@ influxdata”

Cloud Data Lakes

..0Or “LakeHouse” N
..Or “Open Data Lake”

'm\ W hw

Andrew Lamb | Staff Engineer, InfluxData

April 17, 2025, Boston University Guest Lecture, CS-561

https://bu-disc.github.io/CS561/

@ influxdato®

> 22 (Pyears in enterprise software
development

Oracle: Database (2 years)

DataPower: XSLT compiler (2 years)
Vertica: DB/ Query Optimizer (6 years)
Nutonian/DataRobot: ML Startups (7 years)

InfluxData: InfluxDB 3.0, Arrow, DataFusion
(5 years)

Andrew Lamb

Staff Engineer

MIT VI-2 2002, MEng 2003
InfluxData g

Outline

e Why this topic is important
e Database Architectures through the Ages
e Trends driving the move “to the cloud”

e Disaggregated Databases, and common architecture features

@ influxdata®

Context:

03

]

Lakehouse: A New Generation of Open Platforms that Unify
Data Warehousing and Advanced Analytics

Michael Armbrust’, Ali Ghodsi'?, Reynold Xin', Matei Zaharia*
'Databricks, 2UC Berkeley, *Stanford University

Abstract

This paper argues that the data warehouse architecture as we know
it today will wither in the coming years and be replaced by a new
architectural pattern, the Lakehouse, which will (i) be based on open.
direct-access data formats, such as Apache Parquet, (ii) have first-
class support for machine learning and data science, and (iii) offer
state-of-the-art performance. Lakehouses can help address several
major challenges with data warchouses, including data staleness,
reliability, total cost of ownership, data lock-in, and limited use-case
support. We discuss how the industry is already moving toward
Lakehouses and how this shift may affect work in data management.
We also report results from a Lakehouse system using Parquet that
is competitive with popular cloud data warchouses on TPC-DS.

1 Introduction

‘This paper argues that the data warehouse architecture as we know
it today will wane in the coming years and be replaced by a new
architectural pattern, which we refer to as the Lakehouse, char-
acterized by (i) open direct-access data formats, such as Apache
Parquet and ORC, (ii) first-class support for machine learning and

data science workloads, and (iii) state-of-th
The history of data warchousing started with helping business
leaders get analytical insights by collecting data from operational
databases into centralized warehouses, which then could be used
for decision support and business intelligence (BI). Data in these
ould be written with sch ite, which ensured

quality and g In this archi a small
subset of data in the lake would later be ETLed to a downstream
data warehouse (such as Teradata) for the most important decision
support and BI applications. The use of open formats also made
data lake data directly accessible to a wide range of other analytics
engines, such as machine learning systems [30, 37, 42).

From 2015 onwards, cloud data lakes, such as $3, ADLS and GCS,
started replacing HDFS. They have superior durability (often >10
nines), geo-replication, and most importantly, extremely low cost
with the possibility of automatic, even cheaper, archival storage,
e, AWS Glacier. The rest of the architecture is largely the same in
the cloud as in the second generation systems, with a downstream
data warchouse such as Redshift or Snowflake. This two-tier data
lake + warehouse architecture is now dominant in the industry in
our experience (used at virtually all Fortune 500 enterprises).

‘This brings us to the challenges with current data architectures.
While the cloud data lake and warehouse architecture is ostensibly
cheap due to separate storage (e.g., S3) and compute (e.g., Redshift),
atwo-tier architecture is highly complex for users. In the first gener-
ation platforms, all data was ETLed from operational data systems
directly into a warchouse. In today's architectures, data is first
ETLed into lakes, and then again ELTed into warchouses, creating
complexity, delays, and new failure modes. Moreover, enterprise
use cases now include advanced analytics such as machine learning,
for which neither data lakes nor warehouses are ideal. Specifically,
today’s data architectures commonly suffer from four problems:
Reliability. Keeping the data lake and warehouse consistent is
difficult and costly. Continuous :nl,mecnng .s n:qmmi to ETL data

that the data model was optimized for BI
We refer to this as the first generation data analytics platforms.

A decade ago, the first generation systems started to face several
challenges.First,they typically coupled compute and storage into an
on-p ppliance. This forced to provision and pay
for the peak of user load and data under management, which became
very costly as datasets grew. Second, not only were datasets growing
rapidly, but more and more datasets were completely unstructured,
e, video, audio, and text documents, which data warchouses could
not store and query at all.

To solve these problems, the second generation data analytics
platforms started offloading all the raw data into data lakes: low-cost
storage systems with a file API that hold data in generic and usu
open file formats, such as Apache Parquet and ORC {7
approach started with the Apache Hadoop my t [5), using the
Hadoop File System (HDFS) for ch Tage. The data lake was a
schema-on-read architectysa#Tal enabled the agility of storing any
data at low cost, but®A the other hand, punted the proble

il s publibed e e Commons Attribution License
(http-/icreativecoms). 11th Annual Conference on Innovative
Frearch (CIDR u“.m.myu 15,2021, Online.

between thy and make it

decision support and BL. Each ETL step also risks incurring failures
or introducing bugs that reduce data quality, c.g. duc to subtle
differences between the data lake and warehouse engines

