
April 2025

Selection Pushdown
in Column Stores
Using Bit Manipulation Instructions

Linfeng Zhu, Haonan Wu, Anastas Kanaris,
Bruce Casillas, Minhong Zou, Rohit Saha

2

Agenda

Introduction & Background
Bit Parallel Select Operator
Selection Pushdown
Selection Pushdown in Parquet
Evaluation & Conclusion

1.

2.

3.

4.

5.

3

Agenda

Introduction & Background
Bit Parallel Select Operator
Selection Pushdown
Selection Pushdown in Parquet
Evaluation & Conclusion

1.

2.

3.

4.

5.

4

Column-oriented vs Row-oriented

Intro & Background

Row-Oriented Storage

● Stores data row by row (e.g., traditional relational
databases).

● Efficient for transactional workloads (OLTP) with
frequent inserts/updates.

● Fast access to all fields of a single record.

Column-Oriented Storage

● Stores data column by column (e.g., Parquet).
● Optimized for analytical workloads (OLAP) with large

scans and aggregations.
● Better compression and I/O efficiency for selected

columns.
● Enables advanced techniques like predicate pushdown

and vectorized processing.

5

Compression and Decoding Challenges in Column Stores

Intro & Background

Compression via Dictionary Encoding

● Columnar layout → similar consecutive values →
high compressibility.

● Dictionary encoding maps each unique value to a
small code.

● Codes stored in a bit-packed format using minimal
bits.

Decoding Bottlenecks

● Queries must decode these codes before processing.
● Even with SIMD-based decoding, performance is

limited:
○ Decoded values (e.g., 64-bit ints) are much

larger than encoded bits.

Decoding dominates query time!

6

Predicate Pushdowns

Intro & Background

 Traditional Predicate Pushdown

● Applies filters directly on encoded data to avoid decoding.
● Requires:

1. Encoding to be order-preserving
2. Predicates to be simple (e.g., basic comparisons)

 Limitations

● Not compatible with Parquet's dictionary encoding, which is
not order-preserving.

● Fails to support complex predicates such as:
○ String matching
○ User-defined functions (UDFs)
○ Cross-column or cross-table conditions

New Approach: Selection Pushdown

● Filters are applied sequentially, leveraging
results from prior filters.

● Uses a select operator to filter encoded
values before decoding.

● Only selected encoded values are
decoded and evaluated.

● Supports arbitrary predicates, even with
non-order-preserving encodings.

7

Predicate Pushdowns

Intro & Background

8

The Challenge of Efficient Selection on Encoded Data

Intro & Background

 The Problem

● Goal: Design a fast select operator that works directly on bit-packed encoded values.
● Needs to move all selected values simultaneously from a processor word.

 Why It's Hard

● Extremely difficult without specialized hardware support.
● Standard software techniques are too slow or inefficient for this task.

 The Key Insight

● Bit Manipulation Instructions (BMI), introduced by Intel in 2013, provide the necessary capabilities.
● Now widely supported in Intel and AMD processors.

 Novel Contribution

● This paper is the first to apply BMI to database systems in this context.
● Designing an efficient BMI-based operator is nontrivial, which likely explains why it has been overlooked until now.

9

The Broader Role of BMI in Selection Pushdown

Intro & Background

Beyond the Select Operator

● Select Operator
○ Extracts selected values from bit-packed data

using a select bitmap.
○ BMI enables fast selection across various

bit-widths using only four instructions per processor
word.

● Selection Pushdown Framework

● Support for Complex Structures
○ Handles Parquet's nested and repeated

fields with structural metadata
(repetition/definition levels).

○ BMI is used to transform bitmaps and
interpret structure-encoding integers.

Implementation: Parquet-Select

● A lightweight library built on these techniques.
● Compatible with standard Parquet files without

changing the format.
● Evaluation shows:

○ Up to 10x speedup on scan queries.
○ Up to 5.5x speedup in Spark for end-to-end

complex queries.

General Applicability

● Techniques are applicable to other formats like
Apache ORC, Arrow, and custom internal formats.

Applies filter & project
operations using BMI to
pre-select encoded values

Efficiently transforms
bitmaps to align with
predicate evaluations.

