
| © Copyright 2025, InfluxData1

Cloud Data Lakes
..Or “LakeHouse”
..Or “Open Data Lake”

Andrew Lamb | Staff Engineer, InfluxData

April 17, 2025, Boston University Guest Lecture, CS-561

https://bu-disc.github.io/CS561/

| © Copyright 2025, InfluxData2

i n f l u x d a t a . c o
m

Andrew Lamb
Staff Engineer

InfluxData

> 22 😱years in enterprise software
development

Oracle: Database (2 years)

DataPower: XSLT compiler (2 years)

Vertica: DB / Query Optimizer (6 years)

Nutonian/DataRobot: ML Startups (7 years)

InfluxData: InfluxDB 3.0, Arrow, DataFusion
(5 years)

MIT VI-2 2002, MEng 2003

| © Copyright 2025, InfluxData3

Outline
● Why this topic is important

● Database Architectures through the Ages

● Trends driving the move “to the cloud”

● Disaggregated Databases, and common architecture features

| © Copyright 2025, InfluxData4

Context: 🍿

| © Copyright 2025, InfluxData5

Context: 🍿

| © Copyright 2025, InfluxData6

Table Format wars ⚔ (preview)

"Delta Lake: High-Performance ACID Table Storage over Cloud Object Stores"

Delta Lake from
databricks

* First mover,
better support

* Arguably
technically
superior

* much faster / wider
adoption

* More Neutral
governance

* among other
things championed
by snowflake

Apache

vs

https://www.vldb.org/pvldb/vol13/p3411-armbrust.pdf

| © Copyright 2025, InfluxData7

��

source source

source

https://www.databricks.com/resources/webinar/beyond-lakehouse-table-formats
https://techcrunch.com/2024/08/14/databricks-reportedly-paid-2-billion-in-tabular-acquisition/
https://www.databricks.com/company/newsroom/press-releases/databricks-agrees-acquire-tabular-company-founded-original-creators

| © Copyright 2025, InfluxData8

Roadmap: Data 3.0 in the Lakehouse Era

Roadmap: Data 3.0 in the Lakehouse Era - Bessemer Venture Partners (3/25/2025)

https://www.bvp.com/atlas/roadmap-data-3-0-in-the-lakehouse-era

| © Copyright 2025, InfluxData9

Single Node Servers (1990s)

Engine

Catalog

Server Software

Exemplars

Data Catalog

Tightly integrated
engine, storage
and catalog

Data + Catalog
stored in
proprietary
formats on local
file systems

CPU + MEM +
STORAGE

Driven by
● Minicomputer →

Servers
● Local hard drive

capacity

| © Copyright 2025, InfluxData10

MPP / Shared Nothing (2000s)

Exemplars

…

Local Network

Driven by
● Fast local networks
● “Inexpensive” (10x

cheaper) commodity
Linux servers

Engine

Catalog

Server Software

Data Catalog

Data stored on
each node,
next to
compute

Propriety Catalog
and Data format

Nodes
communicate over
commodity
network

Engine

Catalog

Server Software

Data Catalog

Engine

Catalog

Server Software

Data Catalog

CPU + MEM +
STORAGE

CPU + MEM +
STORAGE

CPU + MEM +
STORAGE

Tightly integrated
engine, storage
and catalog

| © Copyright 2025, InfluxData11

Arrival of the “Cloud”

| © Copyright 2025, InfluxData12

Object Stores: What
What: “Infinite FTP server in the sky”
What: Distributed Key/Value stores

Basic CRUD interface:
GET <URL> → Bytes
PUT <URL> Bytes
LIST <PREFIX> (lists keys)
DELETE <URL>

Google Cloud
Storage

AWS

| © Copyright 2025, InfluxData13

Object Stores: Why
Why give up nice File system APIs

E.g. can’t append or modify parts of objects

• Durability (3x replication, cross AZ, handled transparently)
• “Infinite” scale + capacity
• cheap ($23/TB/month*)
• Pay per access (not per byte): $0.40/million requests

Google Cloud
Storage

AWS

⇒ Compelling to outsource persistent storage to Object Stores

https://aws.amazon.com/s3/pricing/

| © Copyright 2025, InfluxData14

Object Stores: Ugly
Significant latency / latency unpredictability

Google Cloud
Storage

AWS

175ms avg (P50) 22.8MB/sec

300ms avg (P95) 13.3MB/sec

400+ms for some queries (10MB/s)

800ms avg (P50) 40MB/sec

Source: Exploiting Cloud Object Storage for High-Performance Analytics

https://vldb.org/pvldb/vol16/p2769-durner.pdf

| © Copyright 2025, InfluxData15

Object Stores: Ugly
Significant latency / latency unpredictability

Google Cloud
Storage

AWS

Not isolated from
other workloads:
observed bandwidth
varies cyclically

Source: Exploiting Cloud Object Storage for High-Performance Analytics

https://vldb.org/pvldb/vol16/p2769-durner.pdf

| © Copyright 2025, InfluxData16

Object Stores: Ugly
Isn’t as cheap as it turns out, more expensive over time

Google Cloud
Storage

AWS

Source: Copy of Amazon S3 Historical Prices (2008-2025)

