BOSTON

 CS 591: Data Systems Architectures

 CS 591: Data Systems Architectures}

class 2

Data Systems 101

Prof. Manos Athanassoulis
https://midas.bu.edu/classes/CS591A1/

some reminders

class summary

2 classes per week / OH 5 days per week

each student

1 presentation/discussion lead +2 reviews/questions per week
systems or research project + proposal + mid-semester report

systems project

implementation-heavy $\mathrm{C} / \mathrm{C}++$ project
groups of 2

research project

groups of 3
pick a subject (list will be available)
design \& analysis
experimentation

class timeline

Week 2 - register for presentations by $1 / 30$ first presentation on 2/4

Week 5 - submit project
proposal on 2/21

Week 15 - Project presentations submit all material by 4/26

Piazza

all discussions \& announcements
http://piazza.com/bu/spring2020/cs591a1/ also available on class website

10 already registered!
size (volume)
(it's not only about size) rate (velocity)

The 3 V's

 sources (variety)+ our ability to collect machine-generated data \% scientific experiments
! d sensors social 83
a data system is a large software system that stores data, and provides the interface to

a data system is a large software system that stores data, and provides the interface to

a data system is a large software system that stores data, and provides the interface to

data system, what's inside?

growing environment

facebook.

…

twitker

SAD

[noSQL]

\$3B by 2020, growing at 20\% every year

growing need for tailored systems

data system, what's underneath?

memory hierarchy

memory hierarchy (by Jim Gray)

Jim Gray, IBM, Tandem, Microsoft, DEC "The Fourth Paradigm" is based on his vision ACM Turing Award 1998 ACM SIGMOD Edgar F. Codd Innovations award 1993

memory hierarchy (by Jim Gray)

tape?
sequential-only magnetic storage still a multi-billion industry

Jim Gray (a great scientist and engineer)

Jim Gray, IBM, Tandem, Microsoft, DEC "The Fourth Paradigm" is based on his vision ACM Turing Award 1998

the first collection of technical visionary research on a data-intensive scientific discovery ACM SIGMOD Edgar F. Codd Innovations award 1993

memory wall

memory wall

cache/memory misses

what happens if I miss?

data movement

need to read only X read the whole page

data movement

need to read only X read the whole page
remember!

disk is millions (mem, hundreds) times slower than CPU

page-based access \& random access

$$
\text { query } x<7
$$

size=120 bytes memory (memory level \mathbf{N})
disk (memory level $N+1$)

$$
1,5,12,24,23
$$

$2,7,13,9,8$
$10,11,6,14,15$
page size $=5^{*} 8=40$ bytes

page-based access \& random access

$\xrightarrow{\text { scan } \text { query } x<7}$ output

$$
1,5,12,24,23
$$

$$
1,5
$$

size=120 bytes

 memory (memory level N)disk (memory level $\mathrm{N}+1$)

$$
1,5,12,24,23
$$

$$
2,7,13,9,8
$$

$$
10,11,6,14,15
$$

page size $=5 * 8=40$ bytes

page-based access \& random access

query $\mathrm{x}<7$

scan
output

$$
1,5,12,24,23
$$

$$
2,7,13,9,8
$$

$$
1,5
$$

size=120 bytes memory (memory level \mathbf{N})
disk (memory level $N+1$)

$$
1,5,12,24,23
$$

$$
2,7,13,9,8
$$

$10,11,6,14,15$
page size $=5^{*} 8=40$ bytes

page-based access \& random access

query $\mathrm{x}<7$

scan
output

$$
1,5,12,24,23
$$

$$
2,7,13,9,8
$$

$$
1,5,2
$$

size=120 bytes memory (memory level \mathbf{N})
disk (memory level $N+1$)

$$
1,5,12,24,23
$$

$$
2,7,13,9,8
$$

$10,11,6,14,15$
page size $=5^{*} 8=40$ bytes

page-based access \& random access

query $\mathrm{x}<7$

scan

$$
1,5,12,24,23
$$

$$
2,7,13,9,8
$$

$$
1,5,2
$$

size=120 bytes memory (memory level \mathbf{N})
disk (memory level $N+1$)