Data staleness. The data in the warchouse is stale compared to

ted support for advanced analytics. Businesses wam to
ask predictive questions using their warchousing data, ¢
customers should I offer discounts to?” Dy ich research on
the confluence of ML and g Agement, none of the leading ma-
chine le: ems, such as TensorFlow, PyTorch and XGBoost,
“Well on top of warehouses. Unlike BI queries, which extract a
small amount of data, these systems need to process large datasets
using complex non-SQL code. Reading this data vi

is inefficient, and ctly access the internal

FTTHANA

amazon
REDSHIFT

—_—
VLTIO\ S¥% snowflake databricks

NETEZZA

& 4 &l @ & &6 @&

Machine Data Machine

B Reports Bl REPOHS Science Learning Bl Reports science Learning

== @@—'

Data Warehouses

Data Warehouses
i@‘g Metadata, Caching,and
= IndexingLayer
ETL

'_Data Lake

@é}nﬂx)@

Structured, Semi-structured & Unstructured Data

1
888

Structured Data

@IE]!ﬂ»)[%

Structured, Semi-structured & Unstructured Data

(a) First-generation platforms. (b) Current two-tier architectures. (c) Lakehouse platforms.

Figure 1: Evolution of data platform architectures to today’s two-tier model (a-b) and the new Lakehouse model (c).

This article is published under the Creative Commons Attribution License
(http://creativecommon; nnual Conference on Innovative
Data Systems Research (CIDR "21), January 11 15 2021,

influxdata®

-

Context: || o |

L5 9 GoogleMaps G Gmail ™ / Apache Arrow Dat.. @ Tiany

C = databrick 11 fficial-d P d.html

b 4
>oe snowflake Product v Solutions ~ Why ¢
83 | Q GoogleMaps G Gmail ™/ Apache Arrow Dat.. @ Tianyuli ar
databricks Why Databricks ~ Product ~ Solutions Resources ~ About BLOG CATEGORY v

g / Article

NOV12,2021

Databricks Sets Official Databrick Industry Benchmark
Data Warehousing and outperfd Integrity

Performance Record .

Detabricks . When we founded Snowflake, we set out to build an inno
account what had worked well and what hadn't in prior ar
leverage the cloud to rethink the limits of what was possil
system that “just worked." We knew there were many opf
innovate to lead on performance and scale, simplicity of a

Published: November 2, 2021 ata Warehousing 10 min read By Reynold Xin and Mostafa Mokhtar . .
In the same way that we had clarity about many things w¢

didn’t want to do. One such thing was engaging in benchr

Today, we are proud to announce that Databricks SQL has set a new world record Slalms divorced fronreabworld experiences: This practir

in 100TB TPC-DS, the gold standard performance benchmark for data
warehousing. Databricks SQL outperformed the previous record by 2.2x. Unlike
most other benchmark news, this result has been formally audited and reviewed
by the TPC council.

customers first.

Twenty years ago, the game of leapfrogging benchmark re
industry and both of us were on the front line fighting the
new world records were being set on a regular basis. Mos

. special settings, and very specific optimizations that woul
These results were corroborated by research from Barcelona Supercomputing

Center, which frequently runs benchmarks that are derivative of TPC-DS on
popular data warehouses. Their latest research benchmarked Databricks and
Snowflake, and found that Databricks was 2.7x faster and 12x better in terms of
price performance. This result validated the thesis that data warehouses such as
Snowflake become prohibitively expensive as data size increases in production.

Unfortunately, many such changes translated into additio
had little or even negative impact on customers’ day-to-d
Development teams are distracted from focusing on what
underserved with more complex technology. Anyone whc
the reality that the benchmark race became a distraction
reason why all the relevant players in the database indust

workloads, have largely stopped publishing new results.
Databricks has been rapidly developing full blown data warehousing capabilities

& databricks Why Databricks ~ Product ~ Solutions Resources About

Blog / Data Warehousing / Article

Snowflake Claims Similar
Price/Performance to os

Databricks, but Not So Snowflake Claims Si

| Price/Performance t
Fast! Databricks, but Not S

databricks

Published: November 15, 2021 Data Warehousing 6 min read By Mostafa Mokhtar, Reynold Xin and Matei Zaharia

On Nov 2, 2021, we announced that we set the official world record for the fastest Keep up wit
data warehouse with our Databricks SQL lakehouse platform. These results were
audited and reported by the official Transaction Processing Performance Council _
(TPC) in a 37-page document available online at tpc.org. We also shared a third-

party benchmark by the Barcelona Supercomputing Center (BSC) outlining that

Databricks SQL is significantly faster and more cost effective than Snowflake.

Recommen
A lot has happened since then: many congratulations, some questions, and some

sour grapes. We take this opportunity to reiterate that we stand by our blog post
and the results: Databricks SQL provides superior performance and price
performance over Snowflake, even on data warehousing workloads (TPC-DS).
Eliminating
Snowflake's response: “lacking integrity”? for Databas

Snowflake responded 10 days after our publication (last Friday) claiming that our

raculte wara “larkine intaoritv” Thov than nracantad thair nwn hancrhmarke

directly on data lakes, bringing the best of both worlds in one data architecture - Singe founding Snowflake. we have focused on our customers and their workloads. and not on synthetic

dubbed the data lakehouse. We announced our full suite of data warehousing
capabilities as Databricks SQL in November 2020. The open question since then
hac hean whathar an anan architactire hacad an a lakehaiica ran nravida tha -

5 Copyright 2025, InfluxData

MPP architecture

@ influxdata®

Table Format wars < (preview

Delta Lake: High-Performance ACID Table Storage over
Cloud Object Stores

Michael Armbrust, Tathagata Das, Liwen Sun, Burak Yavuz, Shixiong Zhu, Mukul Murthy,
Joseph Torres, Herman van Hovell, Adrian lonescu, Alicja Luszczak, Michat Swuakowskn
Michat Szafrariski, Xiao Li, Takuya Ueshin, Mostafa Mokhtar, Peter Boncz', Ali Ghod
Sameer Paranjpye, Pieter Senster, Reynold Xin, Matei Zaharia®
Databricks, ' *uc

erkeley,

Stanford University

deltar papsr -authors@databricks.com

ABSTRACT

Cloud object stores such as Amazon S3 are some of the largest

‘and most cost-effective storage systems on the planet, making them

an attractive target 1o store large data warchouses and data lakes.