Reduces decoding and
selection costs across scan
queries.

10

Background

11

Bit Manipulation Instructions: PEXT and PDEP

Intro & Background

Overview of BMI

● An extension to the x86 architecture for Intel and AMD
CPUs.

● Designed to speed up bitwise operations using dedicated
hardware instructions.

● Operates on 64-bit general-purpose registers, unlike
SIMD which uses vector registers.

● Consists of 14 instructions, many replacing common
software-implemented patterns.

Focus: PEXT and PDEP

● PEXT (Parallel Bit Extract):
 Extracts bits from a source based on a mask and packs
them into the low-order bits of the result.

● PDEP (Parallel Bit Deposit):
 Takes low-order bits from a source and distributes them
into a destination according to a mask.

12

Bit Manipulation Instructions: PEXT and PDEP

Intro & Background

Overview of BMI

● An extension to the x86 architecture for Intel and AMD
CPUs.

● Designed to speed up bitwise operations using dedicated
hardware instructions.

● Operates on 64-bit general-purpose registers, unlike
SIMD which uses vector registers.

● Consists of 14 instructions, many replacing common
software-implemented patterns.

Focus: PEXT and PDEP

● PEXT (Parallel Bit Extract):
 Extracts bits from a source based on a mask and packs
them into the low-order bits of the result.

● PDEP (Parallel Bit Deposit):
 Takes low-order bits from a source and distributes them
into a destination according to a mask.

13

BMI vs Software Implementation

Intro & Background

14

Apache Parquet: Columnar Storage Design

Intro & Background

Overview

● Open-source columnar storage format based on Google’s
Dremel.

● Widely adopted in the Big Data ecosystem for efficient
analytics.

Data Model & Schema

● Inherits schema from Protocol Buffers.
● Supports strongly-typed nested structures:

○ Fields can be atomic or group (nested).
○ Each field has a data type and a repetition type:

■ required, optional, or repeated

Repetition & Definition Levels

● Used to represent nulls and repeated
structures.

● Stored as two small integers for each value.
● Help reconstruct the original tree-like record

structure.

Encoding

● Parquet uses a hybrid encoding scheme:
○ Combines Run-Length Encoding

(RLE) and Bit-Packing.
○ Dictionary encoding maps values to

codes (not order-preserving).
○ Falls back to plain encoding if

dictionary grows too large.
● Structural metadata (repetition/definition

levels) also encoded using RLE/bit-packing.

15

Apache Parquet: Columnar Storage Design

Intro & Background

Repetition & Definition Levels

● Used to represent nulls and repeated
structures.

● Stored as two small integers for each value.
● Help reconstruct the original tree-like record

structure.

Encoding

● Parquet uses a hybrid encoding scheme:
○ Combines Run-Length Encoding

(RLE) and Bit-Packing.
○ Dictionary encoding maps values to

codes (not order-preserving).
○ Falls back to plain encoding if

dictionary grows too large.
● Structural metadata (repetition/definition

levels) also encoded using RLE/bit-packing.

16

Apache Parquet: Columnar Storage Design

Intro & Background

17

Apache Parquet: Columnar Storage Design (cont’d)
Intro & Background

Storage Format

● Data is partitioned into row groups (row-major).
● Within each row group: column-major layout (like PAX).
● Each column includes:

○ Field values
○ Repetition levels
○ Definition levels

● Optimizations:

○ Null values not stored

○ Definition levels omitted for required fields

○ Repetition levels omitted for non-repeated fields

18

Agenda

Introduction & Background
Bit Parallel Select Operator
Selection Pushdown
Selection Pushdown in Parquet
Evaluation & Conclusion

1.

2.

3.

4.

5.

19

Bit Parallel Algorithm: Problem and Motivation
Bit Parallel Select Operator

Problem Statement

● Input:
○ A byte array with n values, each k bits wide

(bit-packed).
○ An n-bit select bitmap indicating which values to

extract.
● Goal:

 Extract all values where the corresponding bit in the
bitmap is 1, and pack them contiguously in the output.

