
class 2

Data Systems 101
Tarikul Islam Papon

https://bu-disc.github.io/CS561/

CS 561: Data Systems Architectures

https://bu-disc.github.io/CS561/

What do we do in this class?

reading papers projects

presentations

reviews

project 0

A small implementation project
to sharpen dev skills

independent project

project 1

A medium project to give you a flavor of
large-scale production system

groups of 3

ANDProjects

Due on Feb 2, 2024

Project
project 0

A small implementation project
to sharpen dev skills

independent project

project 1

A medium project to give you a flavor of
large-scale production system

groups of 3

ANDProjects

Due on Feb 2, 2024

Start forming groups
Due on Feb 16, 2024

systems project

groups of 2/3

implementation-heavy C/C++ project

research project

groups of 3

pick a subject (list will be available soon)

design & analysis

experimentation

ORProjects

Project
systems project

groups of 3

implementation-heavy C/C++ project

research project

groups of 3

pick a subject (list available in website)

design & analysis

experimentation

ORProjects

1. Proposal

2. Mid-semester report

3. Final report + Presentation

class timeline

Week 2
register for presentations by 1/31

now

Week 6
submit project proposal by 2/23

Week 3
project 0 by 2/2

form groups by 2/4

Week 15: Project presentations
submit all material by 4/26

Week 5
project 1 by 2/16

Week 10
submit mid-semester
project report by 3/22

discussions
interaction in OH & Lab

questions

first paper review +
first paper presentation 2/7

Piazza

all discussions & announcements
http://piazza.com/bu/spring2022/cs561/

also available on class website
We have added everyone who already registered!

Please double-check!

2 classes per week & OH/Labs 5 days per week

http://piazza.com/bu/spring2022/cs561/

sources (variety)

big data
(it’s not only about size)

size (volume)
rate (velocity)

The 3 V’s
veracity & value

big data
(it’s not only about size)

+ our ability to collect machine-generated data

social
scientific experiments sensors

Internet-of-things

The 3 V’ssources (variety)

size (volume)
rate (velocity)

veracity & value

a data system is a large software system
that stores data, and provides the interface to

update and access them efficiently

data system analysis
knowledge
insights
decisions

data

a data system is a large software system
that stores data, and provides the interface to

update and access them efficiently

data system analysis
knowledge
insights
decisions

data

a data system is a large software system
that stores data, and provides the interface to

update and access them efficiently

data system analysis
knowledge
insights
decisions

data

some analysis

data system: breaking the blackbox

application/SQL
access patterns
complex queries

Indexing Data

op

op
op

op

op
algorithms

&
operators

selection
projection
join
aggregate
hashing
sorting

data &
metadata

memory
hierarchy

application/SQL
access patterns
complex queries

Query
Parser

Query
Compiler Optimizer

Evaluation
Engine

Memory/Storage
Management

Indexing Transaction
Management Disk

Memory

Caches

CPU

modules

growing environment
DB
ACID

large systems
complex

lots of tuning

noSQL
BASE

simple, clean
“just enough”

>$200B by 2020, growing at 11.7% every year
[The Forbes, 2016]

growing environment

$3B by 2020, growing at 20% every year
[Forrester, 2016]

>$200B by 2020, growing at 11.7% every year
[The Forbes, 2016]

DB
ACID

large systems
complex

lots of tuning

noSQL
BASE

simple, clean
“just enough”

growing environment

newSQL

more complex
applications

need for
scalability

$3B by 2020, growing at 20% every year
[Forrester, 2016]

>$200B by 2020, growing at 11.7% every year
[The Forbes, 2016]

DB
ACID

large systems
complex

lots of tuning

noSQL
BASE

simple, clean
“just enough”

growing environment

newSQL

more complex
applications

need for
scalability

$3B by 2020, growing at 20% every year
[Forrester, 2016]

>$200B by 2020, growing at 11.7% every year
[The Forbes, 2016]