Unfortunately, their implementation as key-value stores makes it i

ficult to achieve ACID transactions and high performance: mefadata

operions such s ising objects e expensive, and consistency
Del

s paper, we present
Source ACID table storage layer over cloud object sores initially
developed at Databricks. Delta Lake uses a transaction log that is
‘compacted into Apache Parquet forma to provide ACID propertes,
time travel, and significantly faster metadata operations for large
tabular dataset the bty o qicly seschbilions o tabe
partitions for those relevant (o a query). It also leverages this de-
820 provide Nighleel fesures Such as automatc daa lyout
optimization, upserts . and audit logs. Dela Lake tables
can be accessed from Apm\e ‘Spark, Hive, Presto, Redshift and
ther systems. DelaLake s deployed at Bousads of Databcks
customers that process exabytes of data per day, with the largest
instances managing ixnbyu— e daascts and iions of bjecs.
FVLDB Refernce Forn

“The major open source “big data” systems, including Apache Spark,
Hive and Presto 145, 52 421 support reding and witin (0 cloud
113
12], Commercial srvices including AWS Athen, Google BigQuery
and Redshift Spectrum (1, 29, 39] can also query directly against
these systems and these ope file formats.

Unforaunately, although many systems support reading and writ-
i o coud ot e scicvin peformatad bl e
stor making

most cloud object stores are merely key-value stores, with no cross-
key consistency guarantees, Their performance characteristics also
dille reatly rom distibutedflesystenns and reqi specil care

way
stores is using columnar file formats such as Parquet and ORC,
where each table s stored as a set of objects (Parquet or ORC
e, possily chuered inopanions” ty e el (g0
ach date) [45),
mepuble performance for scan workloads 25 fong 4 the object
y lasge. However,

, because

rmbrust et al. Delta
Cioud Ot Sores YLD 1302y 341 3424202,
'DOI: hups:/doi.org/10.147T8/3415478.3415560

1. INTRODUCTION
Cloud object stores such as Amazon S3 [4] and Azure Blob
It the largest used
Storage systems o the planet, holding exabytes of data for millions
of cusomers 6] Aprt o e ol adatsgs o louts
pryicl a5-you-go billing, economies of scale, and
et mcagemce 17, oot oot e especillyaacive

because they allow users

multi-object updates are not atomic, there is 1o bagen
gpeses: G exampe, i =y st spdtc mukil objects
in the table (e.g., remove the records about one user across

iable'sParquet) eaders will s parial pdates as b qnery

fm update query crashes, the table is in a corrupted state. Second,
for large tables with millions of objects, metadata operations are
expensive. For example, Parquet il include footers with min/max
staistis that can be used to skip reading them in selective queries
Reading such a footer on HDFS might take a few milliseconds, but
13 ey of bt dote 20 Mt et

sepantly:forexample, a use can sore .\pemb)(: of duta butonly
run a cluster (0 execute a query over it for a few hours

As a result, many organizations now use cloud object stores 1o

p d h d daa lakes.

skipping checks can take longer than the act

In our experience working with cloud customers, these consis-

tency and performance issues create major challenges for enterprise:

A e Mo el i e bty et o
bor

This work is licensed under the Creative Commons Auribution-
‘NonCommercial-NoDerivatives 4.0 ntemtional License. To view copy
of this licease, visit htp:lcreativecommens.orgficcnses/by-ne-nd/4. V. For

info@xidorg. Copyrightis held by the owner/author(s). Publicaion rights
licensed to the VLDB Endowment

Proceedings ofthe VLDB Endowmens, ol. 13, No. 12

ISSN 2150.6

'DOL: htps:idoi.org/10.14TTR/34 15478 3415560

they sers

i ablevideupdaes implement pevacy polices mn as
27):

e updats o reple pnneree e, Inouporae e rcoods

Anecdotal

cloud storage strategies (c.g., undoing the effect of a crashed update
job, or improving the performance of a query that reads tens of
thousands of objects).