Example Case

● Selecting 3 out of 8 4-bit values: output includes only the
selected values.

● Complex case: selecting 3-bit values across 32-bit word
boundaries, making alignment and extraction harder.

20

Bit Parallel Algorithm: Problem and Motivation
Bit Parallel Select Operator

Naïve Approach

● Scan through the array and extract selected
values one by one:

○ Takes O(n) instructions.
○ Inefficient: fails to exploit the full

width of modern CPUs (e.g., 64-bit
words).

Goal: Bit-Parallel Select Operator

● Bit-parallel means: process all values in a
processor word in parallel, not
sequentially.

● This enables higher throughput by
leveraging CPU word-level parallelism.

21

Simplified Bit-Parallel Selection Algorithm
Bit Parallel Select Operator

Assumptions

● Bit width k is a power of 2 (e.g., 1, 2, 4, 8).
● No value crosses processor word boundaries.

Special Case: k = 1

● Goal: Extract all bits in the value array where the select
bitmap has 1s.

● Solution: Use PEXT directly:
○ values → source operand
○ select bitmap → mask operand
○ PEXT extracts matching bits in one instruction.

22

Fast Select Operator: Problem and Motivation
Bit Parallel Select Operator

Generalization to k-bit Values

● Direct PEXT won’t work — need to extract k bits for each
selected value.

● Solution:
○ Create an extended bitmap by duplicating each

bit in the select bitmap k times.
○ Example: select bitmap 11000100, k = 4 →

extended bitmap becomes
11111111000000000000111100000000.

Algorithm Steps

1. Step 1: Generate the extended bitmap from the original
select bitmap.

2. Step 2: Use PEXT with the extended bitmap to extract all
selected k-bit values into contiguous output space.

Bit Parallel Select Operator

Bit Parallel Select Operator

Bit Parallel Select Operator

000000000000000000010001 00010000

Bit Parallel Select Operator

Bit Parallel Select Operator

Bit Parallel Select Operator

Bit Parallel Select Operator

Bit Parallel Select Operator

Bit Parallel Select Operator

Bit Parallel Select Operator

Key Insight

● Algorithm 1 still works with
partial values in a
processor word (i.e., values
spanning word boundaries).

● Valid as long as two key
conditions on the mask are
met.

Condition 2: Least Significant Bit
(LSB) = 1

● The LSB of the mask must be
set to 1, even if it’s in the
middle of a value.

● Ensures that the subtraction
instruction generates a
correct 1s run in the extended
bitmap.

General Algorithm

Condition 1: Mask Alignment

● The mask must be
left-shifted to align with
the layout of the word.

Bit Parallel Select Operator

General Algorithm

34

Agenda Science Presentation

Introduction & Background
Bit Parallel Select Operator
Selection Pushdown
Selection Pushdown in Parquet
Evaluation & Conclusion

1.

2.

3.

4.

5.

35

Selection Pushdown
Goal

● Accelerate arbitrary scan queries using the fast
BMI-based select operator.

Query Model

● Focus on queries with:
○ Projection columns (SELECT)
○ Filter columns (WHERE)

● Initially assumes a conjunction of filters (to be extended
later to general boolean expressions).

Key Observation

● Bypass records that fail prior predicates.

● Previous work evaluates all predicates for all records,
even if already filtered out.

● This was due to high overhead of selection.

Selection Pushdown

36

Selection Pushdown
BMI-Based Fast Select Operator

● Leverage the fast, BMI-enabled select operator
to:

○ Select values upfront

○ Apply it in both filter and project phases

● This approach makes select-first filtering
efficient and practical.

Selection Pushdown

37

Selection Pushdown

38

Selection Pushdown

39

Selection Pushdown

1. Select

● Applies the BMI-based select operator to filter out
irrelevant values early.

● Reduces the number of values passed to later
operators.

● Can be skipped for the first filter

2. Unpack

● Converts encoded values into primitive data types.
● Uses SIMD-based decoding for performance.
● Final step for project operations—no need to

evaluate or transform afterward.

3. Evaluate

● Applies the filter predicate on decoded
values.

● Produces a bitmap indicating which selected
values satisfy the predicate.

