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Introduction, Motivation & 
Solution



Background

Edge devices produce vast amounts of data that are update intensive and require large amounts of state

● Data has been produced at a 
large scale from edge 
sources like browsers, 
devices, servers, and 
processed by cloud 
applications for analytics.

● Hadoop and Spark need to 
process data as it arrives.

Large Amounts of Data Produced

● There is significant update 

traffic. 

● Updates of states should 

be readily available for 

offline analytics

Update Intensity

● A search engine may have 

billion users alive in a system 

but only a million are currently 

actively surfing in the alive.

● Range queries if infrequent, 

can be solved 

Locality & Point Operations



Background Questions?

● Can you think of examples where tons of 
data is produced which may need to be 
processed?

● What value lies in optimizing for point 
queries?



Motivation

State exceeds main memory while constant updates temporal locality of objects are cumbersome to deal with

The combination of concurrency, in-place updates (in-memory), and ability to handle data larger than memory is 
important in our target applications; but these features are not simultaneously met by existing systems

In-Memory Data Stores

Systems partition the state across 

multiple machines and use pure 

in-memory data structures 

Solutions are expensive and 

severely under-utilized 

Key-Value Stores

KV store is designed to handle 

larger than memory data and 

support failure recovery by storing 

data on a secondary storage.

Do not scale over a million updates 

per second.



● New concurrent key-value store, designed to serve applications that involve update-intensive state 
management supporting data larger than memory

FASTER

What are the major technical 
contributions of the paper?



FASTER

Major Contributions:

(1) Threading: epoch protection with trigger actions

(2) Indexing: concurrent hash index

(3) Record Storage: Hybrid Log Record Allocator



System Architecture



System Architecture



Background Questions?

● What’s the benefit of in-place updates in a 
hybrid log?

● Why can you not use in-place updates in 
append-only logs?



System Architecture: User Interface

● Read, Blind updates

● Atomic read-modify-write (RMW) for running aggregates, partial field updates, …

read()

upsert()

rmw()

delete()



System Architecture: Epoch Protection Framework

● avoiding thread synchronization in the common fast path
● we still need a mechanism to agree on shared system state

Epoch Protection

● system maintains a shared, atomic counter, E (current epoch) - can be incremented by any thread

● each thread keeps a (stale) local epoch counter copied from E (refresh periodically) 

● epoch, c is safe if all threads have a strictly higher local thread-local value than c



System Architecture: Epoch Protection Framework

Epoch Protection

● system maintains a shared, atomic counter, E (current epoch) - can be incremented by any thread
● each thread keeps a (stale) local epoch counter copied from E (refresh periodically) 
● epoch, c is safe if all threads have a strictly higher local thread-local value than c



Extending Epoch Protection: Adding Trigger Actions

How did the authors extend Epoch 
Protection to make it a more general 

framework?



Extending Epoch Protection: Adding Trigger Actions

● adds a primitive to epoch protection: function callbacks (trigger) with epoch increment from c to 

c+1
● trigger action specified with be executed later when c becomes safe

● simplifies lazy synchronization in multi-threaded systems 

● function, active_now() must be invoked when a shared variable, status is updated to active
● thread updates shared status to active

● increment current epoch with trigger active_now()
● now we are guaranteed that all threads have seen the active status before active_now() is invoked

● used extensively throughout the system: memory safety, non-blocking index resizing, log buffer 

maintenance, recovery



Applications



Handling Large Data: Logical Address Space

● Spans primary and secondary storage where record 

allocator returns 48-bit logical addresses of spaces in 

memory instead of the physical address.

● Tail offset finds the next free space in the tail of the log 

and head offset finds lowest logical address available at 

a lag from the tail present in a contiguous address space 

using an in-memory circular buffer

Adapting Log Structuring along with an epoch protection framework for lower synchronization overhead.



Handling Large Data: Circular Buffer Maintenance

Epochs allow latch free eviction of data from storage for efficiency.

● 2 arrays are maintained:

○ Flush array - tracks the status of the page to check if 

its flushed to secondary storage or not.

○ Closed array - determines whether the page can be 

evicted for reuse or not.

● The logs are immutable so when the page number is 

changed from p to p+1 there is a trigger action to flush this 

page to secondary storage via asynchronous I/O calls, done 

when the epoch is safe.

● Status of the page is set to flush once done.



Background Questions?

● How do traditional databases flush pages?

● What makes FASTER so different then?



Handling Large Data: Append-Only Allocator

● Blind updates simply append a new record to the tail of the log and update the hash index using a 
compare-and-swap as before

● If operation fails we mark it as invalid and retry

● Deletes insert a tombstone record (again, using a header bit), and require log garbage collection
● Read and RMW operations are similar to their in-memory counterparts

Adapting Log Structuring along with an epoch protection framework for lower synchronization overhead.

● Updates are appended to tail 

● Retrieve only the record not the entire logical page



Background Questions?

● How do in-memory databases read? 

● Is RMW atomic and why are they used?



Features



Background Questions?

● What is a hash-based index?
● Define all of the bolded terms: “A 

concurrent, latch-free, scalable, 
resizable hash-based index.”



Features: The Faster Hash Index

“A concurrent, latch-free, scalable, resizable 
hash-based index.”

● Concurrent: Supports multiple threads at 
the same time.

● Latch-Free: Doesn’t require locking, 
which will reduce performance.

● Scalable: Able to handle large amounts of 
data.

