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○ Systems rely on heuristics and hand-tuning
○ Systems don’t adapt to specific data/workload

● Examples
○ Query optimization
○ Job scheduling
○ Indexing
○ Sorting

● Differences with “mainstream” ML:
○ Objectives beyond accuracy (e.g., latency, 

space usage, cost)
○ Want 10X, not 10%
○ Implication: favor creative uses of simple 

models



Outline
1. Completed work: Flood (SIGMOD 2020)
2. Future work: column correlations, query skew, categorical attributes
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Query

SELECT COUNT(*)
FROM table
WHERE Attribute 1 >= A

AND Attribute 1 <= B
AND Attribute 2 >= C
AND Attribute 2 <= D
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Existing multi-dimensional indexes

AA AB

AC AD
B

C D

● Quadtree (hyper-octree in 
higher dimensions)

● Other tree-based indexes: 
R-tree, k-d tree

● Geospatial databases

● Z-order
● Other sort-order-based 

indexes: UB-tree
● Amazon Redshift

Drawbacks

● Difficult to create and 
maintain, requires DBA

● No index dominates all 
others

● Does not allow fined-grained 
customization
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Our new index: Flood
● Multi-dimensional in-memory 

read-optimized index 
● Grid-based layout

○ Low index time (vs. 
tree-based index)

○ Has good number of 
tunable parameters

● Key idea: learning-based 
approach to jointly optimize 
the index structure and layout

○ Learn from data
○ Learn from queries
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(2) Learning from the queries: optimizing layout
● Goal: find optimal number of 

partitions in each dimension
● Key idea: use cost model to 

predict query time

● Solve for layout with lowest 
average query time using gradient 
descent

● Pro: Fewer cells
● Con: Higher scan 

overhead

● Pro: Lower scan overhead
● Con: More cells

# cells # scanned points
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Results
● How does Flood compare to other indexes?

○ Faster than every other index
● Where does Flood’s advantage come from?

○ Low scan overhead
● What if the query workload changes?

○ Flood can adapt



Summary of Flood
● Multi-dimensional in-memory 

read-optimized index 
● Automatically learned based on 

data distribution and query 
workload

● Outperforms all other indexes by 
achieving lower scan overhead
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2. Future work: column correlations, query skew, categorical attributes
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(1) Column correlations
Hotspots

● Possible solution: “non-uniform grid”

Challenge: combinatorial explosion of possible layouts

[A_min, A_max] = Fn([B_min, B_max]) + error

Monotonic correlations

● Possible solution: function-based mapping
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(2) Query skew
● Queries “look different” in different regions

○ Selectivity
○ Frequency

● Possible solution: “Flood tree”
○ Lightweight decision tree
○ Each leaf node is an instance of Flood
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(3) Categorical attributes
● Opportunity 1: No semantic sort order

○ Order based on co-access frequency
● Opportunity 2: Column correlations

○ Direct mapping

City rid

Salem 1

Salem 3

Salem 5

Springfield 0

Springfield 2

Springfield 4

City State

Salem {MA, OR}

Springfield {IL, MA, MO}

Secondary index Direct Mapping

Pro: smaller space
Con: higher scan overhead?

rid State City ...

0 IL Springfield ...

1 MA Salem ...

2 MA Springfield ...

3 MA Salem ...

4 MO Springfield ...

5 OR Salem ...
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Summary of Future Work
● Column correlations

○ Solution: function-based mapping, non-uniform grid
● Query skew

○ Solution: Flood tree
● Categorical attributes

○ Solution: ordering based on co-access frequency, direct mapping

Simple
Few degrees of freedom

Low index time, space usage

Complex
Many degrees of freedom

High index time, space usage

Naive grid
Decision tree,
Woodblock (SIGMOD 2020)Flood Flood 2.0
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