● Enables arbitrary predicates and leverages
SIMD vectorization.

4. Transform

● Converts the bitmap (from Evaluate) into a
select bitmap usable by the next step.

● Necessary because the evaluate bitmap only
covers filtered values.

● Efficiently implemented using BMI
techniques.

40

Selection Pushdown

41

Selection Pushdown

42

Selection Pushdown

43

Agenda

Introduction & Background
Bit Parallel Select Operator
Selection Pushdown
Selection Pushdown in Parquet
Evaluation & Conclusion

1.

2.

3.

4.

5.

Overview
• In Parquet, each column value is represented as a
triple:

 ⟨repetition level, definition level, field value⟩
[
 { "user": { "name": "Alice", "scores": [80, 90] } },
 { "user": { "name": null, "scores": [] } },
 { "user": null }
]

• Key challenge:

The number of values ≠ number of records →
select bitmap cannot be directly applied to
column values

• Therefore, we need to:

Transform the input select bitmap into
bitmaps for both field values and levels

field values: definition
levels:

repetition
levels:

Column:
user.name ["Alice"] [2, 1, 0] [0, 0, 0]

Column:
user.scores

[80, 90] [3, 3] [0, 1]

• Two key facts:

1.A value is null if its definition
level < max definition level

2.A value belongs to the same
record as the previous one if its
repetition level ≠ 0

Workflow
• A select operation takes:

• Encoded repetition/definition levels

• Field values

• A record-level select bitmap

• → returns the matching structural values

• Repetition levels define record boundaries:

 • A new record starts when repetition level = 0

 • Values with repetition level ≠ 0 belong to the same
record

• Definition levels indicate nulls:

 • Max definition level = 2, values with
definition level < 2 are null

• A 24-bit select bitmap is used:

 • Each bit represents whether a
record is selected

• Key insight:

 • A value is selected if and only if
it is connected to a 1 in the select
bitmap

Workflow
• The basic idea

Transform the input select bitmap to:

level bitmap and value bitmap

• The level bitmap is generated by copying
each bit in the select bitmap as many times
as the number of values in the
corresponding record.

• The value bitmap can be created by
removing the bits corresponding to null
values from the level bitmap.

Select Bitmap to Level Bitmap

• Goal：

For each 1 in the select bitmap,
expand it to k 1s

For each 0, expand it to k 0s.

Equal operator

The Equal operator can
determine whether each
small integer is equal to a
constant in a compressed
state and quickly output a
bitmap.

Extend operator

Extend the select bitmap by using the record bitmap as the mask of the extend operator,
duplicating each bit 𝑘 times where 𝑘 is the number of values in the corresponding record.

Select Bitmap to Level Bitmap
• To transform from a select bitmap
(by record) to a level bitmap (by
column value), you only need to:

1. Generate a record bitmap using
repetition level == 0; (Equal
operator)
2. Use the record bitmap as a
mask;
3. Call the extend operator to
extend each bit of the select bitmap
to the number of column
values corresponding to each
record;

• The resulting level bitmap can be
used to filter field values in
subsequent select operations.

 Level Bitmap to Value Bitmap

Goal:

Extract the positions
corresponding to non-null
values from the level bitmap
and obtain the value bitmap,
which is used to select the
actual field values.

Compress operator

• Scan valid bitmap and find every position that is 1

• Then extract the bits at these positions from level bitmap and arrange them in order to form a new
value bitmap
 b𝑣𝑎𝑙𝑢𝑒 = PEXT(b𝑙𝑒𝑣𝑒𝑙 , b𝑣𝑎𝑙𝑖𝑑)

Level Bitmap to Value Bitmap
1. Generates a valid bitmap
where each bit is 1 if the value is
non-null, and 0 if it’s null,
by comparing each definition
level to the maximum definition
level.

2. Use the valid bitmap as a
mask

3. Call the compress operator to
extract the valid bits from the
level bitmap, to form a new value
bitmap

Workflow

• It is worth pointing out that,
all operators used in Algorithm
are bit-parallel algorithms.

• Additionally, all operators rely on
either the PDEP or PEXT instruction
to achieve the full data parallelism
available in processor words.