DELTA LAKE

A €

Delta Lake from

databricks

* First mover,
better support

* Arguably
technically
superior

databricks

"Delta Lake: High-Performance ACID Table Storage over Cloud Object Stores

6 Copyright 2025, InfluxData

Apache

ICEBERG{Y

much faster / wider
adoption

* More Neutral
governance

among other
things championed
by snowflake

»

@ influxdata®

https://www.vldb.org/pvldb/vol13/p3411-armbrust.pdf

source

7

Databricks reportedly pai($5bflioain Tabular acquisition

Databricks Agrees to Ac
Tabular, the Com_pany

Fotnded | by the Original ™~
Creators of Apache Iceber

IEF Posted: 9:44 AM PDT - August 14, 2024

IN BRIEF

g4, 2024 -
— —
i R /
3
Share this post in| -

Databricks and Tabular will work together towards a joint vision of the open
lakehouse

SAN FRANCISCO — June 4, 2024 — Databricks, the Data and Al company, today
announced it has agreed to acquire Tabular, a data management company
founded by Ryan Blue, Daniel Weeks, and Jason Reid. By bringing together the
original creators of Apache Iceberg™ and Linux Foundation Delta Lake, the two
leading open source lakehouse formats, Databricks will lead the way with data
compatibility so that organizations are no longer limited by which of these
formats their data is in. Databricks intends to work closely with the Delta Lake
and Iceberg communities to bring format compatibility to the lakehouse; in the

IMAGE CREDITS:

ﬁ Maxwell Zeff

Databricks reportedly paid $2 billion in Tabular acquisition

ANDRIY ONUFRIYENKO / GETTY IMAGES

What if you didn’t have to choose a format?

databricks

e original creators of Delta Lake
and Apache Iceberg ake o
eroperap

The path to table format Accegs on demand

interoperability

* Firsf Name

Choosing the best unified platform for data,
analytics and Al is easy — it's lakehouse.
Choosing the right open table format for your
lakehouse? Not as easy.

*/Last Name

For most organizations, it's a daunting decision
that delays lakehouse adoption. The holdup
hurts your ability to capitalize on analytics and

* Company Email

Al * Company Name

short term, inside Delta Lake UniForm and in the long term, by evolving toward a
single, open, and common standard of interoperability. Databricks and Tabular
will work together towards a joint vision of the open lakehouse.

Analytics and Al giant Databricks reportedly paid nearly $2 billion when
it acquired Tabular in June, a startup that was only doing $1 million in
annual recurring revenue, according to Bloomberg. That’s a pretty
outrageous exit multiple, and it was purportedly fueled by a battle
between Databricks and Snowflake.

Tabular had over $30 million in funding, backed by Altimeter Capital,
Andreessen Horowitz and Zetta Venture Partners, when it was acquired

Copyright 2025, InfluxData

source

What if you didn’t have to choose a format?

Join us for a conversation about Jabjlitle

interoperability with Michael Armbrust, original
creator of Delta Lake, and Ryan Blue, an original
creator of Apache Iceberg. They'll discuss the
state of open table formats and how Databricks
is solving interoperability.

* Phone Number

* Country

United States v

P __

source

https://www.databricks.com/resources/webinar/beyond-lakehouse-table-formats
https://techcrunch.com/2024/08/14/databricks-reportedly-paid-2-billion-in-tabular-acquisition/
https://www.databricks.com/company/newsroom/press-releases/databricks-agrees-acquire-tabular-company-founded-original-creators

Roadmap: Data 3.0 in the Lakehouse Era

Enterprise data architecture is constantly evolving

Late 1980s - Data 1.0: Data-driven

Late 2000s — Data 2.0: Cloud
[}

Early 2010s — Data 2.1: Big Data
Py

2020s — Data 3.0: Al/ML

|

|

< Enterprise Data Warehouse

IBM researchers first introduced
the term "business data
warehouse". This concept was
intended to provide an
architectural model for the flow of
data from operational systems to
decision support environments (i.e.
to perform business analytics and

reporting).
LN 5illinmon
w (Prism
b Systems)

N) NETEZZA VE?TI(‘A

ETHANA

Ralph
Kimball
(Redbrick)

TERADATA

|
.| Cloud Data Warehouse

Cloud unlocked a virtually infinite
supply of elastic computing
resources that could be scaled
up/down and purchased in
increments. Enterprises could
leverage the cloud's scale out
architecture to deploy massive
parallel processing compute clusters
that could process huge data sets.

. amazon
REOSHIFT

ORACLE
Exadata Cloud Service

Google
P v

(3 -l

;4'{< snowflake FIREBOLT

< Enterprise Data Lake

The explosion in data volumes
and growing interest in the value
of data outside of a structured
format fueled the emergence of
data lake architecture — a
centralized system to house raw
data in a variety of formats.

CLOUDZERA // ¢ iEnomm
< e
databricks /7 Sp Qrl K

Wl Microsoft &3 Google Cloud
MWW Azure Datspro

2 & .
@/ dremio i &

n)

What's in store?

We're quickly moving
beyond the modern
data stack, catalyzed
by:

1) The Al paradigm
shift (see our Al infra
roadmap)

2) A tectonic
architectural
revolution with the
rise of interoperability
through the data
lakehouse

Roadmap: Data 3.0 in the Lakehouse Era - Bessemer Venture Partners (3/25/2025)

Copyright 2025, InfluxData

@

nfluxdata®

https://www.bvp.com/atlas/roadmap-data-3-0-in-the-lakehouse-era

Single Node Servers (1990s)

Server Software

Catalog

Tightly integrated
engine, storage
and catalog

CPU + MEM +
STORAGE

Data + Catalog
stored in
proprietary
formats on local
file systems

)

