
CS 561: Data Systems Architectures

Class 20

Correlation-Aware Partitioning for Joins

Zichen Zhu

https://bu-disc.github.io/CS561/

https://bu-disc.github.io/CS561/

Join in Relational Databases

2

ClassID StudentID

cs561 0000011

cs561 3078002

… …

0000011 0000011

Enroll

Student StudentID YOB … Gender

0000001 1970/01/02 … M

0000002 1966/03/02 … F

… … … …

6534702 2000/10/02 … M

Select *
From Student, Enroll
Where Student.StudentID = Enroll.StudentID

Block Nested Loop Join (assuming ||𝑆|| > ||𝑅||)

3

Notation Meaning

||𝑅|| (||𝑆||) The number of pages of relation R (S)

𝐵 Buffer size (in pages)

The first 𝐵 − 2
pages in R

The second 𝐵 − 2
pages in R

. . .

||𝑅||

𝐵 − 2
⋅ ||𝑆|| + ||𝑅||Join cost (I/Os):

R SR

Input buffer for S

Total Available Memory

S

. . .

Output buffer

a hash table with 𝐵 − 2 pages for R

. . .

. . .

. . .

. . .

If 𝐵 is large, the minimum #I/O is ||𝑆|| + ||𝑅||when ||𝑅|| ≤ 𝐵 − 2

Grace Hash Join
R S

𝑗=1

𝐵−1

||𝑆𝑗|| + ||𝑅𝑗|| = ||𝑆|| + ||𝑅||

Assuming ||𝑅𝑗|| ≤ 𝐵 − 2

Input buffer for 𝑆𝑗

𝑆𝑗

. . .

Output buffer

a hash table with 𝐵 − 2 pages for 𝑅𝑗

𝑅𝑗 𝑆𝑗 for each pair (𝑅𝑗 , 𝑆𝑗):
||𝑅𝑗||

𝐵−2
⋅ ||𝑆𝑗|| + ||𝑅𝑗||

𝑅𝑗

Partitioning
both R and S

Probing

2 × ||𝑆|| + ||𝑅||

Totally, the #I/Os for Grace Hash Join is

3 ⋅ ||𝑆|| + ||𝑅||

𝑅 (𝑆)

. . .

ℎ 𝑘𝑒𝑦 𝑚𝑜𝑑 𝐵 − 1 + 1

𝑅1(𝑆1)

𝑅2(𝑆2)

𝑅𝐵−1(𝑆𝐵−1)

. . .

Total Available Memory (𝐵 pages)

4

State-of-the-art: Hybrid Hash Join

Partitioning R

𝑅 ℎ 𝑘𝑒𝑦 𝑚𝑜𝑑 𝑚

𝑅2 𝑅𝑚
. . .

Total Available Memory (𝐵 pages)

𝑅1

.

Partitioning S

2 ⋅ ||𝑅|| − ||𝑅1||

2 × ||𝑆|| − ||𝑆1||

𝑗=2

𝑚
||𝑅𝑗||

𝐵 − 2
⋅ ||𝑆𝑗|| + ||𝑅𝑗|| =

𝑗=2

𝑚

||𝑆𝑗|| + ||𝑅𝑗||

5

Probing Assuming ||𝑅𝑗|| ≤ 𝐵 − 2

𝑆 ℎ 𝑘𝑒𝑦 𝑚𝑜𝑑 𝑚

𝑆2 𝑆𝑚
. . .

𝑆1

.
Output buffer

Dynamic Hybrid Hash Join (DHH)
State of the art DBs (e.g., PostgreSQL and AsterixDB) use DHH to decide which partitions are staged.

6

Staged Partition

Input Page

Available Page

Example: Partitioning R (𝒎 = 𝟖)

Partitioning
Phase of 𝑹

ℎ𝑠𝑝𝑙𝑖𝑡 𝑘𝑒𝑦 𝑚𝑜𝑑 8 + 1Input 𝑹

POB: 0 0 0 0 0 0 0 0

𝑅1 𝑅2 𝑅3 𝑅4 𝑅5 𝑅6 𝑅8

useless

𝑅7

…

No available pages to use!