🤔 no price change
in the last 10 years…

https://docs.google.com/spreadsheets/d/1XZq6_XTSsf75XG8nIarNxp2S_8xxTuMw7ziUJhitTRY/edit?gid=0#gid=0

| © Copyright 2025, InfluxData17

Elastic Compute: What
What: “Rent VM’s by the day, hour or minute (now)”
Pricing: https://aws.amazon.com/ec2/pricing/on-demand/

Example: t2.xlarge: 4 vCPU 16GB RAM @ $0.1856/hour)
0:00:00 Start VM (start billing)
3:25:24 Stop VM (stop billing)

3*60*60 + 25*60 + 24 = 12324 seconds
12324 seconds / 3600 seconds/hour * $0.1856/hour ⇒ $0.64

GCP Compute
Engine

https://aws.amazon.com/ec2/pricing/on-demand/

| © Copyright 2025, InfluxData18

Elastic Compute: Why
No upfront capital investment
⇒ Much more efficiently use
hardware

Personal Anecdote: budgeting ~ $250K 6 months
in advance for server clusters to test on

HP DL380s (popular midrange server in late 2000s)

Ebay “Lot of 21 HP Proliant DL380”

VS

https://www.ebay.com/itm/165293122713?chn=ps&_trkparms=ispr%3D1&amdata=enc%3A1RVM2D3kcSW6Ar20JoGQPJg2&norover=1&mkevt=1&mkrid=711-117182-37290-0&mkcid=2&mkscid=101&itemid=165293122713&targetid=2320093655185&device=c&mktype=pla&googleloc=1018127&poi=&campaignid=21222258394&mkgroupid=164713660992&rlsatarget=pla-2320093655185&abcId=9408285&merchantid=110358750&gad_source=1&gclid=CjwKCAjwtdi_BhACEiwA97y8BITdu4GQ2RrbP3n09snvZK5RoUoFL62AGQNS40YDNgM7P06qxp4kYBoCb28QAvD_BwE

| © Copyright 2025, InfluxData19

Elastic Compute: The Ugly
Overabundance leads to waste: 💸
Easy to spend
Developers often leave machines running by accident 🤑
Rise of cost optimization software

Personal Anecdote: $1m/month AWS bills

GCP Compute
Engine

| © Copyright 2025, InfluxData20

Elastic Compute: The Ugly
Kinda crappy compared to your own machine
Sequential Write Throughput:
● My Macbook Pro 1TB SSD: > 1GB/s
● GCP VM* 4 SSD @ 1.5TB RAID 0: 815 MB/s

* c3-standard-22-lssd (22 vCPUs, 88 GB Memory)

4 “local”SSDs, RAID0, Intel Sapphire Rapids x86_64
Test the IO throughput using `dd`

dd if=/dev/zero of=/data/test1.img bs=1G count=10 oflag=dsync

10737418240 bytes (11 GB, 10 GiB) copied, 13.179 s, 815 MB/s

GCP Compute
Engine

GCP Compute Engine

VS

Read more: tpchgen-rs World’s fastest open source TPC-H data generator, written in Rust - Apache DataFusion Blog

https://datafusion.apache.org/blog/2025/04/10/fastest-tpch-generator/

| © Copyright 2025, InfluxData21

Cloud Database Architecture
“Disaggregated Storage Design”

| © Copyright 2025, InfluxData22

Object Store

Disaggregated Architectures (2010s)
“Cloud Data Warehouse”

Proprietary
file format

Exemplars

Driven by
● Hourly VM rental
● 10x cheaper

storage (AWS S3)

Engine

Catalog

…Engine Engine

Not accessed by other
systems

Catalog stored in
proprietary format (e.g.
K-V store)

Elastically scalable
processing plane

Data + Catalog in
proprietary formats
on cheap durable
object store

Not shared across
systems

3.0

CPU + MEM

STORAGE

| © Copyright 2025, InfluxData23

Cloud Data Lakes (2020s)

 Object Store …

Each includes use case specific
Catalog + Data Caching /
precomputation / engines

Catalog information stored in
Open format on Object store
(e.g. Apache Iceberg)

Data stored in Apache
Parquet files on object store

…

Data + Catalog Caches

…

Data + Catalog Caches

…

Data + Catalog Caches

Constellation of
disaggregated systems,
each focused on
different use case

…

Data + Catalog Caches

…

Data + Catalog Caches

| © Copyright 2025, InfluxData24

Common Features of Disaggregated
Databases

| © Copyright 2025, InfluxData25

Metadata Store (“Catalogs”)
Object storage latency (100s of ms) is too high for planning for many
workloads (both read and write)
No multi-object transactions
⇒ metadata ‘catalog’ describes data layout in object store