PostgreSQL

SQL Server onacic

Exemplars
Driven by
e Minicomputer »
Servers
e |ocal hard drive
capacity

@ influxdata®

Server Software Server Software Server Software
Catalog Catalog \ Catalog
Engine Engine Englne‘
(D2te comiog J| ' [Loata cotaog J | ! Data (D2te cataog J | |
CPU + MEM + \ CPU+MEM+ ! CPU+MEM+ |
STORAGE 1 STORAGE E STORAGE E
Local Network M ' t

communicate over
commodity
network

MPP / Shared Nothing (2000s)

o PARACCEL

Tightly integrated

; HBRSE Greenplum
engine, storage
and catalog /W
cassandra
Data stored on
amazon
each node, Exem plars . REDSHIFT
next to
compute
Driven by
Propriety Catalog

and Data format Fast local networks

“Inexpensive” (10x

cheaper) commodity
Linux servers

()
Nodes

@ influxdata®

Arrival of the “Cloud”

@ influxdata®

Object Stores: What Microsoft Azure . - AWS

What: “Infinite FTP server in the sky”
What: Distributed Key/Value stores MINIO e

Google Cloud
Storage

Basic CRUD interface:

GET <URL> - Bytes

PUT <URL> Bytes

LIST <PREFIX> (lists keys)
DELETE <URL>

@ influxdata®

Object Stores: Why — ‘Azjq"rje\ “TT'IA"\ZNs

Why give up nice File system APIs
E.g. can’t append or modify parts of objects MINIO a
Google Cloud
Storage

Durability (3x replication, cross AZ, handled transparently)
“Infinite” scale + capacity

cheap ($23/TB/month*)
Pay per access (not per byte): $0.40/million requests

= Compelling to outsource persistent storage to Object Stores

@ influxdata®

https://aws.amazon.com/s3/pricing/

ObJeCt StOI’eS Ugly MicrosBolggégrL;gi

Significant latency / latency unpredictability

1KiB

4 MiB
>=100 >=150 777 = >=4007T ¥ i MINIO

1 MiB
757 2o - %Y ‘ 300 - “;i 400+ms for some queries (10MB/s)
il T T % S EamE 300ms avg (P95) 13.3MB/sec

so—l i : ¥
’E‘ 25—%“? B] T 100’% b % i
o 0 0 0 = 175ms avg (P50) 22.8MB/sec
g 8 MiB 16 MiB 32 MiB
8 sms00 =800 - - — >=1600 -
3 .

375 X

2509 -, é

600 5 \': 1200 H :

~ 400 800 - % \

e % é é é 1 % 800ms avg (P50) 40MB/sec
w2 TE % 2001 4001 3+ ;e ".‘:

co\f\\ D 2 x\°° \co\? R x\°“x\°° @\&co\f x\°“x\°
“b\ «o\fb Q,N ,‘ ?" ,‘0\5 \3\ 'ﬂ &\,)\ «0\,2' ‘b\\ ,‘ b
<« o0 Q\ﬁ‘" ° <s° o

Source: Exploiting Cloud Object Storage for High-Performance Analytics

14 Copyright 2025, InfluxData

i

UL
I

AWS

Google Cloud
Storage

@ influxdata®

https://vldb.org/pvldb/vol16/p2769-durner.pdf

Blob Storage

Object Stores: Ugly Microsoft Azure ﬁ., 2w

Significant latency / latency unpredictability

8 weeks (Jul 4, 2022 - Aug 29, 2022) 1 week 10
100 4 ~15% of points at ~95 MiB/s 100 4~10% of points_a't ~95 MiB/s Google Cloud
- e@mce T~ P A P >s SR Storage

~
wn
L

25 \ Not isolated from

other workloads:
observed bandwidth
varies cyclically

%)
W
L

Per Object
Bandwidth [MiB/s]

Source: Exploiting Cloud Object Storage for High-Performance Analytics

. o
15 | © Copyright 2025, InfluxData &! influxdata

https://vldb.org/pvldb/vol16/p2769-durner.pdf

ObJeCt Stores Ugly Microsoft Azure

Blob Storage 01

Isn’t as cheap as it turns out, more expensive over time {P

Amazon S3 Historical Prices (2008-2025) MINIO
$0.200
Google Cloud
Storage
g $0.150
O 40150 $0.140 -
= e 2 no price change
Q <
> $0. .
5 $0.100 Vi $0.085 |n the |aSt 10 yearS...
@
8 $0.050 i
ks L\sofn $0.023
a ° e
$0.000
2010-01-01 2015-01-01 2020-01-01 2025-01-01
Date
e Source: Copy of Amazon S3 Historical Prices (2008-2025) @ influxdata’

https://docs.google.com/spreadsheets/d/1XZq6_XTSsf75XG8nIarNxp2S_8xxTuMw7ziUJhitTRY/edit?gid=0#gid=0

AN Il

Elastic Compute: What ‘“"

Engine

What: “Rent VM’s by the day, hour or minute (now)” Amazon EC2
Pricing: https://aws.amazon.com/ec2/pricing/on-demand/

Example: t2.xlarge: 4 vCPU 16GB RAM @ $0.1856/hour)
0:00:00 Start VM (start billing)
3:25:24 Stop VM (stop billing)

36060 + 2560 + 24 = 12324 seconds
12324 seconds / 3600 seconds/hour * $0.1856/hour = $0.64

@ influxdata®

https://aws.amazon.com/ec2/pricing/on-demand/

Elastic Compute: Why — ggm—rm=g

No upfront capital investment

= Much more efficiently use
hardware

Security groups 4 Snapshots

VS

Launch instance
To get started, launch an Amazon EC2 instance,

which is a virtual server in the cloud.