Partitioning
Phase of 𝑹

ℎ𝑠𝑝𝑙𝑖𝑡 𝑘𝑒𝑦 𝑚𝑜𝑑 8 + 1
Input 𝑹

POB: 0 0 0 0 0 0 0 0

𝑅1

𝑅2

𝑅3

𝑅4 𝑅5

𝑅6

𝑅8

useless
𝑅7

Partition R: Suppose we choose 𝑅5 to evict

7

ℎ𝑠𝑝𝑙𝑖𝑡 𝑘𝑒𝑦 𝑚𝑜𝑑 8 + 1Input 𝑹

POB: 0 0 0 0 0 0 0 0

𝑅1

𝑅2

𝑅3

𝑅4 𝑅5

𝑅6

𝑅8

useless
𝑅7

ℎ𝑠𝑝𝑙𝑖𝑡 𝑘𝑒𝑦 𝑚𝑜𝑑 8 + 1Input 𝑹

POB: 0 0 0 0 1 0 0 0

𝑅1

𝑅2

𝑅3

𝑅4

𝑅5

𝑅6

𝑅8

useless
𝑅7

Staged Partition

Input Page

Available Page

Evicted Partition

Disk Partitions for R

𝑅5

Disk Partitions for R

𝑅4

𝑅5

𝑅7

ℎ𝑠𝑝𝑙𝑖𝑡 𝑘𝑒𝑦 𝑚𝑜𝑑 8 + 1

POB: 0 0 0 1 1 0 1 0

𝑅1

𝑅2

𝑅3

𝑅4 𝑅5

𝑅6

𝑅8

useless

𝑅7

Partition R: Building a Hash Table (HT)

8

Staged Partition

Input Page

Available Page

Evicted Partition

Disk Partitions for R

𝑅4

𝑅5

𝑅7

ℎ𝑠𝑝𝑙𝑖𝑡 𝑘𝑒𝑦 𝑚𝑜𝑑 8 + 1

POB: 0 0 0 1 1 0 1 0

𝑅1

𝑅2

𝑅3

𝑅4 𝑅5

𝑅6

𝑅8

𝑅7

𝐻𝑇

The final memory state after partitioning R:

||𝑅|| + ||𝑅4|| + ||𝑅5|| + ||𝑅7||I/O cost:POB: 0 0 0 1 1 0 1 0

𝐻𝑇

ℎ𝑝𝑟𝑜𝑏𝑒 𝑘𝑒𝑦

#

#
#
#

Partition S and Probe

9

POB: 0 0 0 1 1 0 1 0

𝐻𝑇

Output Buffer

Input Page

Available Page

Evicted Partition

POB: 0 0 0 1 1 0 1 0

𝐻𝑇

Input 𝑺
ℎ𝑠𝑝𝑙𝑖𝑡 𝑘𝑒𝑦 𝑚𝑜𝑑 8 + 1

Keys
matched

Disk Partitions for S

𝑆4

𝑆5

𝑆7

||𝑅|| + ||𝑅4|| + ||𝑅5|| + ||𝑅7||

I/O cost (partitioning S):

||𝑆|| + ||𝑆4|| + ||𝑆5|| + ||𝑆7||

I/O cost (partitioning R):

𝑗∈{4,5,7}

𝑚
||𝑅𝑗||

𝐵 − 2
⋅ ||𝑆𝑗|| + ||𝑅𝑗||

I/O cost (probing):

In total (assuming ||𝑅𝑗|| ≤ 𝐵 − 2):

||𝑅|| + ||𝑆|| +

𝑗∈{4,5,7}

𝑚

2 ⋅ ||𝑆𝑗|| + ||𝑅𝑗||

DHH Bridges between BNLJ and GHJ

10

Method I/O cost

BNLJ ||𝑅|| + ||𝑆|| when ||𝑅|| ≤ 𝐵 − 2

GHJ 3 ⋅ (||𝑅|| + ||𝑆||) when ||𝑅j|| ≤ 𝐵 − 2

DHH ||𝑅|| + ||𝑆|| + 2 ⋅ σ𝑗∈𝐽(||𝑅j|| + ||𝑆j||) when ||𝑅j|| ≤ 𝐵 − 2

𝐽 represents the ids of partitions
that are spilled to the disk

Can we do better?

