Price >= 10

AND Price < 100
AND Quantity = 1

Scan Overhead

1
Order
ID

Item
ID

Ship
Date

Receipt
Date

Price Quantity Discount Tax

1 42 9/14/19 9/16/19 2 1 0 5%

2 137 9/18/19 9/25/19 5 1 0 6.5%

6 602 10/5/19 10/10/19 7 5 0.5 8.5%

5 162 10/2/19 10/4/19 13 1 0 6.5%

3 314 10/3/19 10/6/19 14 2 0 5.5%

8 173 10/8/19 10/12/19 20 2 0 8%

4 272 9/30/19 10/15/19 52 1 0.1 8%

7 141 10/4/19 10/9/19 150 1 0.1 7%

Single-dimensional indexes
Order
ID

Item
ID

Ship
Date

Receipt
Date

Price Quantity Discount Tax

1 42 9/14/19 9/16/19 2 1 0 5%

2 137 9/18/19 9/25/19 5 1 0 6.5%

6 602 10/5/19 10/10/19 7 5 0.5 8.5%

5 162 10/2/19 10/4/19 13 1 0 6.5%

3 314 10/3/19 10/6/19 14 2 0 5.5%

8 173 10/8/19 10/12/19 20 2 0 8%

4 272 9/30/19 10/15/19 52 1 0.1 8%

7 141 10/4/19 10/9/19 150 1 0.1 7%

Query

SELECT COUNT(*)
FROM table
WHERE Price >= 10

AND Price < 100

SELECT COUNT(*)
FROM table
WHERE Price >= 10

AND Price < 100
AND Quantity = 1

Scan Overhead

1

2

Single-dimensional indexes
Query

SELECT COUNT(*)
FROM table
WHERE Price >= 10

AND Price < 100

SELECT COUNT(*)
FROM table
WHERE Price >= 10

AND Price < 100
AND Quantity = 1

SELECT COUNT(*)
FROM table
WHERE Quantity > 2

Scan Overhead

1

2

Order
ID

Item
ID

Ship
Date

Receipt
Date

Price Quantity Discount Tax

1 42 9/14/19 9/16/19 2 1 0 5%

2 137 9/18/19 9/25/19 5 1 0 6.5%

6 602 10/5/19 10/10/19 7 5 0.5 8.5%

5 162 10/2/19 10/4/19 13 1 0 6.5%

3 314 10/3/19 10/6/19 14 2 0 5.5%

8 173 10/8/19 10/12/19 20 2 0 8%

4 272 9/30/19 10/15/19 52 1 0.1 8%

7 141 10/4/19 10/9/19 150 1 0.1 7%

Single-dimensional indexes
Order
ID

Item
ID

Ship
Date

Receipt
Date

Price Quantity Discount Tax

1 42 9/14/19 9/16/19 2 1 0 5%

2 137 9/18/19 9/25/19 5 1 0 6.5%

6 602 10/5/19 10/10/19 7 5 0.5 8.5%

5 162 10/2/19 10/4/19 13 1 0 6.5%

3 314 10/3/19 10/6/19 14 2 0 5.5%

8 173 10/8/19 10/12/19 20 2 0 8%

4 272 9/30/19 10/15/19 52 1 0.1 8%

7 141 10/4/19 10/9/19 150 1 0.1 7%

Query

SELECT COUNT(*)
FROM table
WHERE Price >= 10

AND Price < 100

SELECT COUNT(*)
FROM table
WHERE Price >= 10

AND Price < 100
AND Quantity = 1

SELECT COUNT(*)
FROM table
WHERE Quantity > 2

Scan Overhead

1

2

8

Multi-dimensional indexes

Multi-dimensional indexes

Query

SELECT COUNT(*)
FROM table
WHERE Attribute 1 >= A

AND Attribute 1 <= B
AND Attribute 2 >= C
AND Attribute 2 <= D

Existing multi-dimensional indexes

● Quadtree (hyper-octree in
higher dimensions)