(Launch instance =

©
Note: Your instances will launch in the United States
(Oregon) Region Zc
Zo

lctacwan alacaaa

Personal Anecdote: budgeting ™ $250K 6 months

HP DL380s (popular midrange server in late 2000s)

in advance for server clusters to test on & influxdata’
18 Copyright 2025, InfluxData Ebav “Lot Of 21 HP PI‘O|IaI’1t DL380” ‘., mnriuxaata

https://www.ebay.com/itm/165293122713?chn=ps&_trkparms=ispr%3D1&amdata=enc%3A1RVM2D3kcSW6Ar20JoGQPJg2&norover=1&mkevt=1&mkrid=711-117182-37290-0&mkcid=2&mkscid=101&itemid=165293122713&targetid=2320093655185&device=c&mktype=pla&googleloc=1018127&poi=&campaignid=21222258394&mkgroupid=164713660992&rlsatarget=pla-2320093655185&abcId=9408285&merchantid=110358750&gad_source=1&gclid=CjwKCAjwtdi_BhACEiwA97y8BITdu4GQ2RrbP3n09snvZK5RoUoFL62AGQNS40YDNgM7P06qxp4kYBoCb28QAvD_BwE

Elastic Compute: The Ugly ‘Il"

Engine
Overabundance leads to waste: ¢&” Amazon EC2

Easy to spend
Developers often leave machines running by accident &
Rise of cost optimization software

Personal Anecdote: $1m/month AWS bills

@ influxdata®

Elastic Compute: The Ugly

Kinda crappy compared to your own machine
Sequential Write Throughput:
e My Macbook Pro 1TB SSD: >1GB/s -

- -

e GCPVM*4SSD @ 1.5TB RAID 0:815 MB/s

* ¢3-standard-22-Issd (22 vCPUs, 88 GB Memory)
4 “local”SSDs, RAIDO, Intel Sapphire Rapids x86_64

Test the IO throughput using “dd°
dd if=/dev/zero of=/data/testl.img bs=1G count=10 oflag=dsync

10737418240 bytes (11 GB, 10 GiB) copied, 13.179 s, 815 MB/s

Read more: tpchgen-rs World’s fastest open source TPC-H data generator, written in Rust - Apache DataFusion Blog

20 Copyright 2025, InfluxData

REDN
- o=
- ‘ = AzureVM
- -

w &2

GCP Compute
Engine

Amazon EC2

MacBook Pro

ann
GCP Compute Engine

@ influxdata®

https://datafusion.apache.org/blog/2025/04/10/fastest-tpch-generator/

Cloud Database Architecture
“Disaggregated Storage Design”

@ influxdata®

Disaggregated Architectures (2010s)
“Cloud Data Warehouse” @ influxdb,

db £l~
< snowflake
Catalog stored in .

Catalog proprietary format (e.g. m Ti D B

K-V store)

- @
Yo Google

/ e TTe-l — Big Query Cloud Spanner
/ N T Exemplars
Y ¥ K Elastically scalable
. _ . ' , - processing plane
Engine g Engine Engine ygsl Dri b
. , riven by
| ; _.~CPU + MEM e Hourly VM rental
\ ; e 10x cheaper
N e Data + Catalog in
Voo STORAGE proprietary formats storage (AWS S3)

on cheap durable
object store

r v |
Proprietary Ig @ Ig Ig i Not accessed by other.
! file format ! systems
Obiject Store : Not shared across
""""""""""""""""""""" systems @ influxdata®

————————————

Cloud Data Lakes (2020s)

Constellation of

[Data + Catalog Caches] [Data + Catalog Caches] [Data + Catalog Caches | disaggregated SyStemS,
@l || @ |- | e @l || @ |- | (e @l || @ |- | @) e§Ch focused on
A — — different use case
IR S =T Each includes use case specific
e Catalog + Data Caching /

precomputation / engines

Catalog information stored in

Data stored in Apache A / U (((Jeper1Afoar<r:1:1aet EZ&ere)Ct store
Parquet files on object store 9-Ap 9

.7 --" N
PPt ~ \\
Lz = +
A |
[Data + Catalog Caches] [Data + Catalog Caches |
@ @] [& @ |- [@

@ influxdata®

Common Features of Disaggregated
Databases

@ influxdata®

Metadata Store (“Catalogs”)

Object storage latency (100s of ms) is too high for planning for many
workloads (both read and write)

No multi-object transactions
= metadata ‘catalog’ describes data layout in object store

3. Execution reads/writes
data to object store

Request .
, Compute .. Object Store
9 1. Request 2. Request planning uses
. : I] h
arrives 5 catalog to 'dete/tmlne where Data is stored in Object
User :: data is in object store Store
v
Catalog
Catalog stores metadata - . .
@ influxdata®

about data in object store

Metadata Store (“Catalogs”)

Popular choices: === FoundationDB

e Key Value store (FoundationDB)
e Traditional transactional SQL systems (postgres)

PostgreSQL

Typical Contents

e Schema: tables, columns, types, etc.

e Partitioning: partitions, partition values, etc.

e File Locations: paths on object store

e Pruning: per-column min/maxes (Small Materialized Aggregates /
Zone Maps), Bloom Filters, etc.