$$
1,5,12,24,23
$$

$$
2,7,13,9,8
$$

$10,11,6,14,15$
page size $=5^{*} 8=40$ bytes

page-based access \& random access

$\xrightarrow[\text { scan }]{\text { query } \times \text { < }}$ output

$$
10,11,6,14,15
$$

2, 7, 13, 9, 8
$1,5,2$
size=120 bytes memory (memory level \mathbf{N})
disk (memory level $N+1$)

$$
1,5,12,24,23
$$

$$
2,7,13,9,8
$$

$10,11,6,14,15$
page size $=5^{*} 8=40$ bytes

page-based access \& random access

$\xrightarrow[\text { scan }]{\text { query } \times \text { < }} \quad$ output

$$
10,11,6,14,15
$$

2, 7, 13, 9, 8
1, 5, 2, 6
size=120 bytes memory (memory level \mathbf{N})
disk (memory level $N+1$)

$$
1,5,12,24,23
$$

$$
2,7,13,9,8
$$

10, 11, 6, 14, 15
page size $=5^{*} 8=40$ bytes

page-based access \& random access

| san quen $\times 7$ | outpout |
| :--- | :--- | :--- |

$$
10,11,6,14,15
$$

2, 7, 13, 9, 8
$1,5,2,6$
size=120 bytes memory (memory level \mathbf{N})
disk (memory level $N+1$)

$$
1,5,12,24,23
$$

$$
2,7,13,9,8
$$

$10,11,6,14,15$
page size $=5^{*} 8=40$ bytes

what if we had an oracle (perfect index)?

page-based access \& random access

$$
\text { query } x<7
$$

size=120 bytes memory (memory level \mathbf{N})
disk (memory level $N+1$)

$$
1,5,12,24,23
$$

$2,7,13,9,8$
$10,11,6,14,15$
page size $=5^{*} 8=40$ bytes

page-based access \& random access

$$
\text { query } \mathrm{x}<7
$$

$$
1,5,12,24,23
$$

output

$$
1,5
$$

size=120 bytes memory (memory level \mathbf{N})
disk (memory level $N+1$)

$$
1,5,12,24,23
$$

$$
2,7,13,9,8
$$

$$
10,11,6,14,15
$$

page size $=5^{*} 8=40$ bytes

page-based access \& random access

query $\mathrm{x}<7$

$$
1,5,12,24,23
$$

oracle
2, 7, 13, 9, 8
1, 5
size=120 bytes memory (memory level \mathbf{N})
disk (memory level $N+1$)

$$
1,5,12,24,23
$$

$$
2,7,13,9,8
$$

$$
10,11,6,14,15
$$

page size $=5 * 8=40$ bytes

page-based access \& random access

query $\mathrm{x}<7$

$$
1,5,12,24,23
$$

oracle
2, 7, 13, 9, 8
$1,5,2$
size=120 bytes memory (memory level \mathbf{N})
disk (memory level $N+1$)

$$
1,5,12,24,23
$$

$$
2,7,13,9,8
$$

$$
10,11,6,14,15
$$

page size $=5^{*} 8=40$ bytes

page-based access \& random access

query $\mathrm{x}<7$

$$
1,5,12,24,23
$$

oracle
$2,7,13,9,8$
$1,5,2$
size=120 bytes memory (memory level \mathbf{N})
disk (memory level $N+1$)

$$
1,5,12,24,23
$$

$$
2,7,13,9,8
$$

$10,11,6,14,15$
page size $=5^{*} 8=40$ bytes

page-based access \& random access

size=120 bytes memory (memory level \mathbf{N})
disk (memory level $N+1$)

$$
1,5,12,24,23
$$

$$
2,7,13,9,8
$$

$10,11,6,14,15$
page size $=5^{*} 8=40$ bytes

page-based access \& random access

$$
10,11,6,14,15
$$

$$
2,7,13,9,8
$$

$$
1,5,2,6
$$

size=120 bytes memory (memory level \mathbf{N})
disk (memory level $\mathbf{N}+1$)

$$
1,5,12,24,23
$$

$$
2,7,13,9,8
$$

10, 11, 6, 14, 15
page size $=5^{*} 8=40$ bytes

page-based access \& random access

size=120 bytes memory (memory level \mathbf{N})
disk (memory level N+1)

$$
1,5,12,24,23
$$

$$
2,7,13,9,8
$$

10, 11, 6, 14, 15
page size $=5^{*} 8=40$ bytes

when is the oracle helpful?

for which query would an oracle help us?
how to decide whether to use the oracle?