● Resizeable: The size of the index change 
be changed after the fact.

Hash-Based Index: allows us to quickly find 
data given a a search key value.



Features: The Faster Hash Index

● 2^k hash buckets (k = keys)
● 8-byte entries = 64-bit atomic 

compare-and-swap operations
● Tag increases hashing resolution 

to k + 15 bits; reduces collisions
● (offset, tag)

○ Key with hash value h
○ First k bits of h (offset)
○ Next 15 bits of h (tag)

● Invariant
○ Each (offset, tag) has unique 

index entry



Features: The Faster Hash Index (cont.)

Find Operation

1. Use k hash bits: find the hash bucket
2. Scan through bucket, find entry matching the tag

Delete Operation

1. Perform the find operation.
2. Use compare-and-swap, replace the matching entry with 0.



Features: The Faster Hash Index (cont.)

Insert Operation

1. Find empty slot; insert record 
with tentative bit = 1

a. This slot is now invisible to 
concurrent read/update 
operations

2. Scan bucket to check if another 
tentative entry for the tag 
exists; if so, try again

3. Else reset bit to 0 to finalize 
insert operation



Features: The Faster Hash Index (cont.)



Background Questions?

● What is a linked list?



Features: In Memory KV Store

● Combine hash index with simple in-memory 
allocator to create complete in-memory KV 
store.

● Records with same (offset, tag) organized in 
singly-linked-list.

● Hash bucket entry points to tail (most recent 
entry), which points to previous record, etc.



Features: In Memory KV Store (cont.)

Read Operations:

1. Find tag entry from index.
2. Traverse linked-list for entry to find record with matching key.

Delete Operations:

1. Compare-and-swap on record header or (for the first record) hash bucket entry.
2. Set entry to 0, which makes it available for future inserts.
3. Not immediately returned to memory allocator, only does so when epoch becomes safe.

Update/Insert Operations:

1. Find hash bucket entry for the key…
2. If doesn’t exist, use 2 phase algorithm to insert it as described previously.
3. If exists, scan linked-list to find record with matching key and insert in-place.
4. If match key doesn’t exist, splice new record into tail of list using compare-and-swap.



Features: HybridLog

● memory is divided into three regions:
○ stable (on disk): read-copy-update
○ mutable (in memory): in-place update
○ read-only (in memory): read-copy-update

● hybrid concurrency model:
○ read-copy-update on index
○ in-place update for record-level concurrency

basic read-write-modify algorithm:

if < head_offset: issue async io request

if < ReadOnly_offset: copy to tail, CAS update hash 
index

if < infinity: update in-place

new_record: add to tail, update hash table



Features: HybridLog

Any issues with this design?



HybridLog- Lost Update Anomaly

● threads guaranteed to read new offsets only at epoch 

boundaries

● example: 
○ thread 1 sees only ReadOnly offset = R1

○ thread 2 sees only ReadOnly offset = R2

○ update by thread 1 is lost => BAD



HybridLog- Fuzzy Region

● fuzzy region: mutability status is not agreed upon by all threads

● safe readonly offset 

Epoch protection with trigger action:

● ReadOnlyOffset = k;

BumpEpoch( () => {SafeReadOnlyOffset = K });

modified read-write-modify algorithm:

if < head_offset: issue async io request

if < Safe ReadOnly_offset: copy to tail, update hash table

if < ReadOnly_offset: go pending

if < infinity: update in-place

new_record: add to tail, update hash table



HybridLog- Caching, Recovery and Consistency

caching: 

● good caching behavior at a per-record granularity without overheads of typical 

fine-grained caching algorithms 

● similar to the second-chance FIFO protocol

● hybrid log size matters 
○ 90 : 10 division of buffer size for the mutable and read-only regions result in good performance

recovery and consistency: 

● on failure, unflushed tail is lost 

● Consistent with the monotonicity property

○ typically, achieved with write-ahead-log (WAL)

● treat hybrid log as a WAL and delay commit to allow in-place updates within a limited time 

window



Evaluation & Conclusion



Evaluation

Experimental Setup

1. Implemented in C#
2. When applicable: HybridLog only
3. Threads continuously generate operations for 

30 seconds, measure # of operations
4. Two Identical machines (one Windows for 

Faster, one Ubuntu for others)
a. 2x Xeon E5-2690 v4, 256GB RAM, 3.2TB 

NVMe SSD
5. YCSB-A workload

a. 250M 8-byte keys, values from 8-bytes to 
100-bytes

6. Compare against: in-memory, 
larger-than-memory systems

Zipf Distribution: Does 
anyone know what this is?



Evaluation (cont.)

Benchmark: threading capabilities



Evaluation (cont.)

Benchmark: Throughput capabilities



Evaluation (cont.)

Benchmarks: HybridLog



Evaluation (cont.)

Benchmarks: Caching Behavior



Conclusions

Possible further areas of exploration:

● detailed exploration of optimal recovery strategies
● issues with monotonicity in fuzzy checkpointing 
● optimizing I/O path to improve performance degradation characteristics in larger-than-memory experiments
● hybrid log analytics
● could this design work on read-only workload variants?

● FASTER is a high-performance concurrent KV store optimized for update-intensive 

applications

○ C# implementation provided

● demonstrated that following properties are achievable in the same system:
○ heavy update workload with larger-than-memory data

○ exceed pure in-memory performance when workload fits in memory

○ optimize for moving hot set without any fine-grained caching statistics