55

Agenda Science Presentation

Introduction & Background
Bit Parallel Select Operator
Selection Pushdown
Selection Pushdown in Parquet
Evaluation & Conclusion

1.

2.

3.

4.

5.

Evaluating Selection Performance

Experimental Results

• Parquet-Select outperforms
original Parquet in all cases

Experiment Objective

• To analyze how performance is affected by two key factors:

• The bit width of column values • The selectivity of the select bitmap

• The lower the selectivity, the
greater the speedup

 • Because Parquet-Select
only decodes selected values,
reducing decoding cost

• Smaller bit widths lead to greater
performance gains for Parquet-Select

 • Select operator can process more
values per CPU word → higher data
parallelism

Micro-Benchmark Evaluation

Effect of Bit Width (a)
• Parquet-Select performs better
with smaller bit widths.
• However, the absolute
execution time remains nearly the
same.
• Unpack is the performance
bottleneck, and is independent of
bit width.

Use the following SQL query to test: SELECT MAX(a10), MAX(a11), ... ，WHERE a1 < C1 AND a2 < C2 AND ...

Micro-Benchmark Evaluation
Effect of Increasing Filters or Projections (b,c)

• The more filters or projection columns, the better Parquet-Select performs.

• Multiple filters executed sequentially reduce selectivity step by step.

• Later projection process fewer values, leading to more gains.

Micro-Benchmark Evaluation

Performance Across Data Types (d)

• For all types except byte array (e.g.,
int32, int64, int96, float, double), Speedup
ranges from 3.0× to 3.6×

• Byte array shows lower speedup
because:

 • The first filter still needs to
process all values

 • Predicates on byte arrays are
more expensive, which reduces early
performance gain

Micro-Benchmark Evaluation

Effect of Filters for Byte Arrays (e)

• As more filters are added, selectivity drops,
and Parquet-Select’s advantage increases

• This shows that even for expensive data
types, having enough filtering can still bring
significant speedups

Case Study: TPC-H Benchmark Q6 (More realistic workload)
Non-nullable Columns

• All fields in the original dataset are
non-null.
• Compared the query time under three
I/O modes:

 preloaded

 asynchronous I/O

 synchronous I/O

• lower speedup in synchronous I/O
reflects the limitations of CPU-side
optimizations when I/O dominates
the workload.

Case Study: TPC-H Benchmark Q6 (More realistic workload)
Nullable and Repeated Columns

• Original Parquet query time increased, since parquet must decode definition/repetition levels
and check for nulls/repeated values

• Parquet-Select, by contrast:

• Evaluates directly on encoded levels

• Uses BMI instructions to accelerate bitmap transformation

TPC-H Benchmark Evaluation
Experiment Objective

• To integrate Parquet-Select into
Apache Spark and evaluate its
performance under a real-world big data
query engine.

• To compare two approaches:

Spark + Parquet and Spark +
Parquet-Select

Query Selection & Selectivity

• Evaluated 10 queries from the
TPC-H benchmark, with varying
selectivity levels.

TPC-H Benchmark Evaluation
Results

• Parquet-Select outperforms
Parquet across all queries.

• Speedup ranges from 1.1× to 5.5×.

• The lower the selectivity, the
greater the performance gain.

Reason

Parquet-Select significantly
reduces the amount of data that
needs to be read and decoded.

Impact of Encoding and Compression
RLE Encoding (Run-Length Encoding)

• Even when selectivity = 1, Parquet-Select is
still 1.8× faster

 • Because Parquet-Select performs decoding
and filtering in a single pass

 • Parquet requires two passes: one for
decoding, one for filtering

Mixed Encoding

• Simulated with interleaved RLE and
bit-packing runs

• Best performance is achieved when the
column is encoded purely as RLE or
bit-packing

Impact of Encoding and Compression
Page-Level Compression

• LZ4/Snappy reduced file size by
~30%

• Both Parquet and Parquet-Select
experienced performance
degradation:

• Decompression overhead
outweighs I/O savings

• Since decompression cost affects
both systems equally:

• The absolute performance
advantage of Parquet-Select
remains

Discussion

Does the reliance on
PEXT/PDEP instructions
affect the portability of the
proposed approach across
different hardware
platforms?