> | > $1,5,12,24,23$ | $2,7,13,9,8$ > |
| :--- | :--- |$\quad 10,11,6,14,15$

how we store data
layouts, indexes

every byte counts

overheads and tradeoffs
know the query
access path selection

rules of thumb

sequential access

read one block; consume it completely; discard it; read next; hardware can predict and start prefetching
random access
read one block; consume it partially; discard it; (may re-use); read random next;
 ideal random access?
the one that helps us avoid a large number of accesses (random or sequential)

the language of efficient systems: C/C++

why?

low-level control over hardware
make decisions about physical data placement and consumptions
fewer assumptions
the language of efficient systems: C/C++
why?
low-level control over hardware
we want you in the project to make low-level decisions
main-memory optimized-systems
a "simple" database operator

select operator (scan)

data

how to implement it?

data

$$
\begin{aligned}
& \text { result = new array[data.size]; } \\
& j=0 ;
\end{aligned}
$$

$$
\text { what if only } 0.1 \% \text { qualifies? }
$$

how to implement it?

data

$$
\begin{aligned}
& \text { result = new array[data.size]; } \\
& j=0 ;
\end{aligned}
$$

$$
\text { what if only } 0.1 \% \text { qualifies? }
$$

how to implement it?

data

result = new array[data.size]; $j=0 ;$ for (i=0; i<data.size; i++) if (data[i]<x)
 what if 99% qualifies?
 6 ${ }^{7}$ how can we know?

 result[j++]=i;$$
\begin{aligned}
& \text { result = new array[data.size]; } \\
& j=0 ; \\
& \text { for (i=0; i<data.size; } i++) \\
& \quad \text { result }[j+=(\text { data }[i]<x)]=i ;
\end{aligned}
$$

branches (if statements) are bad for the processors, can we avoid them?
how to bring the values?
(remember we have the positions)

data

$$
\begin{aligned}
& \text { result }=\text { new array[data.size]; } \\
& j=0 ; \\
& \text { for }(i=0 ; i<d a t a . s i z e ; ~ i++) \\
& \quad \text { if (data[i]<x) } \\
& \quad \text { result }[j++]=i ;
\end{aligned}
$$

data

needs coordination! what about result writing?

core1

core2 core3 core4
what about having multiple queries?
query1: value<x1 query2: value<x2 ...

data

result = new array[data.size]; $j=0$;
 for (i=0; i<data.size; i++)
 if (data[i]<x)
 result[j++]=i;

how can I prepare?

1) Read background research material

- Architecture of a Database System. By J. Hellerstein, M. Stonebraker and J. Hamilton. Foundations and Trends in Databases, 2007
- The Design and Implementation of Modern Column-store Database Systems. By D. Abadi, P. Boncz, S. Harizopoulos, S. Idreos, S. Madden. Foundations and Trends in Databases, 2013
- Massively Parallel Databases and MapReduce Systems. By Shivnath Babu and Herodotos Herodotou. Foundations and Trends in Databases, 2013

2) Start going over the papers

what to do now?

A) read the syllabus and the website
B) register to piazza
C) register to gradescope
D) register for the presentation (early next week!)
E) start submitting paper reviews (week 3)
F) go over the project (next week will be available)
G) start working on the proposal (week 3)

survival guide

class website: https://midas.bu.edu/classes/CS591A1/ piazza website: http://piazza.com/bu/spring2020/cs591a1/ presentation registration: https://tinyurl.com/S2020-CS591-presentations gradescope entry-code: 9568G3
office hours: Manos (Tu/Th, before class)
Andy (M/W 3-4pm), Ju Hyoung (M 11am-noon / F 3-4pm)
material: papers available from BU network

BOSTON UNIVERSITY CS 591: Data Systems Architectures

class 2

Data Systems 101