DB
ACID

large systems
complex

lots of tuning

noSQL
BASE

simple, clean
“just enough”

growing need for tailored systems

new applicationsnew hardwaremore data new performance
goals

data systems & the hardware

memory hierarchy

CPU

on-chip cache

on-board cache

main memory

flash storage

magnetic disks

faster
expensive (GB/$)
smaller (B v. TB)

memory hierarchy (by Jim Gray)

Jim Gray, IBM, Tandem, Microsoft, DEC
ACM Turing Award 1998
ACM SIGMOD Edgar F. Codd Innovations award 1993

registers/CPU

on chip cache

on board cache

memory

disk

tape

2x

10x

100x

106x

109x

my head
~0

this room
1min

this building
10min

Washington, DC
5 hours

Pluto
2 years

Andromeda
2000 years

memory hierarchy (by Jim Gray)

Jim Gray, IBM, Tandem, Microsoft, DEC
ACM Turing Award 1998
ACM SIGMOD Edgar F. Codd Innovations award 1993

registers/CPU

on chip cache

on board cache

memory

disk

tape

2x

10x

100x

106x

109x

my head
~0

this room
1min

this building
10min

Washington, DC
5 hours

Pluto
2 years

Andromeda
2 years

tape?
sequential-only magnetic storage

still a multi-billion industry
45TB @ $150

Jim Gray (a great scientist and engineer)

Jim Gray, IBM, Tandem, Microsoft, DEC
ACM Turing Award 1998
ACM SIGMOD Edgar F. Codd Innovations award 1993

the first collection of
technical visionary research on

a data-intensive scientific discovery

memory wall

CPU

on-chip cache

on-board cache

main memory

flash storage

fa
st

er
ch

ea
pe

r/
la

rg
er

magnetic disks

memory wall

CPU

on-chip cache

on-board cache

main memory

flash storage

fa
st

er
ch

ea
pe

r/
la

rg
er

be careful when you go below the green line

magnetic disks

cache/memory misses

CPU

on-chip cache

on-board cache

main memory

flash storage

cache miss: looking
for something that
is not in the cache

memory miss: looking
for something that

is not in memory

what happens if I miss?

be careful when you go below the green line

what happens if I miss again?

be very careful when you go below the green line
magnetic disks

computations
happen here

data movement

CPU

on-chip cache

on-board cache

main memory

flash storage

data goes through
all necessary levels

also read
unnecessary data pageX

Photo by Gary Dineen/NBAE via Getty Images

need to read only X
read the whole page

magnetic disks

data movement

CPU

on-chip cache

on-board cache

main memory

flash storage

data goes through
all necessary levels

also read
unnecessary data pageX

need to read only X
read the whole page

Photo by Gary Dineen/NBAE via Getty Images

magnetic disks remember!
disk is millions (mem, hundreds) of times slower than CPU

page-based access & random access

memory (memory level N)
disk (memory level N+1)

size=120 bytes

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

query x<7

page-based access & random access

memory (memory level N)
disk (memory level N+1)

size=120 bytes

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

1, 5, 12, 24, 23

scan output

1, 5

40 bytes

query x<7

page-based access & random access

memory (memory level N)
disk (memory level N+1)

size=120 bytes

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

query x<7

1, 5, 12, 24, 23

output

1, 5

40 bytes

2, 7, 13, 9, 8

scan

page-based access & random access

memory (memory level N)
disk (memory level N+1)

size=120 bytes

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

query x<7

1, 5, 12, 24, 23

output

1, 5, 2

40 bytes

2, 7, 13, 9, 8

scan

page-based access & random access

memory (memory level N)
disk (memory level N+1)

size=120 bytes

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

query x<7

1, 5, 12, 24, 23

output

1, 5, 2

80 bytes

2, 7, 13, 9, 8

scan

page-based access & random access

memory (memory level N)
disk (memory level N+1)

size=120 bytes

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

query x<7

10, 11, 6, 14, 15

scan output

1, 5, 2

80 bytes

2, 7, 13, 9, 8

page-based access & random access

memory (memory level N)
disk (memory level N+1)

size=120 bytes

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

query x<7

10, 11, 6, 14, 15

scan output

1, 5, 2, 6

80 bytes

2, 7, 13, 9, 8

page-based access & random access

memory (memory level N)
disk (memory level N+1)

size=120 bytes

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

query x<7

10, 11, 6, 14, 15

scan output (32 bytes)