Skew Optimization: Stage Most-Common-Values (MCVs) to reduce ||𝑆𝑗 ||

Skew Optimization in DHH

11

Disk Partitions for R

𝑃4

𝑃5

𝑃7

ℎ𝑠𝑝𝑙𝑖𝑡 𝑘𝑒𝑦 𝑚𝑜𝑑 8 + 1

0 0 0 1 1 0 1 0

𝑃1

𝑃2

𝑃3

𝑃4 𝑃5

𝑃6

𝑃8

𝑃7

Input 𝑹

Shared Buffer

MCVs in S

𝐻𝑇′ for MCVs

YES NO

Partition R

0 0 0 1 1 0 1 0

𝐻𝑇

Input 𝑺

ℎ𝑠𝑝𝑙𝑖𝑡 𝑘𝑒𝑦 𝑚𝑜𝑑 8 + 1

Disk Partitions for S

𝑃4

𝑃5

𝑃7

Partition S

𝐻𝑇′ for MCVs

YES NO

YES

Key Frequency

key1 1000

… …

keyn 500

Correlation Table (CT)

B (Memory budget) [Log scale]

I/
O

 c
os

t (
N

o
O

ut
pu

t)

𝐹 ⋅ ||𝑅||𝐹 ⋅ ||𝑅||/2 𝐹 ⋅ ||𝑅||

3 ⋅ (||𝑅|| + ||𝑆||)

||𝑅|| + ||𝑆||

2 ⋅ 𝐹 ⋅ ||𝑅||

DHH

Much lower I/Os when correlation is more skewed

Low Skew:
DHHHigh Skew:

Skew optimization reduces the number of I/Os when the matching exhibits skew
12

Skew Optimization in DHH

Can we do better?

13

Disk Partitions for R

𝑃4

𝑃5

𝑃7

ℎ𝑠𝑝𝑙𝑖𝑡 𝑘𝑒𝑦 𝑚𝑜𝑑 8 + 1

0 0 0 1 1 0 1 0

𝑃1

𝑃2

𝑃3

𝑃4 𝑃5

𝑃6

𝑃8

𝑃7

Input 𝑹

Shared Buffer

MCVs in S

𝐻𝑇′ for MCVs

YES NO

Partition R

0 0 0 1 1 0 1 0

𝐻𝑇

Input 𝑺

ℎ𝑠𝑝𝑙𝑖𝑡 𝑘𝑒𝑦 𝑚𝑜𝑑 8 + 1

Disk Partitions for S

𝑃4

𝑃5

𝑃7

Partition S

𝐻𝑇′ for MCVs

YES NO

YES

||𝑅|| + ||𝑆|| + 2 ⋅ σ𝑗∈𝐽(||𝑅j|| + ||𝑆j||) when ||𝑅j|| ≤ 𝐵 − 2

Q1: How much should ||𝐻𝑇′|| be?

Q2: What if ||𝑅j|| > 𝐵 − 2 ?

DHH v.s. Instance-Optimal Join (OCAP)

B (Memory budget) [Log scale]

I/
O

 c
os

t (
N

o
O

ut
pu

t)

𝐹 ⋅ ||𝑅||𝐹 ⋅ ||𝑅||/2 𝐹 ⋅ ||𝑅||

3 ⋅ (||𝑅|| + ||𝑆||)

||𝑅|| + ||𝑆||

2 ⋅ 𝐹 ⋅ ||𝑅||

DHH NOCAP (Ours) OCAP (Opt)Low Skew:
DHH OCAP (Opt)High Skew: NOCAP (Ours)

A good partitioning algorithm should be skew-aware and adaptive to the given memory
14

Modeling the Join Cost of DHH

15

Recall DHH Join Cost: ||𝑅|| + ||𝑆|| + σ𝑗∈𝐽
||𝑅𝑗||

𝐵−2
+ 1 ⋅ ||𝑆𝑗|| + 2 ⋅ ||𝑅𝑗||

𝐽 represents the ids of partitions
that are spilled to the disk

𝑎𝑟𝑔 min
𝑃,𝑚

𝑗=2

𝑚+1
||𝑅𝑗||

𝐵 − 2
+ 1 ⋅ ||𝑆𝑗|| + 2 ⋅ ||𝑅𝑗||

s.t. ∀𝑖 ∈ 𝑛 , σ𝑗=1
𝑚+1 𝑃𝑖,𝑗 = 1

 ||𝑅1|| + 𝑚 + 2 ≤ 𝐵

 𝑃𝑖,𝑗 ∈ {0,1}, ∀𝑖 ∈ 𝑛 , ∀𝑗 ∈ [𝑚 + 1]

