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Cloud Data Lakes
..Or “LakeHouse”
..Or “Open Data Lake”
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InfluxData: InfluxDB 3.0, Arrow, DataFusion 
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Outline
● Why this topic is important

● Database Architectures through the Ages 

● Trends driving the move “to the cloud” 

● Disaggregated Databases, and common architecture features
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Context: 🍿
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Context: 🍿
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Table Format wars ⚔ (preview)

"Delta Lake: High-Performance ACID Table Storage over Cloud Object Stores" 

Delta Lake from 
databricks

* First mover, 
better support

* Arguably 
technically 
superior

* much faster / wider 
adoption

* More Neutral 
governance 

* among other 
things championed 
by snowflake

Apache

vs

https://www.vldb.org/pvldb/vol13/p3411-armbrust.pdf
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��

source source 

source

https://www.databricks.com/resources/webinar/beyond-lakehouse-table-formats
https://techcrunch.com/2024/08/14/databricks-reportedly-paid-2-billion-in-tabular-acquisition/
https://www.databricks.com/company/newsroom/press-releases/databricks-agrees-acquire-tabular-company-founded-original-creators
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Roadmap: Data 3.0 in the Lakehouse Era

Roadmap: Data 3.0 in the Lakehouse Era - Bessemer Venture Partners (3/25/2025) 

https://www.bvp.com/atlas/roadmap-data-3-0-in-the-lakehouse-era
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Single Node Servers (1990s)

Engine   

Catalog

Server Software

Exemplars

Data Catalog

Tightly integrated 
engine, storage 
and catalog

Data + Catalog 
stored in 
proprietary 
formats on local 
file systems

CPU + MEM + 
STORAGE

Driven by 
● Minicomputer → 

Servers
● Local hard drive 

capacity
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MPP / Shared Nothing (2000s)

Exemplars

…

Local Network

Driven by 
● Fast local networks
● “Inexpensive” (10x 

cheaper) commodity 
Linux servers

Engine   

Catalog

Server Software

Data Catalog

Data stored on 
each node, 
next to  
compute

Propriety Catalog 
and Data format

Nodes 
communicate over 
commodity 
network

Engine   

Catalog

Server Software

Data Catalog

Engine   

Catalog

Server Software

Data Catalog

CPU + MEM + 
STORAGE

CPU + MEM + 
STORAGE

CPU + MEM + 
STORAGE

Tightly integrated 
engine, storage 
and catalog
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Arrival of the “Cloud”
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Object Stores: What
What: “Infinite FTP server in the sky”
What: Distributed Key/Value stores

Basic CRUD interface:
GET <URL> → Bytes
PUT <URL> Bytes
LIST <PREFIX>      (lists keys)
DELETE <URL>

Google Cloud 
Storage

AWS
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Object Stores: Why
Why give up nice File system APIs 

E.g. can’t append or modify parts of objects

• Durability (3x replication, cross AZ, handled transparently)
• “Infinite” scale + capacity
• cheap ($23/TB/month*)
• Pay per access (not per byte): $0.40/million requests

Google Cloud 
Storage

AWS

⇒ Compelling to outsource persistent storage to Object Stores

https://aws.amazon.com/s3/pricing/
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Object Stores: Ugly
Significant latency / latency unpredictability

Google Cloud 
Storage

AWS

175ms avg (P50) 22.8MB/sec

300ms avg (P95) 13.3MB/sec

400+ms for some queries (10MB/s)

800ms avg (P50) 40MB/sec

Source: Exploiting Cloud Object Storage for High-Performance Analytics

https://vldb.org/pvldb/vol16/p2769-durner.pdf
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Object Stores: Ugly
Significant latency / latency unpredictability

Google Cloud 
Storage

AWS

Not isolated from 
other workloads: 
observed bandwidth 
varies cyclically

Source: Exploiting Cloud Object Storage for High-Performance Analytics

https://vldb.org/pvldb/vol16/p2769-durner.pdf
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Object Stores: Ugly
Isn’t as cheap as it turns out, more expensive over time

Google Cloud 
Storage

AWS

Source: Copy of Amazon S3 Historical Prices (2008-2025) 

🤔 no price change 
in the last 10 years…

https://docs.google.com/spreadsheets/d/1XZq6_XTSsf75XG8nIarNxp2S_8xxTuMw7ziUJhitTRY/edit?gid=0#gid=0
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Elastic Compute: What
What: “Rent VM’s by the day, hour or minute (now)”
Pricing: https://aws.amazon.com/ec2/pricing/on-demand/ 