Object Store

Catalog

Data is stored in Object
Store

Compute

2. Request planning uses
catalog to determine where

data is in object store

Request

1. Request
arrives

3. Execution reads/writes
data to object store

Catalog stores metadata
about data in object store

User

| © Copyright 2025, InfluxData26

Metadata Store (“Catalogs”)
Popular choices:
● Key Value store (FoundationDB)
● Traditional transactional SQL systems (postgres)

Typical Contents
● Schema: tables, columns, types, etc.
● Partitioning: partitions, partition values, etc.
● File Locations: paths on object store
● Pruning: per-column min/maxes (Small Materialized Aggregates /

Zone Maps), Bloom Filters, etc.
Reference: How FoundationDB Powers Snowflake Metadata Forward

https://www.vldb.org/conf/1998/p476.pdf
https://www.snowflake.com/blog/how-foundationdb-powers-snowflake-metadata-forward/

| © Copyright 2025, InfluxData27

Separate Scalable Operations
Separate major responsibilities into separately scalable sets of VMs

Typical Components:
• Write / Ingestion
• Query
• Reorganization (compaction, garbage collection, etc)

Why: scale capacity along with demand (e.g scale writers up to handle bursts)

Industrial Examples:

https://docs.snowflake.com/en/user-guide/intro-key-concepts (virtual warehouses)
https://www.datadoghq.com/blog/engineering/introducing-husky/
https://www.influxdata.com/blog/influxdb-3-0-system-architecture/

https://docs.snowflake.com/en/user-guide/intro-key-concepts
https://www.datadoghq.com/blog/engineering/introducing-husky/
https://www.influxdata.com/blog/influxdb-3-0-system-architecture/

| © Copyright 2025, InfluxData28

Ingest Worker

Separate Scalable Operations: Example

Object Store

Catalog

Query Tier

Users

Query Worker

Write

Query

Ingest Tier

Shared State

Compactor
Worker

| © Copyright 2025, InfluxData29

Ingest Worker

Separate Scalable Operations: Example

Object Store

Catalog

Query Tier

Users

Query Worker

Write

Query

Ingest Tier

Shared State

Compactor
Worker

Increase write workload leads to more ingest and compactor workers, no need to increase query tier

“Infinitely scalable”

| © Copyright 2025, InfluxData30

Write Buffering

Object Store

Ingest Worker

In Memory Buffer

2. Buffer is
periodically

flushed to object
store…

Write

1. Writes are
collected in

memory buffer

Large per-request overhead to object store ($$ and latency)
⇒ Buffer in ram + locally to amortize cost across many requests

| © Copyright 2025, InfluxData31

Write Buffering / Local Storage

Object Store

Ingest Worker

Write
In Memory Buffer

…

1. Writes are
collected in

memory buffer

2. Buffer is
periodically

flushed to local
nvme

Local NVMe

3. Files is
periodically

moved to object
store

| © Copyright 2025, InfluxData32

Write Buffering
Challenges:
● Durability of data before it is written to object store
● Time to become readable (is memory in buffer readable?)
Examples:
● Monarch: Google's Planet-Scale In-Memory Time Series Database
● Architecture | WarpStream
● Architecture | SlateDB

https://research.google/pubs/monarch-googles-planet-scale-in-memory-time-series-database/
https://docs.warpstream.com/warpstream/overview/architecture
https://slatedb.io/docs/architecture/

| © Copyright 2025, InfluxData33

Deletes (+ Updates) via Tombstones

Object Store

Write once (no updates) storage ⇒ Delete / Update writes new things

2. A tombstone
marker is written

as a new file*

DELETE .. WHERE ..

1. User sends
delete requests

User

Ingest Worker

Query Worker

3. Query combines data
and tombstone during

query

4. Results have deleted
rows removed.

| © Copyright 2025, InfluxData34

Deletes (+ Updates) via Tombstones
Variations:
● Delete Vectors (row ids / offsets deleted)

○ Often stored in objects
○ Time consuming to create / Faster query execution

● Stored Predicates
○ Often stored in meta store
○ Fast to create / Potentially slower query execution
○ Tied to predicate expressions
○ Slower as number of deletes increase

Challenges
● Sequencing deletes with inserts
● Performance
● Eventually reclaiming Storage

Offset

21

31

67

104

Delete Vector with
resolved row ids

user_id IN (123,456)

Delete Predicate

| © Copyright 2025, InfluxData35

Data Layout optimization
Object Storage is write once: write new objects, but not modify existing
⇒ Rewrite objects overtime (better organized, garbage collect, etc)

Object Store

2. objects are compacted,
garbage collected

3. Old files removed

1. New data arrives in
new object

| © Copyright 2025, InfluxData36

“Table Formats”
Metadata catalogs / stores are proprietary, add operational overhead.
Use object store to store metadata (cost of increased planning latency)
⇒ Standardize describing what files make up a table
Examples:

Apache

| © Copyright 2025, InfluxData37

“Table Formats”
Separate Data from Metadata

| © Copyright 2025, InfluxData38

“Table Formats”
Classic case of solve the problem with a layer of indirection

001

1. Current list of files stored in
one object, used by current

queries

2. New file is written

3. List file is updated
atomically, updating the

pointers. 4. Objects not used
in future queries

002

| © Copyright 2025, InfluxData39

Table Formats

Adds extra layer(s) of indirection

Apache
Still needs a catalog

to find the root
metadata file 🤔

Not 100% clear to me
why this can’t be its

own file

| © Copyright 2025, InfluxData40

Object cache
Object storage latency, unpredictability, and cost per access
⇒ Reduce via in cluster caches

Credit: Xiangpeng Hao, UW Madison

Cache ComputeObject store

Cluster network latency
(<1ms)

Object store latency
(100-200ms)

Access cost (high) Access cost (free)

https://xiangpeng.systems/

| © Copyright 2025, InfluxData41

Object cache: Common Topologies

CIDR 2025: The Five-Minute Rule for the Cloud: Caching in Analytics Systems

Compute nodes each have their
own independent cache

http://andrew.nerdnetworks.org/other/CIDR_2025_Cloud_5_Minute_Rule.pdf

| © Copyright 2025, InfluxData42

Object cache: Common Topologies

CIDR 2025: The Five-Minute Rule for the Cloud: Caching in Analytics Systems

Compute nodes cooperatively
manage a distributed cache

http://andrew.nerdnetworks.org/other/CIDR_2025_Cloud_5_Minute_Rule.pdf

| © Copyright 2025, InfluxData43

Object cache: Common Topologies

CIDR 2025: The Five-Minute Rule for the Cloud: Caching in Analytics Systems

Separate nodes manage the
cache in a distributed system

http://andrew.nerdnetworks.org/other/CIDR_2025_Cloud_5_Minute_Rule.pdf

| © Copyright 2025, InfluxData44

Object cache++
If you have a cache anyways, opportunities for transcoding

Cache Compute

SQL
(compute) OutputTranscoded SQL

(cache)Object store

Apply domain specific pushdown /
special sauce 🥫here

Credit: Xiangpeng Hao, UW Madison

https://xiangpeng.systems/

| © Copyright 2025, InfluxData45

Object cache++
Example: https://github.com/XiangpengHao/liquid-cache

Disclosure: I am an advisor to this project

Fetch parquet data, but cached
in a custom in memory format

https://github.com/XiangpengHao/liquid-cache

Liquid Cache – ClickBench Q22

SELECT
"SearchPhrase",
MIN("URL"),
MIN("Title"),
COUNT(*) AS c,
COUNT(DISTINCT "UserID")
FROM hits
WHERE
"Title" LIKE '%Google%’
AND
"URL" NOT LIKE '%.google.%' AND
"SearchPhrase" <> ’’
GROUP BY "SearchPhrase"
ORDER BY c DESC
LIMIT 10;

| © Copyright 2025, InfluxData47

Future Directions / Predictions

| © Copyright 2025, InfluxData48

Increased adoption and interest in Open Formats

Specifically: Apache Parquet and Apache Iceberg

Implication: the classic business model of being the data platform that
has huge data gravity (hard to move) may be changing

⇒ (Startup) Opportunities for many new specialized engines, etc.

 Object Store …

Catalog information stored in
Open format on Object store
(e.g. Apache Iceberg)

Data stored in Apache
Parquet files on object store

| © Copyright 2025, InfluxData49

Further disaggregation
Currently have disaggregated storage:
● Storage
● Memory + compute

Predict further disaggregation of memory from compute:
● Storage
● Memory (cache)
● Compute

| © Copyright 2025, InfluxData50

Disaggregated Memory/Cache (2030s) Conjecture

Object Store

Driven by
● Serverless

(stateless)
processing,

● High bandwidth
interconnect

● Demand for
interoperability

…Apache
Parquet

Catalog stored in Open
format on Object store
(e.g. Apache Iceberg)

Engine

Catalog

…Engine Engine

Elastically scalable
processing plane
(CPU intensive)

Relevant catalog
information cached
locally

Catalog Cache

Cache

Elastically scalable
data cache
(memory intensive)Cache…

Data + Catalog
stored in open
formats shared
across systems

Early signs

CPU

STORAGE

MEMORY

| © Copyright 2025, InfluxData51

Thank you!
Questions?