Existing multi-dimensional indexes

Root

A

AA

B C D

AB AC AD

AA AB

AC AD
B

C D

● Quadtree (hyper-octree in
higher dimensions)

Existing multi-dimensional indexes

Root

A

AA

B C D

AB AC AD

AA AB

AC AD
B

C D

● Quadtree (hyper-octree in
higher dimensions)

Existing multi-dimensional indexes

AA AB

AC AD
B

C D

● Quadtree (hyper-octree in
higher dimensions)

● Other tree-based indexes:
R-tree, k-d tree

● Geospatial databases

Root

A

AA

B C D

AB AC AD

Existing multi-dimensional indexes

AA AB

AC AD
B

C D

● Quadtree (hyper-octree in
higher dimensions)

● Other tree-based indexes:
R-tree, k-d tree

● Geospatial databases

● Z-order

Existing multi-dimensional indexes

AA AB

AC AD
B

C D

● Quadtree (hyper-octree in
higher dimensions)

● Other tree-based indexes:
R-tree, k-d tree

● Geospatial databases

● Z-order

Existing multi-dimensional indexes

AA AB

AC AD
B

C D

● Quadtree (hyper-octree in
higher dimensions)

● Other tree-based indexes:
R-tree, k-d tree

● Geospatial databases

● Z-order
● Other sort-order-based

indexes: UB-tree
● Amazon Redshift

Existing multi-dimensional indexes

AA AB

AC AD
B

C D

● Quadtree (hyper-octree in
higher dimensions)

● Other tree-based indexes:
R-tree, k-d tree

● Geospatial databases

● Z-order
● Other sort-order-based

indexes: UB-tree
● Amazon Redshift

Drawbacks

● Difficult to create and
maintain, requires DBA

● No index dominates all
others

● Does not allow fined-grained
customization

Our new index: Flood
● Multi-dimensional in-memory

read-optimized index
● Grid-based layout

Our new index: Flood
● Multi-dimensional in-memory

read-optimized index
● Grid-based layout

Our new index: Flood
● Multi-dimensional in-memory

read-optimized index
● Grid-based layout

○ Low index time (vs.
tree-based index)

○ Has good number of
tunable parameters

Our new index: Flood
● Multi-dimensional in-memory

read-optimized index
● Grid-based layout

○ Low index time (vs.
tree-based index)

○ Has good number of
tunable parameters

● Key idea: learning-based
approach to jointly optimize
the index structure and layout

○ Learn from data
○ Learn from queries

(1) Learning from the data: “flattening”
● Goal: uniform number of points per cell

(1) Learning from the data: “flattening”
● Goal: uniform number of points per cell

(1) Learning from the data: “flattening”
● Goal: uniform number of points per cell
● Key idea: model the CDF of each dimension

(1) Learning from the data: “flattening”
● Goal: uniform number of points per cell
● Key idea: model the CDF of each dimension

(1) Learning from the data: “flattening”
● Goal: uniform number of points per cell
● Key idea: model the CDF of each dimension