Example: t2.xlarge: 4 vCPU 16GB RAM @ $0.1856/hour)
0:00:00 Start VM (start billing)
3:25:24 Stop VM (stop billing)

3*60*60 + 25*60 + 24 = 12324 seconds 
12324 seconds / 3600 seconds/hour * $0.1856/hour ⇒ $0.64

GCP Compute 
Engine

https://aws.amazon.com/ec2/pricing/on-demand/
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Elastic Compute: Why
No upfront capital investment
⇒ Much more efficiently use 
hardware

Personal Anecdote: budgeting ~ $250K 6 months 
in advance for server clusters to test on

HP DL380s (popular midrange server in late 2000s)

Ebay “Lot of 21 HP Proliant DL380”

VS

https://www.ebay.com/itm/165293122713?chn=ps&_trkparms=ispr%3D1&amdata=enc%3A1RVM2D3kcSW6Ar20JoGQPJg2&norover=1&mkevt=1&mkrid=711-117182-37290-0&mkcid=2&mkscid=101&itemid=165293122713&targetid=2320093655185&device=c&mktype=pla&googleloc=1018127&poi=&campaignid=21222258394&mkgroupid=164713660992&rlsatarget=pla-2320093655185&abcId=9408285&merchantid=110358750&gad_source=1&gclid=CjwKCAjwtdi_BhACEiwA97y8BITdu4GQ2RrbP3n09snvZK5RoUoFL62AGQNS40YDNgM7P06qxp4kYBoCb28QAvD_BwE
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Elastic Compute: The Ugly
Overabundance leads to waste: 💸
Easy to spend 
Developers often leave machines running by accident 🤑
Rise of cost optimization software

Personal Anecdote: $1m/month AWS bills

GCP Compute 
Engine
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Elastic Compute: The Ugly
Kinda crappy compared to your own machine
Sequential Write Throughput:
● My Macbook Pro 1TB SSD: > 1GB/s 
● GCP VM* 4 SSD @ 1.5TB RAID 0: 815 MB/s 

* c3-standard-22-lssd (22 vCPUs, 88 GB Memory)

4 “local”SSDs, RAID0, Intel Sapphire Rapids x86_64
#  Test the IO throughput using `dd` 

dd if=/dev/zero of=/data/test1.img bs=1G count=10 oflag=dsync

# 10737418240 bytes (11 GB, 10 GiB) copied, 13.179 s, 815 MB/s

GCP Compute 
Engine

GCP Compute Engine

VS

Read more: tpchgen-rs World’s fastest open source TPC-H data generator, written in Rust - Apache DataFusion Blog 

https://datafusion.apache.org/blog/2025/04/10/fastest-tpch-generator/
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Cloud Database Architecture
“Disaggregated Storage Design”
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Object Store 

Disaggregated Architectures (2010s)
“Cloud Data Warehouse”

Proprietary 
file format

Exemplars

Driven by 
● Hourly VM rental 
● 10x cheaper 

storage (AWS S3)

Engine

Catalog

…Engine Engine

Not accessed by other 
systems

Catalog stored in 
proprietary format (e.g. 
K-V store)

Elastically scalable 
processing plane 

Data + Catalog in 
proprietary formats 
on cheap durable 
object store 

Not shared across 
systems

3.0

CPU + MEM

STORAGE
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Cloud Data Lakes (2020s)

          Object Store …

Each includes use case specific 
Catalog + Data Caching / 
precomputation / engines

Catalog information stored in 
Open format on Object store 
(e.g. Apache Iceberg)

Data stored in Apache 
Parquet files on object store

…

Data + Catalog Caches

…

Data + Catalog Caches

…

Data + Catalog Caches

Constellation of 
disaggregated systems, 
each focused on 
different use case

…

Data + Catalog Caches

…

Data + Catalog Caches
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Common Features of Disaggregated 
Databases
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Metadata Store (“Catalogs”)
Object storage latency (100s of ms) is too high for planning for many 
workloads (both read and write)
No multi-object transactions
⇒ metadata ‘catalog’ describes data layout in object store