Reference: How FoundationDB Powers Snowflake Metadata Forward
. I @ influxdata®

https://www.vldb.org/conf/1998/p476.pdf
https://www.snowflake.com/blog/how-foundationdb-powers-snowflake-metadata-forward/

Separate Scalable Operations

Separate major responsibilities into separately scalable sets of VMs

Typical Components:

« Write / Ingestion
- Query
- Reorganization (compaction, garbage collection, etc)

Why: scale capacity along with demand (e.g scale writers up to handle bursts)

Industrial Examples:

https://docs.snowflake.com/en/user-quide/intro-key-concepts (virtual warehouses)
https://www.datadoghg.com/blog/engineering/introducing-husky/
https://www.influxdata.com/blog/influxdb-3-0-system-architecture/

e @ ®
Copyright 2025, InfluxData %’ Il'lﬂuxddtd

https://docs.snowflake.com/en/user-guide/intro-key-concepts
https://www.datadoghq.com/blog/engineering/introducing-husky/
https://www.influxdata.com/blog/influxdb-3-0-system-architecture/

Separate Scalable Operations: Example

Ingest Worker
|
Object Store
Ingest Tier
Query Catalog
1 Query Worker e
are tate

Query Tier

@ influxdata®

Separate Scalable Operations: Example

Ingest Worker

S

Users |

Object Store

“Infinitely scalable”

Ingest Tier

Query ™. Catalog

4 Query Worker
Shared State

Query Tier

Increase write workload leads to more ingest and compactor workers, no need to increase query tier

@ influxdata®

Write Buffering

Large per-request overhead to object store ($$ and latency)
= Buffer in ram + locally to amortize cost across many requests