(2) Learning from the queries: optimizing layout
● Goal: find optimal number of

partitions in each dimension

(2) Learning from the queries: optimizing layout
● Goal: find optimal number of

partitions in each dimension

● Pro: Lower scan overhead
● Con: More cells

(2) Learning from the queries: optimizing layout
● Goal: find optimal number of

partitions in each dimension

● Pro: Fewer cells
● Con: Higher scan

overhead

● Pro: Lower scan overhead
● Con: More cells

(2) Learning from the queries: optimizing layout
● Goal: find optimal number of

partitions in each dimension
● Key idea: use cost model to

predict query time

● Pro: Fewer cells
● Con: Higher scan

overhead

● Pro: Lower scan overhead
● Con: More cells

cells # scanned points

(2) Learning from the queries: optimizing layout
● Goal: find optimal number of

partitions in each dimension
● Key idea: use cost model to

predict query time

● Solve for layout with lowest
average query time using gradient
descent

● Pro: Fewer cells
● Con: Higher scan

overhead

● Pro: Lower scan overhead
● Con: More cells

cells # scanned points

(2) Learning from the queries: optimizing layout

Quadtree

(2) Learning from the queries: optimizing layout

Quadtree

(2) Learning from the queries: optimizing layout

Quadtree

(2) Learning from the queries: optimizing layout

Quadtree Flood

(2) Learning from the queries: optimizing layout

Quadtree Flood

(2) Learning from the queries: optimizing layout

Quadtree Flood

(3) Optimization: the “sort dimension”
“Naive” grid

● Grid over d dimensions
● Cells are ordered
● Within each cell, points are unsorted

(3) Optimization: the “sort dimension”
“Naive” grid

● Grid over d dimensions
● Cells are ordered
● Within each cell, points are unsorted

(3) Optimization: the “sort dimension”
“Naive” grid

● Grid over d dimensions
● Cells are ordered
● Within each cell, points are unsorted

Flood’s grid

● Grid over d-1 dimensions
● Cells are ordered
● Within each cell, points are sorted by

d-th dimension

(3) Optimization: the “sort dimension”
“Naive” grid

● Grid over d dimensions
● Cells are ordered
● Within each cell, points are unsorted

Flood’s grid

● Grid over d-1 dimensions
● Cells are ordered
● Within each cell, points are sorted by

d-th dimension

(3) Optimization: the “sort dimension”
“Naive” grid

● Grid over d dimensions
● Cells are ordered
● Within each cell, points are unsorted

Flood’s grid

● Grid over d-1 dimensions
● Cells are ordered
● Within each cell, points are sorted by

d-th dimension

Results
● How does Flood compare to other indexes?

○ Faster than every other index

Results
● How does Flood compare to other indexes?

○ Faster than every other index

Results
● How does Flood compare to other indexes?

○ Faster than every other index
● Where does Flood’s advantage come from?

○ Low scan overhead

Results
● How does Flood compare to other indexes?

○ Faster than every other index
● Where does Flood’s advantage come from?

○ Low scan overhead

Results
● How does Flood compare to other indexes?

○ Faster than every other index
● Where does Flood’s advantage come from?

○ Low scan overhead
● What if the query workload changes?

○ Flood can adapt

Summary of Flood
● Multi-dimensional in-memory

read-optimized index
● Automatically learned based on

data distribution and query
workload

● Outperforms all other indexes by
achieving lower scan overhead

Outline
1. Completed work: Flood (SIGMOD 2020)
2. Future work: column correlations, query skew, categorical attributes

(1) Column correlations

(1) Column correlations
Monotonic correlations

(1) Column correlations
Monotonic correlations

(1) Column correlations
Monotonic correlations

● Possible solution: function-based mapping

(1) Column correlations
Monotonic correlations

● Possible solution: function-based mapping

(1) Column correlations
Monotonic correlations

● Possible solution: function-based mapping

[A_min, A_max] = Fn([B_min, B_max]) + error

(1) Column correlations

[A_min, A_max] = Fn([B_min, B_max]) + error

Monotonic correlations

● Possible solution: function-based mapping

(1) Column correlations
Hotspots

[A_min, A_max] = Fn([B_min, B_max]) + error

Monotonic correlations

● Possible solution: function-based mapping

(1) Column correlations
Hotspots

● Possible solution: “non-uniform grid”

[A_min, A_max] = Fn([B_min, B_max]) + error

Monotonic correlations

● Possible solution: function-based mapping

(1) Column correlations
Hotspots

● Possible solution: “non-uniform grid”