Object Store 

Catalog

Data is stored in Object 
Store

Compute

2. Request planning uses 
catalog to determine where 

data is in object store

Request

1. Request 
arrives

3. Execution reads/writes 
data to object store

Catalog stores metadata 
about data in object store

User
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Metadata Store (“Catalogs”)
Popular choices: 
● Key Value store (FoundationDB)
● Traditional transactional SQL systems (postgres)

Typical Contents
● Schema: tables, columns, types, etc.
● Partitioning: partitions, partition values, etc.
● File Locations: paths on object store
● Pruning: per-column min/maxes (Small Materialized Aggregates / 

Zone Maps), Bloom Filters, etc.
Reference: How FoundationDB Powers Snowflake Metadata Forward 

https://www.vldb.org/conf/1998/p476.pdf
https://www.snowflake.com/blog/how-foundationdb-powers-snowflake-metadata-forward/
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Separate Scalable Operations
Separate major responsibilities into separately scalable sets of VMs

Typical Components:
• Write / Ingestion
• Query
• Reorganization (compaction, garbage collection, etc)

Why: scale capacity along with demand (e.g scale writers up to handle bursts)

Industrial Examples:

https://docs.snowflake.com/en/user-guide/intro-key-concepts (virtual warehouses)
https://www.datadoghq.com/blog/engineering/introducing-husky/ 
https://www.influxdata.com/blog/influxdb-3-0-system-architecture/ 

https://docs.snowflake.com/en/user-guide/intro-key-concepts
https://www.datadoghq.com/blog/engineering/introducing-husky/
https://www.influxdata.com/blog/influxdb-3-0-system-architecture/
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Ingest Worker

Separate Scalable Operations: Example

Object Store 

Catalog

Query Tier

Users

Query Worker

Write

Query

Ingest Tier

Shared State

Compactor 
Worker
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Ingest Worker

Separate Scalable Operations: Example

Object Store 

Catalog

Query Tier

Users

Query Worker

Write

Query

Ingest Tier

Shared State

Compactor 
Worker

Increase write workload leads to more ingest and compactor workers, no need to increase query tier

“Infinitely scalable”
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Write Buffering

Object Store 

Ingest Worker

In Memory Buffer

2. Buffer is 
periodically 

flushed to object 
store…

Write

1. Writes are 
collected in 

memory buffer

Large per-request overhead to object store ($$ and latency) 
⇒ Buffer in ram + locally to amortize cost across many requests



|  © Copyright 2025,  InfluxData31

Write Buffering / Local Storage

Object Store 

Ingest Worker

Write
In Memory Buffer

…

1. Writes are 
collected in 

memory buffer

2. Buffer is 
periodically 

flushed to local 
nvme

Local NVMe

3. Files is 
periodically 

moved to object 
store



|  © Copyright 2025,  InfluxData32

Write Buffering
Challenges:
● Durability of data before it is written to object store
● Time to become readable (is memory in buffer readable?)
Examples: 
● Monarch: Google's Planet-Scale In-Memory Time Series Database
● Architecture | WarpStream
● Architecture | SlateDB 

https://research.google/pubs/monarch-googles-planet-scale-in-memory-time-series-database/
https://docs.warpstream.com/warpstream/overview/architecture
https://slatedb.io/docs/architecture/
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Deletes (+ Updates) via Tombstones

Object Store 

Write once (no updates) storage ⇒ Delete / Update writes new things

2. A tombstone 
marker is written 

as a new file* 

DELETE .. WHERE ..

1. User sends 
delete requests

User

Ingest Worker

Query Worker

3. Query combines data 
and tombstone during 

query

4. Results have deleted 
rows removed. 
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Deletes (+ Updates) via Tombstones
Variations:
● Delete Vectors (row ids / offsets deleted)

○ Often stored in objects
○ Time consuming to create / Faster query execution

● Stored Predicates 
○ Often stored in meta store
○ Fast to create / Potentially slower query execution 
○ Tied to predicate expressions
○ Slower as number of deletes increase

Challenges
● Sequencing deletes with inserts
● Performance
● Eventually reclaiming Storage 

Offset

21

31

67

104

Delete Vector with 
resolved row ids

user_id IN (123,456)

Delete Predicate
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Data Layout optimization
Object Storage is write once: write new objects, but not modify existing
⇒ Rewrite objects overtime (better organized, garbage collect, etc)