1. Writes are

collected in _

memory buffer 2. Buffer is

periodically

.................. flushed to object
"""""""""""""""""""""""""""""""""""" store
~~~~~~~~~~~~ Object Store
Write | L T
In Memory Buffer TN -
Ingest Worker

- . .
30 Copyright 2025, InfluxData %! influxdata



Write Buffering / Local Storage

2. Bufferis
periodically

flushed to local ’ -
nvme 0
“ |
1 AN
~ A

Local NVMe

3. Files is

periodically )
moved to object

Sstore

« Object Store

1. Writes are
collected in
memory buffer

influxdata®

In Memory Buffer
Ingest Worker
@

Copyright 2025, InfluxData

31



Write Buffering

Challenges:

e Durability of data before it is written to object store
e Time to become readable (is memory in buffer readable?)

Examples:

® Monarch: Google's Planet-Scale In-Memory Time Series Database
e Architecture | WarpStream
e Architecture | SlateDB

@ influxdata®


https://research.google/pubs/monarch-googles-planet-scale-in-memory-time-series-database/
https://docs.warpstream.com/warpstream/overview/architecture
https://slatedb.io/docs/architecture/

Deletes (+ Updates) via Tombstones

Write once (no updates) storage = Delete / Update writes new things

DELETE .. WHERE ..
............... 1 Ingest Worker .
LU d 2. A tombstone™.
- USersenas marker is written />~
delete requests as a new file*
User

Query Worker Object Store

4. Results have deleted

rows removed. 3. Query combines data
and tombstone during

query @ influxdata®



Deletes (+ Updates) via Tombstones

Variations: Offset
e Delete Vectors (row ids / offsets deleted)
. . 21
o Often stored in objects
o Time consuming to create / Faster query execution 31
e Stored Predicates
o Often stored in meta store 67
o Fast to create / Potentially slower query execution
o Tied to predicate expressions 104
o Slower as number of deletes increase
Delete Vector with
Cha I |engeS resolved row ids

® Sequencing deletes with inserts
e Performance
e Eventually reclaiming Storage

user id IN (123,456)

Delete Predicate

@ influxdata®



Data Layout optimization

Object Storage is write once: write new objects, but not modify existing
= Rewrite objects overtime (better organized, garbage collect, etc)

1. New data arrives in
new object

2. objects are compacted,
garbage collected

3. Old files removed

Object Store @ influxdata’



“Table Formats”

Metadata catalogs / stores are proprietary, add operational overhead.
Use object store to store metadata (cost of increased planning latency)
= Standardize describing what files make up a table

Examples:

IAgclhEeBERGU A
YN

@
36 Copyright 202 5, InfluxD ata % nﬂuxdatd




“Table Formats” Wridoi @

Separate Data from Metadata A

DELTA LAKE

DATA METADATA

=

Parquet
data_001.*

ZZ ‘ v
/'//// i
arque i | 7%

quet

data_n.*

P

— . ®
3333333 ight 2025, InfluxData %’ |nfluxd0t0



“Table Formats”

Classic case of solve the problem with a layer of indirection

1. Current list of files stored in
one object, used by current
queries

3. List file is updated
atomically, updating the
pointers.

4. Objects not used
in future queries

2. New file is written

@ influxdata®



Still needs a catalog
to find the root

Table Formats

dbl.tablel J Not 100% clear to me
why this can’t be its

I C E B E R G u current metadata pointer
own file
metadata layer TN BRI
e N
metadata file N

Adds extra layer(s) of indirection
metadata file /
@ l‘\\ s0 s1 //'I
manifest manifest
list list

manifest
file

manifest
file

manifest
file

data layer

data files

data files
ixdata”

data files

39 Copyright 2025, InfluxData



Object cache

Object storage latency, unpredictability, and cost per access
= Reduce via in cluster caches

Object store ) ( Compute
| — 1| DOOE
y L\
Object store latency Cluster network latency
(100-200ms) (<1ms)
Access cost (high) Access cost (free)

Credit: Xiangpeng Hao, UW Madison

- . o
40 Copyright 2025, InfluxData %! influxdata


https://xiangpeng.systems/

Object cache: Common Topologies

Compute 1 Compute 2 Compute 3
DB

n
8 Mem Cache  Memory

-~ ~
~\~ ~
~ o ~
~ o ~
-~ ~
\NN ~
-~ ~
-~
=
=~
~~

-~
-~
=
-~
-~
-~
—~—
—~—
.
¥

Compute nodes each have their
own independent cache

CIDR 2025: The Five-Minute Rule for the Cloud: Caching in Analytics Systems

— . ®
4 Copyright 2025, InfluxData %’ |nfluxd0t0


http://andrew.nerdnetworks.org/other/CIDR_2025_Cloud_5_Minute_Rule.pdf

Object cache: Common Topologies

Compute 1 Compute 2 Compute 3

— DB - DB
9 Mem Cache = Memory @ Mem Cache  Memory é
T oy —
-. ‘ ..

Object Store

Compute nodes cooperatively
manage a distributed cache

CIDR 2025: The Five-Minute Rule for the Cloud: Caching in Analytics Systems

— . ®
42 Copyright 2025, InfluxData %’ |nfluxd0t0


http://andrew.nerdnetworks.org/other/CIDR_2025_Cloud_5_Minute_Rule.pdf

Object cache: Common Topologies

Compute 1 Compute 2 Compute 3
DB DB N:
\ A /

. R s vt s Soinians

. Mem Cache * - _ Mem Cache =

8 B Tewes s > ‘\ 8
L - - - ) ‘_J\\
~o - \
Object Store RRE S AN
SN o \
S~o N

\
Separate nodes manage the
cache in a distributed system

CIDR 2025: The Five-Minute Rule for the Cloud: Caching in Analytics Systems

— . ®
43 Copyright 2025, InfluxData %’ |nfluxd0t0


http://andrew.nerdnetworks.org/other/CIDR_2025_Cloud_5_Minute_Rule.pdf

Object cache++

If you have a cache anyways, opportunities for transcoding

Credit: Xiangpeng Hao, UW Madison

44

e

Object store

~

SEEE
\ y

Copy!

right 2025, InfluxData

(

— —{ -
compute

o

Apply domain specific pushdown /
special sauce [ here

Qmputeﬁﬁi@k@)

/)

@ influxdata®


https://xiangpeng.systems/

Object cache++

LiquidCache

GCS

S3

. >100ms LiQUidcaChe
Fimtm{S|S

T S

AzBlob

Fetch parquet data, but cached
in a custom in memory format

Disclosure: | am an advisor to this project

45 Copyright 2025, InfluxData

<1lms

Example: https://qgithub.com/XiangpengHao/liguid-cache

DataFusion

oo

DataFusion

oooes

DataFusion

Qoo

10x { cost | lotency } reduction

@ influxdata®


https://github.com/XiangpengHao/liquid-cache

Latency (ms)

Liquid Cache - ClickBench Q22

ClickBench Q22 (lower is better) SELECT
1600 Latency (ms) "Sea:cthr‘ase" 4
mm Memory Consumption (GB) MIN("URL ):'
Sion 1386.5 ms 24.8 GB . MIN("Title"),
COUNT(*) AS c,
COUNT(DISTINCT "UserID")
1200 ~ = FROM hits
r20S | WHERE
1000 - s "Title" LIKE '%Google%’
£ AND
800 1 r15 3 "URL" NOT LIKE '%.google.%' AND
8 "SearchPhrase" < '’
— g GROUP BY "SearchPhrase"
10 & ORDER BY c DESC
402.0 ms 434.0 s = LIMIT 10;
e 5.3 GB 5.6 GB
L5
200 A
0- Lo

Cache Parquet (Local) Cache Arrow (Local) LiquidCache



Future Directions / Predictions

@ influxdata®



Increased adoption and interest in Open Formats

Specifically: Apache Parquet and Apache Iceberg

Catalog information stored in

Open format on Object store
(e.g. Apache Iceberg)

| Object Store

Implication: the classic business model of being the data platform that
has huge data gravity (hard to move) may be changing

= (Startup) Opportunities for many new specialized engines, etc.

@ influxdata®



Further disaggregation

Currently have disaggregated storage:

e Storage
e Memory + compute

Predict further disaggregation of memory from compute:

e Storage
e Memory (cache)
e Compute

@ influxdata®



Disaggregated Memory/Cache (2030s) Conjecture

LiquidCache

= Relevant catalog
Catalog Catalog Cache & -r-F-.__ information cached
A locally - ,
/ ----- BRI Elastically scalable .
! . > processing plane Ea rIy signs
Engine (@l Engine @) Engine (@l N (CPU intensive)
. CPU Driven by
7T T . ! Elastically scalable @ Serverless
- = i data cache
Cache g, eoe Cache =ﬁ MEMORY" (memory intensive) (StateIeSS)
: : / processing,
e High bandwidth
STORAGE/ . gh bandwidt
- / Data + Catalog Interconnect

stored in open e Demand for
formats shared

across systems interoperability

’/
v

'C.a.talog stored in Open

' format on Object store
ObJeCt Store (e.g. Apache Iceberg)

Apache
Parquet

@ influxdata®



Thank you!
Questions?

@ influxdata®