Challenge: combinatorial explosion of possible layouts

[A_min, A_max] = Fn([B_min, B_max]) + error

Monotonic correlations

● Possible solution: function-based mapping

(2) Query skew
● Queries “look different” in different regions

○ Selectivity
○ Frequency

(2) Query skew
● Queries “look different” in different regions

○ Selectivity
○ Frequency

(2) Query skew
● Queries “look different” in different regions

○ Selectivity
○ Frequency

(2) Query skew
● Queries “look different” in different regions

○ Selectivity
○ Frequency

● Possible solution: “Flood tree”
○ Lightweight decision tree
○ Each leaf node is an instance of Flood

(3) Categorical attributes
● Opportunity 1: No semantic sort order

○ Order based on co-access frequency

(3) Categorical attributes
● Opportunity 1: No semantic sort order

○ Order based on co-access frequency
● Opportunity 2: Column correlations

○ Direct mapping

rid State City ...

0 IL Springfield ...

1 MA Salem ...

2 MA Springfield ...

3 MA Salem ...

4 MO Springfield ...

5 OR Salem ...

(3) Categorical attributes
● Opportunity 1: No semantic sort order

○ Order based on co-access frequency
● Opportunity 2: Column correlations

○ Direct mapping

rid State City ...

0 IL Springfield ...

1 MA Salem ...

2 MA Springfield ...

3 MA Salem ...

4 MO Springfield ...

5 OR Salem ...

City rid

Salem 1

Salem 3

Salem 5

Springfield 0

Springfield 2

Springfield 4

Secondary index

(3) Categorical attributes
● Opportunity 1: No semantic sort order

○ Order based on co-access frequency
● Opportunity 2: Column correlations

○ Direct mapping

rid State City ...

0 IL Springfield ...

1 MA Salem ...

2 MA Springfield ...

3 MA Salem ...

4 MO Springfield ...

5 OR Salem ...

City rid

Salem 1

Salem 3

Salem 5

Springfield 0

Springfield 2

Springfield 4

City State

Salem {MA, OR}

Springfield {IL, MA, MO}

Secondary index Direct Mapping

(3) Categorical attributes
● Opportunity 1: No semantic sort order

○ Order based on co-access frequency
● Opportunity 2: Column correlations

○ Direct mapping

rid State City ...

0 IL Springfield ...

1 MA Salem ...

2 MA Springfield ...

3 MA Salem ...

4 MO Springfield ...

5 OR Salem ...

City rid

Salem 1

Salem 3

Salem 5

Springfield 0

Springfield 2

Springfield 4

City State

Salem {MA, OR}

Springfield {IL, MA, MO}

Secondary index Direct Mapping

(3) Categorical attributes
● Opportunity 1: No semantic sort order

○ Order based on co-access frequency
● Opportunity 2: Column correlations

○ Direct mapping

City rid

Salem 1

Salem 3

Salem 5

Springfield 0

Springfield 2

Springfield 4

City State

Salem {MA, OR}

Springfield {IL, MA, MO}

Secondary index Direct Mapping

Pro: smaller space
Con: higher scan overhead?

rid State City ...

0 IL Springfield ...

1 MA Salem ...

2 MA Springfield ...

3 MA Salem ...

4 MO Springfield ...

5 OR Salem ...

Summary of Future Work
● Column correlations

○ Solution: function-based mapping, non-uniform grid
● Query skew

○ Solution: Flood tree
● Categorical attributes

○ Solution: ordering based on co-access frequency, direct mapping

Summary of Future Work
● Column correlations

○ Solution: function-based mapping, non-uniform grid
● Query skew

○ Solution: Flood tree
● Categorical attributes

○ Solution: ordering based on co-access frequency, direct mapping

Simple
Few degrees of freedom

Low index time, space usage

Complex
Many degrees of freedom

High index time, space usage

Naive grid
Decision tree,
Woodblock (SIGMOD 2020)Flood Flood 2.0

http://dsg.csail.mit.edu/mlforsystems/

http://dsg.csail.mit.edu/mlforsystems/

