BOSTON

 CS 561: Data Systems Architectures

 CS 561: Data Systems Architectures}

Class 20

Correlation-Aware Partitioning for Joins

Zichen Zhu

Join in Relational Databases

Enroll

ClassID	StudentID
cs561	0000011
cs561	3078002
\ldots	\ldots
0000011	0000011

Select *
From Student, Enroll
Where Student.StudentID = Enroll.StudentID

Student

StudentlD	YOB	\ldots	Gender
0000001	$1970 / 01 / 02$	\ldots	M
0000002	$1966 / 03 / 02$	\ldots	F
\ldots	\ldots	\ldots	\ldots
6534702	$2000 / 10 / 02$	\ldots	M

Block Nested Loop Join (assuming $\|S\|>\|R\|$)

If B is large, the minimum \#I/O is $\|S\|+\|R\|$ when $\|R\| \leq B-2$

Grace Hash Join

 $R \bowtie S$$2 \times(\|S\|+\|R\|)$

Partitioning
both R and S

Assuming $\left\|R_{j}\right\| \leq B-2$

$$
\sum_{j=1}^{B-1}\left(\left\|S_{j}\right\|+\left\|R_{j}\right\|\right)=\|S\|+\|R\|
$$

Totally, the \#I/Os for Grace Hash Join is

$$
3 \cdot(\|S\|+\|R\|)
$$

State-of-the-art: Hybrid Hash Join

Dynamic Hybrid Hash Join (DHH)

State of the art DBs (e.g., PostgreSQL and AsterixDB) use DHH to decide which partitions are staged.

Asterixe

Example: Partitioning R ($m=8$)

Partition R: Suppose we choose R_{5} to evict

Partition R: Building a Hash Table (HT)

The final memory state after partitioning R:

$$
\text { I/O cost: } \quad\|R\|+\left\|R_{4}\right\|+\left\|R_{5}\right\|+\left\|R_{7}\right\|
$$

Partition S and Probe

I/O cost (partitioning S):

$$
\|S\|+\left\|S_{4}\right\|+\left\|S_{5}\right\|+\left\|S_{7}\right\|
$$

I/O cost (partitioning R):

$$
\|R\|+\left\|R_{4}\right\|+\left\|R_{5}\right\|+\left\|R_{7}\right\|
$$

I/O cost (probing):

$$
\sum_{j \in\{4,5,7\}}^{m}\left(\left\lceil\left\lvert\, \frac{\left\|R_{j}\right\|}{B-2}\right.\right\rceil \cdot\left\|S_{j}\right\|+\left\|R_{j}\right\|\right)
$$

In total (assuming $\left\|R_{j}\right\| \leq B-2$):

$$
\|R\|+\|S\|+\sum_{j \in\{4,5,7\}}^{m} 2 \cdot\left(\left\|S_{j}\right\|+\left\|R_{j}\right\|\right)
$$

DHH Bridges between BNLJ and GHJ

Method	I/O cost										
BNLJ	$\\|R\\|+\\|S\\|$ when $\\|R\\| \leq B-2$										
GHJ	$\\|R\\|+\\|S\\|+2 \cdot \sum_{j \in J}\left(\left\\|R_{\mathrm{j}}\right\\|+\left\\|S_{\mathrm{j}}\right\\|\right)$ when $\left\\|R_{\mathrm{j}}\right\\| \leq B-2$										
DHH	J represents the ids of partitions										
that are spilled to the disk											

Can we do better?

Skew Optimization: Stage Most-Common-Values (MCVs) to reduce \|S ${ }_{j} \|$

Skew Optimization in DHH

Partition R

Partition S

Disk Partitions for S

Frequency
key1 1000

Skew Optimization in DHH

Skew optimization reduces the number of I/Os when the matching exhibits skew

Can we do better?

Partition R

Shared Buffer

Partition S

$\|R\|+\|S\|+2 \cdot \sum_{j \in J}\left(\left\|R_{\mathrm{j}}\right\|+\left\|S_{\mathrm{j}}\right\|\right)$ when $\left\|R_{\mathrm{j}}\right\| \underset{\text { ? }}{?} B-2$
Q1: How much should $\left\|H T^{\prime}\right\|$ be?
Q2: What if $\left\|R_{\mathrm{j}}\right\|>B-2$?