1, 5, 2, 6

120 bytes

2, 7, 13, 9, 8

what if we had an oracle (perfect index)?

page-based access & random access

memory (memory level N)
disk (memory level N+1)

size=120 bytes

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

query x<7

page-based access & random access

memory (memory level N)
disk (memory level N+1)

size=120 bytes

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

1, 5, 12, 24, 23

oracle output

1, 5

40 bytes

query x<7

page-based access & random access

memory (memory level N)
disk (memory level N+1)

size=120 bytes

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

query x<7

1, 5, 12, 24, 23

output

1, 5

40 bytes

2, 7, 13, 9, 8

oracle

page-based access & random access

memory (memory level N)
disk (memory level N+1)

size=120 bytes

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

query x<7

1, 5, 12, 24, 23

output

1, 5, 2

40 bytes

2, 7, 13, 9, 8

oracle

page-based access & random access

memory (memory level N)
disk (memory level N+1)

size=120 bytes

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

query x<7

1, 5, 12, 24, 23

output

1, 5, 2

80 bytes

2, 7, 13, 9, 8

oracle

page-based access & random access

memory (memory level N)
disk (memory level N+1)

size=120 bytes

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

query x<7

10, 11, 6, 14, 15

output

1, 5, 2

80 bytes

2, 7, 13, 9, 8

oracle

page-based access & random access

memory (memory level N)
disk (memory level N+1)

size=120 bytes

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

query x<7

10, 11, 6, 14, 15

output

1, 5, 2, 6

80 bytes

2, 7, 13, 9, 8

oracle

page-based access & random access

memory (memory level N)
disk (memory level N+1)

size=120 bytes

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15

page size = 5*8 = 40 bytes

query x<7

10, 11, 6, 14, 15 1, 5, 2, 6

120 bytes

2, 7, 13, 9, 8

oracle
was the oracle helpful?

output (32 bytes)

when is the oracle helpful?

2, 7, 13, 9, 8 1, 5, 12, 24, 23 10, 11, 6, 14, 15

for which query would an oracle help us?

how to decide whether to use the oracle or not?

every byte counts

how we store data

know the query
index

design space

overheads and tradeoffs

layouts, indexes

access path selection

rules of thumb

sequential access
read one block; consume it completely; discard it; read next

random access
read one block; consume it partially; discard it; (may re-use)

hardware can predict and start prefetching

prefetching can exploit full memory/disk bandwidth

are random accesses always bad?

the one that helps us avoid a large number
of accesses (random or sequential)

zonemaps file = collection of pages

page 0

page 1

page 2

page 3

zonemaps

2, 7, 13, 9, 8

1, 5, 12, 24, 23

10, 11, 6, 14, 15

3, 16, 34, 31, 21

file = collection of pages

page 0

page 1

page 2

page 3

zonemaps

2, 7, 13, 9, 8

1, 5, 12, 24, 23

10, 11, 6, 14, 15

3, 16, 34, 31, 21

file = collection of pages

page 0

page 1

page 2

page 3

3,16

1,24

2,13

6,15

light-weight

typically retained
in memory

But what if the data is sorted?

zonemaps

12, 13, 14, 15, 16

7, 8, 9, 10, 11

21, 23, 24, 31, 34

1, 2, 3, 5, 6

file = collection of pages

page 0

page 1

page 2

page 3

1,6

7,11

12,16

21,34

light-weight

typically retained
in memory

But what if the data is sorted?

the language of efficient systems: C/C++

why?

fewer assumptions

low-level control over hardware

make decisions about physical data placement and consumptions

the language of efficient systems: C/C++

why?

fewer assumptions

low-level control over hardware

make decisions about physical data placement and consumptionswe want you in the project to make low-level decisions

class 2

Data Systems 101

modern main-memory data systems
&

semester project

CS 561: Data Systems Architectures

next :