Define a 𝑛 × (𝑚 + 1) Boolean matrix 𝑃 to
represent the partitioning assignment

Notation Meaning

𝑛 (𝑛𝑅) The number of tuples in relation R

𝑚 The number of partitions on disk

𝑃 =
0 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 0 𝑛×(𝑚+1)

A Boolean matrix P where 𝑃𝑖,𝑗 = 1

represents the 𝑖𝑡ℎ record belongs to

the 𝑗𝑡ℎ partition

𝑅1 A partition cached in memory

Integer Programming

16

𝑎𝑟𝑔 min
𝑃,𝑚

𝑗=2

𝑚+1
||𝑅𝑗||

𝐵 − 2
+ 1 ⋅ ||𝑆𝑗|| + 2 ⋅ ||𝑅𝑗||

s.t. ∀𝑖 ∈ 𝑛 , σ𝑗=1
𝑚+1 𝑃𝑖,𝑗 = 1

 ||𝑅1|| + 𝑚 + 2 ≤ 𝐵

 𝑃𝑖,𝑗 ∈ {0,1}, ∀𝑖 ∈ 𝑛 , ∀𝑗 ∈ [𝑚 + 1]

Index 𝒊 Frequency in S

1 1

… ...

n-1 77

n 100

Correlation Table (CT)

||𝑅𝑗|| =

𝑖=1

𝑛

𝑃𝑖,𝑗 /𝑏𝑅

||𝑆𝑗|| =

𝑖=1

𝑛

𝑃𝑖,𝑗 ⋅ 𝐶𝑇[𝑖] /𝑏𝑆

Exponential searching space to enumerate all possible partitions!

Instance-Optimal Join (Optimal Correlation-Aware Partitioning)
 Input: 𝑛, 𝐵, 𝑏𝑅, 𝑏𝑆, 𝐶𝑇
 Output: 𝑃, 𝑚

Three Properties of 𝑃𝑜𝑝𝑡 to Reduce Complexity

Consecutiveness

Monotonicity

Divisibility

17

𝑂 𝐵𝑛+1 ⇒ 𝑂(𝐵2 ⋅ 𝑛2)

𝑂 𝐵2 ⋅ 𝑛2 ⇒ 𝑂(𝑛2 ⋅ 𝐵 ⋅ log 𝐵)

𝑂 𝑛2 ⋅ 𝐵 ⋅ log 𝐵 ⇒ 𝑂(𝑛2 ⋅ log 𝐵 /𝐵)

Consecutiveness

18

Index 𝒊 Frequency in S

1 1

… ...

n-1 77

n 100

Correlation Table (CT)

Theorem 1 Given an arbitrary sorted CT array, there is an optimal partitioning 𝑃𝑜𝑝𝑡 = 𝑃1, 𝑃2, … , 𝑃𝑚+1

where for any 𝑖1 ≤ 𝑖2, if 𝑖1 ∈ 𝑃𝑗 and 𝑖2 ∈ 𝑃𝑗, we have 𝑖 ∈ 𝑃𝑗 for any 𝑖 ∈ [𝑖1, 𝑖2].

…

𝑃𝑚+1

…

𝑃2 𝑃1

Unique keys sorted by CT

Monotonicity

19

Index 𝒊 Frequency in S

1 1

… ...

n-1 77

n 100

Correlation Table (CT)

Theorem 2 Given an arbitrary sorted CT array, there is an optimal partitioning 𝑃𝑜𝑝𝑡 = 𝑃1, 𝑃2, … , 𝑃𝑚+1

from Theorem 1 where
||𝑅𝑚+1||

𝐵−2
≥

||𝑅𝑚||

𝐵−2
≥ ⋯ ≥

||𝑅2||

𝐵−2
≥

||𝑅1||

𝐵−2
.

…

𝑃𝑚+1

…

𝑃2 𝑃1

Unique keys sorted by CT

𝑅𝑗 is a group of records from relation 𝑅 while 𝑃𝑗 is a group of keys

Divisibility

20

Index 𝒊 Frequency in S

1 1

… ...

n-1 77

n 100

Correlation Table (CT)

Theorem 3 Given an arbitrary sorted CT array, there is an optimal partitioning 𝑃𝑜𝑝𝑡 = 𝑃1, 𝑃2, … , 𝑃𝑚+1

from Theorem 2 where ||𝑅𝑗|| is divisible by 𝐵 − 2 for 𝑗 ∈ [2, 𝑚].

