
class 2

Data Systems 101

Prof. Manos Athanassoulis

https://midas.bu.edu/classes/CS591A1/

CS 591: Data Systems Architectures

https://midas.bu.edu/classes/CS591A1/

some reminders

no smartphones no laptop

class summary

2 classes per week / OH 5 days per week

each student
1 presentation/discussion lead + 2 reviews/questions per week

systems or research project + proposal + mid-semester report

Projectsystems project

implementation-heavy C/C++ project

groups of 2

research project

groups of 3

pick a subject (list will be available)

design & analysis

experimentation

class timeline

Week 2 – register
for presentations by 1/30
first presentation on 2/4

now

Week 5 – submit project
proposal on 2/21

Week 3 – form
groups by 2/7

Week 15 – Project presentations
submit all material by 4/26

discussions
interaction in OH

questions

discussions
interaction in OH

questions

Week 4 – find project
by 2/14

Week 9 – submit mid-
semester project
report on 3/21 discussions

interaction in OH
questions

Piazza

all discussions & announcements
http://piazza.com/bu/spring2020/cs591a1/

also available on class website
10 already registered!

register so we can reach you easily

http://piazza.com/bu/spring2020/cs591a1/

sources (variety)

big data
(it’s not only about size)

size (volume)
rate (velocity)

+ our ability to collect machine-generated data

social
scientific experiments sensors

Internet-of-Things

The 3 V’s

a data system is a large software system
that stores data, and provides the interface to

update and access them efficiently

data system analysis
knowledge
insights
decisions

data

a data system is a large software system
that stores data, and provides the interface to

update and access them efficiently

data system analysis
knowledge
insights
decisions

dataX

a data system is a large software system
that stores data, and provides the interface to

update and access them efficiently

data system analysis
knowledge
insights
decisions

data

some analysis

data system, what’s inside?

application/SQL
access patterns
complex queries

Indexing Data

op

op
op

op

op
algorithms

and
operators

Memory
Hierarchy

application/SQL
access patterns
complex queries

Query
Parser

Query
Compiler Optimizer

Evaluation
Engine

Memory/Storage
Management

Indexing Transaction
Management Disk

Memory

Caches

CPU
modules

growing environment
db

large systems
complex

lots of tuning
legacy

noSQL

simple, clean
“just enough”

newSQL

more complex
applications

need for
scalability

>$200B by 2020, growing at 11.7% every year
[The Forbes, 2016]

[noSQL]
$3B by 2020, growing at 20% every year

[Forrester, 2016]

growing need for tailored systems

new applications new hardware more data

data system, what’s underneath?

memory hierarchy

CPU

on-chip cache

on-board cache

main memory

flash storage

disks flash

smaller
faster

more expensive (GB/$)

memory hierarchy (by Jim Gray)

Jim Gray, IBM, Tandem, Microsoft, DEC
“The Fourth Paradigm” is based on his vision
ACM Turing Award 1998
ACM SIGMOD Edgar F. Codd Innovations award 1993

registers/CPU

on chip cache

on board cache

memory

disk

tape

2x

10x

100x

106x

109x

my head
~0

this room
1min

this building
10min

Washington, DC
5 hours

Pluto
2 years

Andromeda
2000 years

memory hierarchy (by Jim Gray)

Jim Gray, IBM, Tandem, Microsoft, DEC
“The Fourth Paradigm” is based on his vision
ACM Turing Award 1998
ACM SIGMOD Edgar F. Codd Innovations award 1993

registers/CPU

on chip cache

on board cache

memory

disk

tape

2x

10x

100x

106x

109x

my head
~0

this room
1min

this building
10min

Washington, DC
5 hours

Pluto
2 years

Andromeda
2 years

tape?
sequential-only magnetic storage

still a multi-billion industry

Jim Gray (a great scientist and engineer)

Jim Gray, IBM, Tandem, Microsoft, DEC
“The Fourth Paradigm” is based on his vision
ACM Turing Award 1998
ACM SIGMOD Edgar F. Codd Innovations award 1993

the first collection of
technical visionary research on

a data-intensive scientific discovery

memory wall

CPU

on-chip cache

on-board cache

main memory

flash storage

disks flash

fa
st

er
ch

ea
pe

r/
la

rg
er

memory wall

CPU

on-chip cache

on-board cache

main memory

flash storage

disks flash

fa
st

er
ch

ea
pe

r/
la

rg
er

cache/memory misses

CPU

on-chip cache

on-board cache

main memory

flash storage

disks flash

cache miss: looking
for something that
is not in the cache

memory miss: looking
for something that

is not in memory

what happens if I miss?