The Principles are Portable
● The Implementation described in the

paper (using PEXT/PDEP) is
architecture-specific.

● The high level idea described in the
paper (leverage bit operations to
compact data based on a bitmask) is
architecture-independent.

● Creating an ARM based implementation
could be a very interesting and logical
future research direction.

ARM has its own bit instruction set (A64),
as well as extensions like NEON and SVE2
that perform similar functions to
Intel/AMD counterparts.

Could the overhead
introduced by the select
operator outweigh its
benefits?

Select Operator Overhead - Response
● In Short: Not Really!
● All we’re doing is changing the

operation order
● The Difference is this way we’re

unpacking less data
● Speedup is negligible only in the

worst case

Is the select operator robust
to varying bit-widths and
value alignments?

Unpacking Cost and Bit Width are (largely)
Independent!

It doesn’t really matter what the width of the
input values are since the size of the decoded
values are fixed.

This extends to the different data types
being operated on.

How would running
experiments in a
multi-threaded
environment affect
performance?

Multi-threaded Environment Performance - Response

● Theoretically, should improve
● Bitmaps Are Naturally Parallelizable
● Multiple Threads can work on different

segments of the bitmap concurrently.
● Multi-threaded experiments were not part of

this paper, but it is another reasonable next
step for research.

Thread 1

Thread 2

Thread 3

Thread 4

Are there any scenarios
where the greedy
algorithm for filter order
would result in the wrong
order, especially in
real-world systems?

Filter Order - Response
● Greedy Algorithm used to select “optimal” ordering of filters
● Assumes Filters are all Independent and Selectivity is known in advance
● Choose starting filter: Optimal Filter Order -> Ascending Selectivity Order

○ Should minimize size of result for each subsequent filter
○ Lowest overall result is selected

● Does this always give the optimal ordering? – Only if the assumptions are true
○ Only checks O(n) of the O(n!) possible orderings
○ Remember the core idea of Query Optimization

● Relaxing Assumptions could lead to cool future work

Initial Dataset 0.3 Filter Filtered Dataset 0.75 Filter Final Dataset

How does the scalar
BMI-Based approach
interact with the
SIMD-Based vectorized
query engines?

BMI Complements SIMD Operations

● SIMD Operations are used to efficiently unpack and evaluate the values (Unpack/Evaluate)
○ Previous Limitation: decoded value sizes limit degree of parallelism

● Bit Manipulation Instructions reduce the total values that need to be unpacked. (Select/Transform)
○ Fewer values to unpack → Smaller total decoded value size

Initial
Compressed

Data
BMI

Filtered
Compressed

Data
SIMD Filtered

Decoded Data

What performance
bottlenecks are observed in
the experiments?

Initial Query
● When a query starts with no prior filter, Parquet-Select must unpack

all the data to create the bitmap for the next operation

Switching Between RLE and Bit-Packing
● Parquet-Select handles both run-length encoding (RLE) and

bit-packing, but flipping between them adds overhead

Parallel predicate evaluation
assumes order-preserving
encodings and simple
predicates on encoded data.
Should these methods be
extended to support more
complex filters?

After optimizing
unpacking, what other
parts of the selection
pushdown pipeline offer
the most potential for
further improvement?

Evaluation: Improving Predicate Pushdown
● Predicate pushdown techniques are currently limited to order-preserving encodings

and simple predicates, which don’t have significant real world application

● However, developing techniques to encode and evaluate more complex predicates

directly on encoded values could eliminate/reduce the need for unpacking in certain

operations

● Can help resolve initial query bottleneck

Parquet-Select shows
impressive performance
gains, but are there specific
benchmarks or workloads
where these improvements
diminish or break down?

High Selectivity Queries
● Low selectivity means fewer values to unpack down the line
● Figure 12 shows speedup drops as selectivity rises
● As selectivity goes to 100%, Parquet-Select’s performance essentially

converges with Parquet
● Why? If we’re unpacking everything anyway, the BMI select step adds

overhead without saving much time