Object Store 

2. objects are compacted, 
garbage collected 

3. Old files removed

1. New data arrives in 
new object
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“Table Formats”
Metadata catalogs / stores are proprietary, add operational overhead. 
Use object store to store metadata (cost of increased planning latency)
⇒ Standardize describing what files make up a table
Examples:

Apache
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“Table Formats”
Separate Data from Metadata
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“Table Formats”
Classic case of solve the problem with a layer of indirection

001

1. Current list of files stored in 
one object, used by current 

queries

2. New file is written

3. List file is updated 
atomically, updating the 

pointers. 4. Objects not used 
in future queries

002
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Table Formats

Adds extra layer(s) of indirection

Apache
Still needs a catalog 

to find the root 
metadata file 🤔

Not 100% clear to me 
why this can’t be its 

own file
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Object cache
Object storage latency, unpredictability, and cost per access 
⇒ Reduce via in cluster caches

Credit: Xiangpeng Hao, UW Madison

Cache ComputeObject store

Cluster network latency 
(<1ms)

Object store latency 
(100-200ms)

Access cost (high) Access cost (free)

https://xiangpeng.systems/


|  © Copyright 2025,  InfluxData41

Object cache: Common Topologies

CIDR 2025: The Five-Minute Rule for the Cloud: Caching in Analytics Systems 

Compute nodes each have their 
own independent cache

http://andrew.nerdnetworks.org/other/CIDR_2025_Cloud_5_Minute_Rule.pdf
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Object cache: Common Topologies

CIDR 2025: The Five-Minute Rule for the Cloud: Caching in Analytics Systems 

Compute nodes cooperatively 
manage a distributed cache

http://andrew.nerdnetworks.org/other/CIDR_2025_Cloud_5_Minute_Rule.pdf
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Object cache: Common Topologies

CIDR 2025: The Five-Minute Rule for the Cloud: Caching in Analytics Systems 

Separate nodes manage the 
cache in a distributed system

http://andrew.nerdnetworks.org/other/CIDR_2025_Cloud_5_Minute_Rule.pdf
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Object cache++
If you have a cache anyways, opportunities for transcoding

Cache Compute

SQL 
(compute) OutputTranscoded SQL 

(cache)Object store

Apply domain specific pushdown / 
special sauce 🥫here 

Credit: Xiangpeng Hao, UW Madison

https://xiangpeng.systems/
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Object cache++
Example: https://github.com/XiangpengHao/liquid-cache  

Disclosure: I am an advisor to this project

Fetch parquet data, but cached 
in a custom in memory format

https://github.com/XiangpengHao/liquid-cache


Liquid Cache – ClickBench Q22

SELECT 
"SearchPhrase", 
MIN("URL"), 
MIN("Title"), 
COUNT(*) AS c, 
COUNT(DISTINCT "UserID")
FROM hits 
WHERE 
"Title" LIKE '%Google%’ 
AND 
"URL" NOT LIKE '%.google.%' AND 
"SearchPhrase" <> ’’ 
GROUP BY "SearchPhrase" 
ORDER BY c DESC 
LIMIT 10;
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Future Directions / Predictions
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Increased adoption and interest in Open Formats

Specifically: Apache Parquet and Apache Iceberg

Implication: the classic business model of being the data platform that 
has huge data gravity (hard to move) may be changing

⇒ (Startup) Opportunities for many new specialized engines, etc.

          Object Store …

Catalog information stored in 
Open format on Object store 
(e.g. Apache Iceberg)

Data stored in Apache 
Parquet files on object store



|  © Copyright 2025,  InfluxData49

Further disaggregation
Currently have disaggregated storage:
● Storage 
● Memory + compute

Predict further disaggregation of memory from compute:
● Storage
● Memory (cache)
● Compute
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Disaggregated Memory/Cache (2030s) Conjecture

Object Store 

Driven by 
● Serverless 

(stateless) 
processing, 

● High bandwidth 
interconnect

● Demand for 
interoperability

…Apache
Parquet

Catalog stored in Open 
format on Object store 
(e.g. Apache Iceberg)

Engine

Catalog

…Engine Engine

Elastically scalable 
processing plane 
(CPU intensive)

Relevant catalog 
information cached 
locally

Catalog Cache

Cache

Elastically scalable 
data cache 
(memory intensive)Cache…

Data + Catalog 
stored in open 
formats shared 
across systems

Early signs

CPU

STORAGE

MEMORY
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Thank you!
Questions?