data movement

CPU

on-chip cache

on-board cache

main memory

flash storage

disks flash

data go through
all necessary levels

also read
unnecessary data pageX

Photo by Gary Dineen/NBAE via Getty Images

need to read only X
read the whole page

data movement

CPU

on-chip cache

on-board cache

main memory

flash storage

disks flash

data go through
all necessary levels

also read
unnecessary data pageX

remember!
disk is millions (mem, hundreds) times slower than CPU

need to read only X
read the whole page

Photo by Gary Dineen/NBAE via Getty Images

page-based access & random access

memory (memory level N)
disk (memory level N+1)

size=120 bytes

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15
page size = 5*8 = 40 bytes

query x<7

page-based access & random access

memory (memory level N)
disk (memory level N+1)

size=120 bytes

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15
page size = 5*8 = 40 bytes

1, 5, 12, 24, 23

scan output

1, 5

40 bytes

query x<7

page-based access & random access

memory (memory level N)
disk (memory level N+1)

size=120 bytes

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15
page size = 5*8 = 40 bytes

query x<7

1, 5, 12, 24, 23

output

1, 5

40 bytes

2, 7, 13, 9, 8

scan

page-based access & random access

memory (memory level N)
disk (memory level N+1)

size=120 bytes

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15
page size = 5*8 = 40 bytes

query x<7

1, 5, 12, 24, 23

output

1, 5, 2

40 bytes

2, 7, 13, 9, 8

scan

page-based access & random access

memory (memory level N)
disk (memory level N+1)

size=120 bytes

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15
page size = 5*8 = 40 bytes

query x<7

1, 5, 12, 24, 23

output

1, 5, 2

80 bytes

2, 7, 13, 9, 8

scan

page-based access & random access

memory (memory level N)
disk (memory level N+1)

size=120 bytes

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15
page size = 5*8 = 40 bytes

query x<7

10, 11, 6, 14, 15

scan output

1, 5, 2

80 bytes

2, 7, 13, 9, 8

page-based access & random access

memory (memory level N)
disk (memory level N+1)

size=120 bytes

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15
page size = 5*8 = 40 bytes

query x<7

10, 11, 6, 14, 15

scan output

1, 5, 2, 6

80 bytes

2, 7, 13, 9, 8

page-based access & random access

memory (memory level N)
disk (memory level N+1)

size=120 bytes

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15
page size = 5*8 = 40 bytes

query x<7

10, 11, 6, 14, 15

scan output

1, 5, 2, 6

120 bytes

2, 7, 13, 9, 8

what if we had an oracle (perfect index)?

page-based access & random access

memory (memory level N)
disk (memory level N+1)

size=120 bytes

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15
page size = 5*8 = 40 bytes

query x<7

page-based access & random access

memory (memory level N)
disk (memory level N+1)

size=120 bytes

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15
page size = 5*8 = 40 bytes

1, 5, 12, 24, 23

oracle output

1, 5

40 bytes

query x<7

page-based access & random access

memory (memory level N)
disk (memory level N+1)

size=120 bytes

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15
page size = 5*8 = 40 bytes

query x<7

1, 5, 12, 24, 23

output

1, 5

40 bytes

2, 7, 13, 9, 8

oracle

page-based access & random access

memory (memory level N)
disk (memory level N+1)

size=120 bytes

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15
page size = 5*8 = 40 bytes

query x<7

1, 5, 12, 24, 23

output

1, 5, 2

40 bytes

2, 7, 13, 9, 8

oracle

page-based access & random access

memory (memory level N)
disk (memory level N+1)

size=120 bytes

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15
page size = 5*8 = 40 bytes

query x<7

1, 5, 12, 24, 23

output

1, 5, 2

80 bytes

2, 7, 13, 9, 8

oracle

page-based access & random access

memory (memory level N)
disk (memory level N+1)

size=120 bytes

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15
page size = 5*8 = 40 bytes

query x<7

10, 11, 6, 14, 15

output

1, 5, 2

80 bytes

2, 7, 13, 9, 8

oracle

page-based access & random access

memory (memory level N)
disk (memory level N+1)

size=120 bytes

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15
page size = 5*8 = 40 bytes

query x<7

10, 11, 6, 14, 15

output

1, 5, 2, 6

80 bytes

2, 7, 13, 9, 8

oracle

page-based access & random access

memory (memory level N)
disk (memory level N+1)

size=120 bytes

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15
page size = 5*8 = 40 bytes

query x<7

10, 11, 6, 14, 15

output

1, 5, 2, 6

120 bytes

2, 7, 13, 9, 8

oracle
was the oracle helpful?

when is the oracle helpful?