…

𝑃𝑚+1

…

𝑃2 𝑃1

Unique keys sorted by CT

||𝑅𝑚+1||

𝐵−2
≥

||𝑅𝑚||

𝐵−2
≥ ⋯ ≥

||𝑅2||

𝐵−2
≥

||𝑅1||

𝐵−2
 from Theorem 2

Practical Challenges for OCAP

1. We cannot have the whole CT in practice

2. Partitioning assignment also occupies memory

Index 𝒊 Frequency in S

1 1

… ...

10M 1000

𝑃 =
0 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 0 𝑛×(𝑚+1)

21

Inspirations from OCAP

Consecutiveness and Monotonicity:
||𝑅𝑚+1||

𝐵−2
≥ ⋯ ≥

||𝑅1||

𝐵−2
for sorted CT

Divisibility: On-disk partitions should be mostly divisible by 𝐵 − 2

22

⇒ We can prioritize MCVs in two ways: build an in-memory hash table
(if B is large) or assign them into a small partition on disk (if B is small)

⇒ We should ensure on-disk partitions fulfill 𝑧 ⋅ (𝐵 − 2) pages (𝑧 ∈ 𝑍+)

Divisibility when Partitioning Data on Disk

23

18-page input data from 𝑅

Output buffer page for a partition A full-filled page in disk A half-filled page in disk

uniform
Partition 1 Partition 2 Partition 3 Partition 4

𝑃𝑎𝑟𝑡𝐼𝐷 = ℎ 𝑘 𝑚𝑜𝑑 4

non-uniform
Partition 1 Partition 2 Partition 3 Partition 4

𝑃𝑎𝑟𝑡𝐼𝐷 = (ℎ 𝑘 𝑚𝑜𝑑 6) 𝑚𝑜𝑑 4

𝑩 = 𝟓

6 = ||𝑅|| / (𝐵 − 2)

||𝑆1|| = 9 ||𝑆2|| = 10 ||𝑆3|| = 10 ||𝑆4|| = 8

||𝑆1|| = 12 ||𝑆2|| = 13 ||𝑆3|| = 7 ||𝑆4|| = 5

9 + 10 + 10 + 8 ⋅ 2

= 𝟕𝟒

12 + 13 ⋅ 2 + 7 + 5

= 𝟔𝟐

Prioritizing MCVs with Constrained Memory
Index 𝒊 Frequency in S

1 1

… …

n-k+1 73

n-k+2 73

… …

n-1 100

n 100

Run OCAP with some memory
budget 𝑚 = 𝐵 − 2 − 𝑚𝑟𝑒𝑠𝑡

Run augmented DHH with
memory budget 𝑚𝑟𝑒𝑠𝑡

We only have top-k
frequent keys (MCVs)

One for input

…

𝑚disk pages

…

𝑚𝑟𝑒𝑠𝑡 pages

(the rest of keys)

……

𝐵𝑓

Total available buffer space (𝐵 pages)

……

𝐵𝐻𝑆𝐵𝐻𝑇

One for output
24

A hash set for keys
with high CT

A hash table to store
the whole record of

the hash set

A hash map for keys
to be partitioned

Several write-buffer
pages for partitioning

𝐻𝑆

𝐻𝑇

𝑓

𝑚𝑑𝑖𝑠𝑘

NOCAP

25

Input 𝑹

Input 𝑺

Probe Hash Function ℎ𝑝𝑟𝑜𝑏𝑒

Partitioning
Phase of 𝑹

Partitioning
Phase of 𝑺

Probe In-memory Hash Table

Staged Partition

Disk-resident Partition

Total Available Memory

𝐻𝑇𝑚𝑒𝑚

Disk Partitions for S

𝑃1

𝑃4

𝑃2

𝑃7

Input Page

Join Output Page

useless
Call DHH with 𝑚𝑟 pages

𝑟 ∈ 𝐻𝑆 ?

𝐘𝐄𝐒

𝑟 ∈ 𝑓 ?

𝐍𝐎

𝐘𝐄𝐒
𝑃1 𝑃2𝐍𝐎

Split Hash Function ℎ𝑠𝑝𝑙𝑖𝑡

0 1 0 0 1 0 0 0

𝑃4 𝑃7

Split Hash Function ℎ𝑠𝑝𝑙𝑖𝑡

0 1 0 0 1 0 0 0

𝐘𝐄𝐒

𝐍𝐎

𝑟 ∈ 𝑓 ?

𝐘𝐄𝐒 𝑃1 𝑃2
𝐍𝐎

𝑃4 𝑃7

Disk Partitions for R

𝑃1

𝑃4

𝑃2

𝑃7

Partitioning Workflow:

OCAP for top-𝑘′ frequent keys

DHH to partition the rest

Experiment Setup

Storage: PCIe P4510 SSD

Measured read/write symmetry:

 random_write_latency/sequential_read_latency = 3.3

 sequential_write_latency/sequential_read_latency = 3.2

PK-FK join input size: 1M #records join with 8M #records

Record size: 1KB per record

Page size: 4KB
26

Selected Experimental Results

Zipfian (𝛼 = 1.3) Uniform

Correlation-aware joins (DHH, Histojoin, and NOCAP) can adaptively
reduce I/O cost when it comes to a skew distribution.

Note: OCAP only represents a lower bound, not a practical algorithm 27

Varying skew

Zipfian (𝛼 = 1.3) Zipfian (𝛼 = 1.0) Zipfian (𝛼 = 0.7)

While DHH helps reduce #I/Os, NOCAP can better exploit the correlation
skew to achieve even lower I/O cost. 28

State-of-the-art

La
te

nc
y

Memory

Instance-optimal

Low High

Zipfian (𝛼 = 1.3) Zipfian (𝛼 = 1.0) Zipfian (𝛼 = 0.7)

While DHH occasionally performs as close as NOCAP,
NOCAP is more adaptive when the workload varies.

Other datasets (JCC-H and JOB)

JCC-H SF=10
(Tuned Skew)

with Revised Q12

JCC-H SF=10
(Original Skew)

with Revised Q12

JOB
(cast_info ⨝ title)

JOB
(cast_info ⨝name)

29

Summary of NOCAP

NOCAP join outperforms DHH by up to 30%, and the textbook
GHJ by up to 4X. Even for uniform distribution, NOCAP
outperforms DHH by up to 10%!

30B (Memory budget) [Log scale]

I/
O

 c
os

t (
N

o
O

ut
pu

t)

𝐹 ⋅ ||𝑅||𝐹 ⋅ ||𝑅||/2 𝐹 ⋅ ||𝑅||

3 ⋅ (||𝑅|| + ||𝑆||)

||𝑅|| + ||𝑆||

2 ⋅ 𝐹 ⋅ ||𝑅||

DHH NOCAP (Ours) OCAP (Opt)Low Skew:

DHH OCAP (Opt)High Skew: NOCAP (Ours)

CS 561: Data Systems Architectures

Class 20

Correlation-Aware Partitioning for Joins

Zichen Zhu

https://bu-disc.github.io/CS561/

https://bu-disc.github.io/CS561/

	Slide 1
	Slide 2: Join in Relational Databases
	Slide 3: Block Nested Loop Join (assuming ퟀ�ퟀ� cap S ퟀ�ퟀ� greater than ퟀ�ퟀ� cap R ퟀ�ퟀ�)
	Slide 4: Grace Hash Join
	Slide 5: State-of-the-art: Hybrid Hash Join
	Slide 6: Dynamic Hybrid Hash Join (DHH)
	Slide 7: Partition R: Suppose we choose cap R sub 5 to evict
	Slide 8: Partition R: Building a Hash Table (HT)
	Slide 9: Partition S and Probe
	Slide 10: DHH Bridges between BNLJ and GHJ
	Slide 11: Skew Optimization in DHH
	Slide 12: Skew Optimization in DHH
	Slide 13: Can we do better?
	Slide 14: DHH v.s. Instance-Optimal Join (OCAP)
	Slide 15: Modeling the Join Cost of DHH
	Slide 16: Integer Programming
	Slide 17: Three Properties of cap P sub o p t to Reduce Complexity
	Slide 18: Consecutiveness
	Slide 19: Monotonicity
	Slide 20: Divisibility
	Slide 21: Practical Challenges for OCAP
	Slide 22: Inspirations from OCAP
	Slide 23: Divisibility when Partitioning Data on Disk
	Slide 24: Prioritizing MCVs with Constrained Memory
	Slide 25: NOCAP
	Slide 26: Experiment Setup
	Slide 27: Selected Experimental Results
	Slide 28: Varying skew
	Slide 29: Other datasets (JCC-H and JOB)
	Slide 30: Summary of NOCAP
	Slide 31