DHH v.s. Instance-Optimal Join (OCAP)

Modeling the Join Cost of DHH

Recall DHH Join Cost: $\|R\|+\|S\|+\sum_{j \in J}\left(\left(\left\lceil\left\lvert\, \frac{\left\|R_{j}\right\|}{B-2}\right.\right\rceil+1\right) \cdot\left\|S_{j}\right\|+2 \cdot\left\|R_{j}\right\|\right)$
J represents the ids of partitions that are spilled to the disk

Define a $n \times(m+1)$ Boolean matrix P to represent the partitioning assignment

Notation
$n\left(n_{R}\right)$
m

$$
P=\left[\begin{array}{ccc}
0 & \cdots & 1 \\
\vdots & \ddots & \vdots \\
1 & \cdots & 0
\end{array}\right]_{n \times(m+1)}
$$

R_{1}

Meaning

The number of tuples in relation R
The number of partitions on disk A Boolean matrix P where $P_{i, j}=1$ represents the $i^{\text {th }}$ record belongs to the $j^{\text {th }}$ partition

A partition cached in memory

$$
\arg \min _{P, m} \sum_{j=2}^{m+1}\left(\left(\left|\frac{\left\|R_{j}\right\| \|}{B-2}\right|+1\right) \cdot\left\|S_{j}\right\|+2 \cdot\left\|R_{j}\right\|\right)
$$

s.t. $\forall i \in[n], \sum_{j=1}^{m+1} P_{i, j}=1$

$$
\left\|R_{1}\right\|+m+2 \leq B
$$

$$
P_{i, j} \in\{0,1\}, \forall i \in[n], \forall j \in[m+1]
$$

Integer Programming

$$
\left.\arg \min _{P, m} \sum_{j=2}^{m+1}\left(\left(| | \frac{\left\|R_{j}\right\|}{B-2}\right\rceil+1\right) \cdot\left\|S_{j}\right\|+2 \cdot\left\|R_{j}\right\|\right)
$$

1	1
\ldots	\ldots
$\mathrm{n}-1$	77
n	100
Correlation Table (CT)	

s.t. $\forall i \in[n], \sum_{j=1}^{m+1} P_{i, j}=1$

$$
\begin{aligned}
& \left\|R_{1}\right\|+m+2 \leq B \\
& P_{i, j} \in\{0,1\}, \forall i \in[n], \forall j \in[m+1]
\end{aligned}
$$

Instance-Optimal foin (Optimal Correlation-Aware Partitioning)
Input: $n, B, b_{R}, b_{S}, C T$

$$
\begin{aligned}
& \left\|R_{j}\right\|=\sum_{i=1}^{n} P_{i, j} / b_{R} \\
& \left\|S_{j}\right\|=\sum_{i=1}^{n} P_{i, j} \cdot C T[i] / b_{S}
\end{aligned}
$$

Output: P, m

Exponential searching space to enumerate all possible partitions!

Three Properties of $P_{o p t}$ to Reduce Complexity

Consecutiveness

$$
O\left(B^{n+1}\right) \Rightarrow O\left(B^{2} \cdot n^{2}\right)
$$

Monotonicity

$$
O\left(B^{2} \cdot n^{2}\right) \Rightarrow O\left(n^{2} \cdot B \cdot \log B\right)
$$

Divisibility

$$
O\left(n^{2} \cdot B \cdot \log B\right) \Rightarrow O\left(n^{2} \cdot \log B / B\right)
$$

Consecutiveness

Theorem 1 Given an arbitrary sorted CT array, there is an optimal partitioning $P_{o p t}=\left\langle P_{1}, P_{2}, \ldots, P_{m+1}\right\rangle$ where for any $i_{1} \leq i_{2}$, if $i_{1} \in P_{j}$ and $i_{2} \in P_{j}$, we have $i \in P_{j}$ for any $i \in\left[i_{1}, i_{2}\right]$.