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15

for which query would an oracle help us?

how to decide whether to use the oracle?

how we store data

every byte counts

know the query
index

design space

layouts, indexes

overheads and tradeoffs

access path selection

rules of thumb

sequential access
read one block; consume it completely; discard it; read next;

random access
read one block; consume it partially; discard it; (may re-use);
read random next;

hardware can predict and start prefetching
prefetching can exploit full memory/disk bandwidth

ideal random access?

the one that helps us avoid a large number
of accesses (random or sequential)

the language of efficient systems: C/C++

why?

low-level control over hardware

make decisions about physical data placement and consumptions

fewer assumptions

the language of efficient systems: C/C++

why?

low-level control over hardware

make decisions about physical data placement and consumptions

fewer assumptionswe want you in the project to make low-level decisions

a “simple” database operator

select operator (scan)

main-memory optimized-systems

data

qualifying positions

query: value<x
over an array of N slots

data

qualifying positions

how to implement it?

result = new array[data.size];
j=0;
for (i=0; i<data.size; i++)

if (data[i]<x)
result[j++]=i;

query: value<x
over an array of N slots

what if only 0.1% qualifies?

memory
data

result

data

qualifying positions

how to implement it?

result = new array[data.size];
j=0;
for (i=0; i<data.size; i++)

if (data[i]<x)
result[j++]=i;

query: value<x
over an array of N slots

what if only 0.1% qualifies?

memory
data

data

qualifying positions

how to implement it?

result = new array[data.size];
j=0;
for (i=0; i<data.size; i++)

if (data[i]<x)
result[j++]=i;

query: value<x
over an array of N slots

what if 99% qualifies?

how can we know?

branches (if statements)
are bad for the processors,

can we avoid them?
result = new array[data.size];
j=0;
for (i=0; i<data.size; i++)

result[j+=(data[i]<x)]=i;

how to bring the values?
(remember we have the positions)

data

qualifying positions

result = new array[data.size];
j=0;
for (i=0; i<data.size; i++)

if (data[i]<x)
result[j++]=i;

query: value<x
over an array of N slots

what about multi-core?
NUMA? SIMD? GPU?

data

core1 core2 core3 core4needs coordination!
what about result writing?

data
result = new array[data.size];
j=0;
for (i=0; i<data.size; i++)

if (data[i]<x)
result[j++]=i;

query1: value<x1
query2: value<x2 …what about having multiple queries?

data

query: value<x
over an array of N slots

should I scan?

should I probe an index?

how to decide which one is best?

total data movement
&

computation

how can I prepare?

1) Read background research material
• Architecture of a Database System. By J. Hellerstein, M. Stonebraker and J. Hamilton.

Foundations and Trends in Databases, 2007

• The Design and Implementation of Modern Column-store Database Systems. By D. Abadi, P.
Boncz, S. Harizopoulos, S. Idreos, S. Madden. Foundations and Trends in Databases, 2013

• Massively Parallel Databases and MapReduce Systems. By Shivnath Babu and Herodotos
Herodotou. Foundations and Trends in Databases, 2013

2) Start going over the papers

what to do now?

A) read the syllabus and the website
B) register to piazza
C) register to gradescope
D) register for the presentation (early next week!)
E) start submitting paper reviews (week 3)
F) go over the project (next week will be available)
G) start working on the proposal (week 3)

survival guide

class website: https://midas.bu.edu/classes/CS591A1/

piazza website: http://piazza.com/bu/spring2020/cs591a1/

presentation registration: https://tinyurl.com/S2020-CS591-presentations

gradescope entry-code: 9568G3

office hours: Manos (Tu/Th, before class)

Andy (M/W 3-4pm), Ju Hyoung (M 11am-noon / F 3-4pm)

material: papers available from BU network

https://midas.bu.edu/classes/CS591A1/
http://piazza.com/bu/spring2020/cs591a1/
https://tinyurl.com/S2020-CS591-presentations

class 2

Data Systems 101

modern main-memory data systems
&

semester project

CS 591: Data Systems Architectures

next week:

