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Column-oriented vs Row-oriented

Intro & Background

Row-Oriented Storage

● Stores data row by row (e.g., traditional relational 
databases).

● Efficient for transactional workloads (OLTP) with 
frequent inserts/updates.

● Fast access to all fields of a single record.

Column-Oriented Storage

● Stores data column by column (e.g., Parquet).
● Optimized for analytical workloads (OLAP) with large 

scans and aggregations.
● Better compression and I/O efficiency for selected 

columns.
● Enables advanced techniques like predicate pushdown 

and vectorized processing.
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Compression and Decoding Challenges in Column Stores

Intro & Background

Compression via Dictionary Encoding

● Columnar layout → similar consecutive values → 
high compressibility.

● Dictionary encoding maps each unique value to a 
small code.

● Codes stored in a bit-packed format using minimal 
bits.

Decoding Bottlenecks

● Queries must decode these codes before processing.
● Even with SIMD-based decoding, performance is 

limited:
○ Decoded values (e.g., 64-bit ints) are much 

larger than encoded bits.

Decoding dominates query time!
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Predicate Pushdowns

Intro & Background

    Traditional Predicate Pushdown

● Applies filters directly on encoded data to avoid decoding.
● Requires:

1. Encoding to be order-preserving
2. Predicates to be simple (e.g., basic comparisons)

     Limitations

● Not compatible with Parquet's dictionary encoding, which is 
not order-preserving.

● Fails to support complex predicates such as:
○ String matching
○ User-defined functions (UDFs)
○ Cross-column or cross-table conditions

New Approach: Selection Pushdown

● Filters are applied sequentially, leveraging 
results from prior filters.

● Uses a select operator to filter encoded 
values before decoding.

● Only selected encoded values are 
decoded and evaluated.

● Supports arbitrary predicates, even with 
non-order-preserving encodings.
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Predicate Pushdowns

Intro & Background
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The Challenge of Efficient Selection on Encoded Data

Intro & Background

  The Problem

● Goal: Design a fast select operator that works directly on bit-packed encoded values.
● Needs to move all selected values simultaneously from a processor word.

  Why It's Hard

● Extremely difficult without specialized hardware support.
● Standard software techniques are too slow or inefficient for this task.

  The Key Insight

● Bit Manipulation Instructions (BMI), introduced by Intel in 2013, provide the necessary capabilities.
● Now widely supported in Intel and AMD processors.

  Novel Contribution

● This paper is the first to apply BMI to database systems in this context.
● Designing an efficient BMI-based operator is nontrivial, which likely explains why it has been overlooked until now.
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The Broader Role of BMI in Selection Pushdown

Intro & Background

Beyond the Select Operator

● Select Operator
○ Extracts selected values from bit-packed data 

using a select bitmap.
○ BMI enables fast selection across various 

bit-widths using only four instructions per processor 
word.

● Selection Pushdown Framework

● Support for Complex Structures
○ Handles Parquet's nested and repeated 

fields with structural metadata 
(repetition/definition levels).

○ BMI is used to transform bitmaps and 
interpret structure-encoding integers.

Implementation: Parquet-Select

● A lightweight library built on these techniques.
● Compatible with standard Parquet files without 

changing the format.
● Evaluation shows:

○ Up to 10x speedup on scan queries.
○ Up to 5.5x speedup in Spark for end-to-end 

complex queries.

General Applicability

● Techniques are applicable to other formats like 
Apache ORC, Arrow, and custom internal formats.

Applies filter & project 
operations using BMI to 
pre-select encoded values

Efficiently transforms 
bitmaps to align with 
predicate evaluations.

Reduces decoding and 
selection costs across scan 
queries.
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Background



11

Bit Manipulation Instructions: PEXT and PDEP

Intro & Background

Overview of BMI

● An extension to the x86 architecture for Intel and AMD 
CPUs.

● Designed to speed up bitwise operations using dedicated 
hardware instructions.

● Operates on 64-bit general-purpose registers, unlike 
SIMD which uses vector registers.

● Consists of 14 instructions, many replacing common 
software-implemented patterns.

Focus: PEXT and PDEP

● PEXT (Parallel Bit Extract):
 Extracts bits from a source based on a mask and packs 
them into the low-order bits of the result.

● PDEP (Parallel Bit Deposit):
 Takes low-order bits from a source and distributes them 
into a destination according to a mask.
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BMI vs Software Implementation

Intro & Background
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Apache Parquet: Columnar Storage Design

Intro & Background

Overview

● Open-source columnar storage format based on Google’s 
Dremel.

● Widely adopted in the Big Data ecosystem for efficient 
analytics.

Data Model & Schema

● Inherits schema from Protocol Buffers.
● Supports strongly-typed nested structures:

○ Fields can be atomic or group (nested).
○ Each field has a data type and a repetition type:

■ required, optional, or repeated

Repetition & Definition Levels

● Used to represent nulls and repeated 
structures.

● Stored as two small integers for each value.
● Help reconstruct the original tree-like record 

structure.

Encoding

● Parquet uses a hybrid encoding scheme:
○ Combines Run-Length Encoding 

(RLE) and Bit-Packing.
○ Dictionary encoding maps values to 

codes (not order-preserving).
○ Falls back to plain encoding if 

dictionary grows too large.
● Structural metadata (repetition/definition 

levels) also encoded using RLE/bit-packing.
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Apache Parquet: Columnar Storage Design

Intro & Background



17

Apache Parquet: Columnar Storage Design (cont’d)
Intro & Background

Storage Format

● Data is partitioned into row groups (row-major).
● Within each row group: column-major layout (like PAX).
● Each column includes:

○ Field values
○ Repetition levels
○ Definition levels

● Optimizations:

○ Null values not stored

○ Definition levels omitted for required fields

○ Repetition levels omitted for non-repeated fields
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Bit Parallel Algorithm: Problem and Motivation
Bit Parallel Select Operator

Problem Statement

● Input:
○ A byte array with n values, each k bits wide 

(bit-packed).
○ An n-bit select bitmap indicating which values to 

extract.
● Goal:

 Extract all values where the corresponding bit in the 
bitmap is 1, and pack them contiguously in the output.

Example Case

● Selecting 3 out of 8 4-bit values: output includes only the 
selected values.

● Complex case: selecting 3-bit values across 32-bit word 
boundaries, making alignment and extraction harder.
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Bit Parallel Algorithm: Problem and Motivation
Bit Parallel Select Operator

Naïve Approach

● Scan through the array and extract selected 
values one by one:

○ Takes O(n) instructions.
○ Inefficient: fails to exploit the full 

width of modern CPUs (e.g., 64-bit 
words).

Goal: Bit-Parallel Select Operator

● Bit-parallel means: process all values in a 
processor word in parallel, not 
sequentially.

● This enables higher throughput by 
leveraging CPU word-level parallelism.



21

Simplified Bit-Parallel Selection Algorithm
Bit Parallel Select Operator

Assumptions

● Bit width k is a power of 2 (e.g., 1, 2, 4, 8).
● No value crosses processor word boundaries.

Special Case: k = 1

● Goal: Extract all bits in the value array where the select 
bitmap has 1s.

● Solution: Use PEXT directly:
○ values → source operand
○ select bitmap → mask operand
○ PEXT extracts matching bits in one instruction.
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Fast Select Operator: Problem and Motivation
Bit Parallel Select Operator

Generalization to k-bit Values

● Direct PEXT won’t work — need to extract k bits for each 
selected value.

● Solution:
○ Create an extended bitmap by duplicating each 

bit in the select bitmap k times.
○ Example: select bitmap 11000100, k = 4 → 

extended bitmap becomes 
11111111000000000000111100000000.

Algorithm Steps

1. Step 1: Generate the extended bitmap from the original 
select bitmap.

2. Step 2: Use PEXT with the extended bitmap to extract all 
selected k-bit values into contiguous output space.



Bit Parallel Select Operator
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Bit Parallel Select Operator

Key Insight

● Algorithm 1 still works with 
partial values in a 
processor word (i.e., values 
spanning word boundaries).

● Valid as long as two key 
conditions on the mask are 
met.

Condition 2: Least Significant Bit 
(LSB) = 1

● The LSB of the mask must be 
set to 1, even if it’s in the 
middle of a value.

● Ensures that the subtraction 
instruction generates a 
correct 1s run in the extended 
bitmap.

General Algorithm

Condition 1: Mask Alignment

● The mask must be 
left-shifted to align with 
the layout of the word.



Bit Parallel Select Operator

General Algorithm
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Selection Pushdown
Goal

● Accelerate arbitrary scan queries using the fast 
BMI-based select operator.

Query Model

● Focus on queries with:
○ Projection columns (SELECT)
○ Filter columns (WHERE)

● Initially assumes a conjunction of filters (to be extended 
later to general boolean expressions).

Key Observation

● Bypass records that fail prior predicates.

● Previous work evaluates all predicates for all records, 
even if already filtered out.

● This was due to high overhead of selection.

Selection Pushdown
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Selection Pushdown
BMI-Based Fast Select Operator

● Leverage the fast, BMI-enabled select operator 
to:

○ Select values upfront

○ Apply it in both filter and project phases

● This approach makes select-first filtering 
efficient and practical.

Selection Pushdown
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Selection Pushdown
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Selection Pushdown
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Selection Pushdown

1. Select

● Applies the BMI-based select operator to filter out 
irrelevant values early.

● Reduces the number of values passed to later 
operators.

● Can be skipped for the first filter

2. Unpack

● Converts encoded values into primitive data types.
● Uses SIMD-based decoding for performance.
● Final step for project operations—no need to 

evaluate or transform afterward.

3. Evaluate

● Applies the filter predicate on decoded 
values.

● Produces a bitmap indicating which selected 
values satisfy the predicate.

● Enables arbitrary predicates and leverages 
SIMD vectorization.

4. Transform

● Converts the bitmap (from Evaluate) into a 
select bitmap usable by the next step.

● Necessary because the evaluate bitmap only 
covers filtered values.

● Efficiently implemented using BMI 
techniques.
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Selection Pushdown
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Overview
•  In Parquet, each column value is represented as a 
triple:

       ⟨repetition level, definition level, field value⟩
[
  { "user": { "name": "Alice", "scores": [80, 90] } },
  { "user": { "name": null, "scores": [] } },
  { "user": null }
]

• Key challenge:

The number of values ≠ number of records →
select bitmap cannot be directly applied to 
column values

• Therefore, we need to:

Transform the input select bitmap into 
bitmaps for both field values and levels

field values: definition 
levels:

repetition 
levels:

Column: 
user.name ["Alice"]  [2, 1, 0]  [0, 0, 0] 

Column: 
user.scores

[80, 90]  [3, 3]  [0, 1] 

• Two key facts:

1.A value is null if its definition 
level < max definition level

2.A value belongs to the same 
record as the previous one if its 
repetition level ≠ 0



Workflow
• A select operation takes:

• Encoded repetition/definition levels

• Field values

• A record-level select bitmap

• →  returns the matching structural values

• Repetition levels define record boundaries:

  •   A new record starts when repetition level = 0

  •   Values with repetition level ≠ 0 belong to the same 
record

• Definition levels indicate nulls:

  •   Max definition level = 2, values with 
definition level < 2 are null

• A 24-bit select bitmap is used:

  •  Each bit represents whether a 
record is selected

• Key insight:

  •   A value is selected if and only if 
it is connected to a 1 in the select 
bitmap



Workflow
•  The basic idea 

Transform the input select bitmap to:

level bitmap and value bitmap 

•  The level bitmap is generated by copying 
each bit in the select bitmap as many times 
as the number of values in the 
corresponding record. 

•  The value bitmap can be created by 
removing the bits corresponding to null 
values from the level bitmap.



Select Bitmap to Level Bitmap

•  Goal：

For each 1 in the select bitmap, 
expand it to k 1s

For each 0, expand it to k 0s.



Equal operator

The Equal operator can 
determine whether each 
small integer is equal to a 
constant in a compressed 
state and quickly output a 
bitmap.



Extend operator

Extend the select bitmap by using the record bitmap as the mask of the extend operator, 
duplicating each bit 𝑘 times where 𝑘 is the number of values in the corresponding record.



Select Bitmap to Level Bitmap
•  To transform from a select bitmap 
(by record) to a level bitmap (by 
column value), you only need to:

1. Generate a record bitmap using 
repetition level == 0; (Equal 
operator)
2. Use the record bitmap as a 
mask;
3. Call the extend operator to 
extend each bit of the select bitmap 
to the number of column 
values   corresponding to each 
record;

•  The resulting level bitmap can be 
used to filter field values   in 
subsequent select operations.



 Level Bitmap to Value Bitmap

Goal:

Extract the positions 
corresponding to non-null 
values   from the level bitmap 
and obtain the value bitmap, 
which is used to select the 
actual field values.



Compress operator

• Scan valid bitmap and find every position that is 1

• Then extract the bits at these positions from level bitmap and arrange them in order to form a new 
value bitmap
                                                    b𝑣𝑎𝑙𝑢𝑒 = PEXT(b𝑙𝑒𝑣𝑒𝑙 , b𝑣𝑎𝑙𝑖𝑑 )



Level Bitmap to Value Bitmap
1. Generates a valid bitmap 
where each bit is 1 if the value is 
non-null, and 0 if it’s null,
by comparing each definition 
level to the maximum definition 
level.

2. Use the valid bitmap as a 
mask

3. Call the compress operator to
extract the valid bits from the 
level bitmap, to form a new value 
bitmap



Workflow

•  It is worth pointing out that, 
all operators used in Algorithm 
are bit-parallel algorithms. 

•  Additionally, all operators rely on 
either the PDEP or PEXT instruction 
to achieve the full data parallelism 
available in processor words.
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Evaluating Selection Performance

Experimental Results 

• Parquet-Select outperforms 
original Parquet in all cases

 

Experiment Objective

• To analyze how performance is affected by two key factors:

• The bit width of column values           • The selectivity of the select bitmap

• The lower the selectivity, the 
greater the speedup

  •  Because Parquet-Select 
only decodes selected values, 
reducing decoding cost

• Smaller bit widths lead to greater 
performance gains for Parquet-Select

  •  Select operator can process more 
values per CPU word → higher data 
parallelism



Micro-Benchmark Evaluation

Effect of Bit Width (a)
• Parquet-Select performs better 
with smaller bit widths.
• However, the absolute 
execution time remains nearly the 
same.
• Unpack is the performance 
bottleneck, and is independent of 
bit width.

Use the following SQL query to test: SELECT MAX(a10), MAX(a11), ...  ，WHERE a1 < C1 AND a2 < C2 AND ...



Micro-Benchmark Evaluation
Effect of Increasing Filters or Projections (b,c)

• The more filters or projection columns, the better Parquet-Select performs.

• Multiple filters executed sequentially reduce selectivity step by step.

• Later projection process fewer values, leading to more gains.



Micro-Benchmark Evaluation

Performance Across Data Types (d)

•     For all types except byte array (e.g., 
int32, int64, int96, float, double), Speedup 
ranges from 3.0× to 3.6×

•    Byte array shows lower speedup 
because:

  •   The first filter still needs to 
process all values

  •   Predicates on byte arrays are 
more expensive, which reduces early 
performance gain



Micro-Benchmark Evaluation

Effect of  Filters for Byte Arrays (e)

•   As more filters are added, selectivity drops, 
and Parquet-Select’s advantage increases

•   This shows that even for expensive data 
types, having enough filtering can still bring 
significant speedups



Case Study: TPC-H Benchmark Q6 (More realistic workload)
Non-nullable Columns

• All fields in the original dataset are 
non-null.
• Compared the query time under three 
I/O modes: 

           preloaded 

           asynchronous I/O 

           synchronous I/O

• lower speedup in synchronous I/O 
reflects the limitations of CPU-side 
optimizations when I/O dominates 
the workload.



Case Study: TPC-H Benchmark Q6 (More realistic workload)
Nullable and Repeated Columns

• Original Parquet query time increased, since parquet must decode definition/repetition levels 
and check for nulls/repeated values

• Parquet-Select, by contrast:

• Evaluates directly on encoded levels

• Uses BMI instructions to accelerate bitmap transformation



TPC-H Benchmark Evaluation
Experiment Objective

• To integrate Parquet-Select into 
Apache Spark and evaluate its 
performance under a real-world big data 
query engine.

• To compare two approaches:

Spark + Parquet    and    Spark + 
Parquet-Select 

Query Selection & Selectivity

• Evaluated 10 queries from the 
TPC-H benchmark, with varying 
selectivity levels.



TPC-H Benchmark Evaluation
Results 

• Parquet-Select outperforms 
Parquet across all queries.

• Speedup ranges from 1.1× to 5.5×.

• The lower the selectivity, the 
greater the performance gain.

Reason 

Parquet-Select significantly 
reduces the amount of data that 
needs to be read and decoded.



Impact of Encoding and Compression
RLE Encoding (Run-Length Encoding)

• Even when selectivity = 1, Parquet-Select is 
still 1.8× faster

      • Because Parquet-Select performs decoding 
and filtering in a single pass

      • Parquet requires two passes: one for 
decoding, one for filtering

Mixed Encoding 

• Simulated with interleaved RLE and 
bit-packing runs

• Best performance is achieved when the 
column is encoded purely as RLE or 
bit-packing



Impact of Encoding and Compression
Page-Level Compression

• LZ4/Snappy reduced file size by 
~30%

• Both Parquet and Parquet-Select 
experienced performance 
degradation:

• Decompression overhead 
outweighs I/O savings

• Since decompression cost affects 
both systems equally:

• The absolute performance 
advantage of Parquet-Select 
remains



Discussion



Does the reliance on 
PEXT/PDEP instructions 
affect the portability of the 
proposed approach across 
different hardware 
platforms?



The Principles are Portable
● The Implementation described in the 

paper (using PEXT/PDEP) is 
architecture-specific.

● The high level idea described in the 
paper (leverage bit operations to 
compact data based on a bitmask) is 
architecture-independent.

● Creating an ARM based implementation 
could be a very interesting and logical 
future research direction.

ARM has its own bit instruction set (A64), 
as well as extensions like NEON and SVE2 
that perform similar functions to 
Intel/AMD counterparts.



Could the overhead 
introduced by the select 
operator outweigh its 
benefits?



Select Operator Overhead - Response
● In Short: Not Really!
● All we’re doing is changing the 

operation order
● The Difference is this way we’re 

unpacking less data
● Speedup is negligible only in the 

worst case



Is the select operator robust 
to varying bit-widths and 
value alignments?



Unpacking Cost and Bit Width are (largely) 
Independent!

It doesn’t really matter what the width of the 
input values are since the size of the decoded 
values are fixed.

This extends to the different data types 
being operated on.



How would running 
experiments in a 
multi-threaded 
environment affect 
performance?



Multi-threaded Environment Performance - Response

● Theoretically, should improve
● Bitmaps Are Naturally Parallelizable
● Multiple Threads can work on different 

segments of the bitmap concurrently.
● Multi-threaded experiments were not part of 

this paper, but it is another reasonable next 
step for research.

Thread 1

Thread 2

Thread 3

Thread 4



Are there any scenarios 
where the greedy 
algorithm for filter order 
would result in the wrong 
order, especially in 
real-world systems?



Filter Order - Response
● Greedy Algorithm used to select “optimal” ordering of filters
● Assumes Filters are all Independent and Selectivity is known in advance
● Choose starting filter: Optimal Filter Order -> Ascending Selectivity Order

○ Should minimize size of result for each subsequent filter
○ Lowest overall result is selected

● Does this always give the optimal ordering?  – Only if the assumptions are true
○ Only checks O(n) of the O(n!) possible orderings
○ Remember the core idea of Query Optimization

● Relaxing Assumptions could lead to cool future work

Initial Dataset 0.3 Filter Filtered Dataset 0.75 Filter Final Dataset



How does the scalar 
BMI-Based approach 
interact with the 
SIMD-Based vectorized 
query engines?



BMI Complements SIMD Operations

● SIMD Operations are used to efficiently unpack and evaluate the values (Unpack/Evaluate)
○ Previous Limitation: decoded value sizes limit degree of parallelism

● Bit Manipulation Instructions reduce the total values that need to be unpacked. (Select/Transform)
○ Fewer values to unpack → Smaller total decoded value size

Initial 
Compressed 

Data
BMI

Filtered 
Compressed 

Data
SIMD Filtered 

Decoded Data



What performance 
bottlenecks are observed in 
the experiments?



Initial Query
● When a query starts with no prior filter, Parquet-Select must unpack 

all the data to create the bitmap for the next operation

Switching Between RLE and Bit-Packing
● Parquet-Select handles both run-length encoding (RLE) and 

bit-packing, but flipping between them adds overhead



Parallel predicate evaluation 
assumes order-preserving 
encodings and simple 
predicates on encoded data. 
Should these methods be 
extended to support more 
complex filters?



After optimizing 
unpacking, what other 
parts of the selection 
pushdown pipeline offer 
the most potential for 
further improvement?



Evaluation: Improving Predicate Pushdown
● Predicate pushdown techniques are currently limited to order-preserving encodings 

and simple predicates, which don’t have significant real world application

● However, developing techniques to encode and evaluate more complex predicates 

directly on encoded values could eliminate/reduce the need for unpacking in certain 

operations

● Can help resolve initial query bottleneck



Parquet-Select shows 
impressive performance 
gains, but are there specific 
benchmarks or workloads 
where these improvements 
diminish or break down?



High Selectivity Queries
● Low selectivity means fewer values to unpack down the line 
● Figure 12 shows speedup drops as selectivity rises
● As selectivity goes to 100%, Parquet-Select’s performance essentially 

converges with Parquet
● Why? If we’re unpacking everything anyway, the BMI select step adds 

overhead without saving much time