Unique keys sorted by CT

Index \boldsymbol{i}	Frequency in \mathbf{S}
1	1
\ldots	\ldots
$n-1$	77
n	100
Correlation Table (CT)	

Monotonicity

Theorem 2 Given an arbitrary sorted CT array, there is an optimal partitioning $P_{o p t}=\left\langle P_{1}, P_{2}, \ldots, P_{m+1}\right\rangle$ from Theorem 1 where $\left\lceil\frac{\left\|R_{m+1}\right\|}{B-2}\right\rceil \geq\left\lceil\frac{\left\|R_{m}\right\|}{B-2}\right\rceil \geq \cdots \geq\left\lceil\frac{\left\|R_{2}\right\|}{B-2}\right\rceil \geq\left\lceil\frac{\left\|R_{1}\right\|}{B-2}\right\rceil$.
R_{j} is a group of records from relation R while P_{j} is a group of keys

Divisibility

Theorem 3 Given an arbitrary sorted CT array, there is an optimal partitioning $P_{o p t}=\left\langle P_{1}, P_{2}, \ldots, P_{m+1}\right\rangle$ from Theorem 2 where $\left\|R_{j}\right\|$ is divisible by $B-2$ for $j \in[2, m]$.

$$
\left\lceil\frac{\left\|R_{m+1}\right\|}{B-2}\right\rceil \geq\left\lceil\frac{\left\|R_{m}\right\|}{B-2}\right\rceil \geq \cdots \geq\left\lceil\frac{\left\|R_{2}\right\|}{B-2}\right\rceil \geq\left\lceil\frac{\left\|R_{1}\right\|}{B-2}\right\rceil \text { from Theorem } 2
$$

Practical Challenges for OCAP

1. We cannot have the whole CT in practice

1

10M
1000
2. Partitioning assignment also occupies memory $\quad P=\left[\begin{array}{ccc}0 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 0\end{array}\right]_{n \times(m+1)}$

Inspirations from OCAP

Consecutiveness and Monotonicity: $\left\lceil\frac{\left\|R_{m+1}\right\|}{B-2}\right\rceil \geq \cdots \geq\left\lceil\frac{\left\|R_{1}\right\|}{B-2}\right\rceil$ for sorted $C T$
\Rightarrow We can prioritize MCVs in two ways: build an in-memory hash table (if B is large) or assign them into a small partition on disk (if B is small)

Divisibility: On-disk partitions should be mostly divisible by B-2
\Rightarrow We should ensure on-disk partitions fulfill $z \cdot(B-2)$ pages $\left(z \in Z^{+}\right)$

Divisibility when Partitioning Data on Disk

, \square Output buffer page for a partition \square A full-filled page in disk \square A half-filled page in disk

Prioritizing MCVs with Constrained Memory

Total available buffer space (B pages)

$\left\{\begin{array}{|c|c}\text { A hash set for keys } & H S \\ \text { with high CT } & \\ \text { A hash table to store } & \\ \text { the whole record of } & H T \\ \text { the hash set } & \\ \text { A hash map for keys } & f \\ \text { to be partitioned } & \\ \hdashline \text { Several write-buffer } & \\ \text { pages for partitioning } & m_{\text {disk }}\end{array}\right.$

NOCAP

Partitioning Workflow:
OCAP for top-k' frequent keys
DHH to partition the rest

Experiment Setup

Storage: PCIe P4510 SSD
Measured read/write symmetry:
random_write_latency/sequential_read_latency $=3.3$
sequential_write_latency/sequential_read_latency $=3.2$
PK-FK join input size: 1M \#records join with 8M \#records
Record size: 1KB per record
Page size: 4KB

Selected Experimental Results

Buffer size (pages) [log scale]
Zipfian ($\alpha=1.3$)

Buffer size (pages) [log scale]
Uniform

Correlation-aware joins (DHH, Histojoin, and NOCAP) can adaptively reduce I/O cost when it comes to a skew distribution.

Varying skew

Zipfian $(\alpha=1.0)$
 Buffer size (pages) [log scale] Zipfian ($\alpha=0.7$)

While DHH helps reduce \#I/Os, NOCAP can better exploit the correlation skew to achieve even lower I/O cost.

Other datasets (JCC-H and JOB)

JCC-H SF=10 (Original Skew) with Revised Q12

While DHH occasionally performs as close as NOCAP, NOCAP is more adaptive when the workload varies.

Summary of NOCAP

NOCAP join outperforms DHH by up to 30%, and the textbook GH7 by up to 4X. Even for uniform distribution, NOCAP outperforms DHH by up to 10% !

BOSTON

 CS 561: Data Systems Architectures

 CS 561: Data Systems Architectures}

Class 20

Correlation-Aware Partitioning for Joins

Zichen Zhu

