

CS 561: Data Systems Architectures

Class 20

Correlation-Aware Partitioning for Joins

Zichen Zhu

https://bu-disc.github.io/CS561/

Join in Relational Databases

	ClassID	StudentID
Enroll	cs561	0000011
	cs561	3078002
	0000011	0000011

Select * From Student, Enroll Where Student.StudentID = Enroll.StudentID

Student	StudentID	YOB	•••	Gender
	0000001	1970/01/02		М
	0000002	1966/03/02		F
	6534702	2000/10/02		М

Block Nested Loop Join (assuming ||S|| > ||R||)

If B is large, the minimum #I/O is ||S|| + ||R|| when $||R|| \le B - 2$

ଅଟ୍ଲ DiSC

B^p ag DSiC

ଅଟ୍ଲ DiSC

Dynamic Hybrid Hash Join (DHH)

State of the art DBs (e.g., PostgreSQL and AsterixDB) use DHH to decide which partitions are staged.

Example: Partitioning R (m = 8)

88 윤 DiSC

BS age DSiD

Partition R: Building a Hash Table (HT)

Babas DSiD

The final memory state after partitioning R:

I/O cost: $||R|| + ||R_4|| + ||R_5|| + ||R_7||$

Partition S and Probe

Babas DSiD

I/O cost (partitioning S):

 $||S|| + ||S_4|| + ||S_5|| + ||S_7||$

I/O cost (partitioning R):

 $||R|| + ||R_4|| + ||R_5|| + ||R_7||$

I/O cost (probing):

 $\sum_{j \in \{4,5,7\}}^{m} \left(\left[\frac{||R_j||}{B-2} \right] \cdot ||S_j|| + ||R_j|| \right)$

In total (assuming $||R_j|| \leq B - 2$):

$$||R|| + ||S|| + \sum_{j \in \{4,5,7\}}^{m} 2 \cdot (||S_j|| + ||R_j||)$$

DHH Bridges between BNLJ and GHJ

Method	I/O cost
BNLJ	$ R + S $ when $ R \le B - 2$
GHJ	$3 \cdot (R + S)$ when $ R_j \le B - 2$
DHH	$ R + S + 2 \cdot \sum_{j \in J} (R_j + S_j)$ when $ R_j \le B - 2$
	J represents the ids of partitions that are spilled to the disk

Can we do better?

ଅଟ୍ଲ DiSC

Skew Optimization: Stage Most-Common-Values (MCVs) to reduce $||S_i||$

Skew Optimization in DHH

४१ हि DiSC

12

Skew Optimization in DHH

ଅଟ୍ଲ DiSC

Skew optimization reduces the number of I/Os when the matching exhibits skew

Can we do better?

Partition R

Babas DSiD

DHH v.s. Instance-Optimal Join (OCAP)

<mark>ଅଟ</mark>୍ଟେ DiSC

A good partitioning algorithm should be skew-aware and adaptive to the given memory

Modeling the Join Cost of DHH

Recall DHH Join Cost:
$$||R|| + ||S|| + \sum_{j \in J} \left(\left(\left[\frac{||R_j||}{B-2} \right] + 1 \right) \cdot ||S_j|| + 2 \cdot ||R_j|| \right) \right)$$

J represents the ids of partitions that are spilled to the disk

Define a $n \times (m + 1)$ Boolean matrix P to represent the partitioning assignment

₿8 <u>@</u> DiSC

Notation	Meaning
$n\left(n_{R} ight)$	The number of tuples in relation R
m	The number of partitions on disk
$P = \begin{bmatrix} 0 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 0 \end{bmatrix}_{n \times (m+1)}$	A Boolean matrix P where $P_{i,j} = 1$ represents the i^{th} record belongs to the j^{th} partition
R_1	A partition cached in memory

$$arg \min_{P,m} \sum_{j=2}^{m+1} \left(\left(\left| \frac{||R_j||}{B-2} \right| + 1 \right) \cdot ||S_j|| + 2 \cdot ||R_j|| \right)$$

s.t. $\forall i \in [n], \ \sum_{j=1}^{m+1} P_{i,j} = 1$
 $||R_1|| + m + 2 \leq B$
 $P_{i,j} \in \{0,1\}, \forall i \in [n], \forall j \in [m+1]$

Integer Programming

Babas DSiD

$$\arg\min_{P,m}\sum_{j=2}^{m+1} \left(\left(\left| \frac{||R_j||}{B-2} \right| + 1 \right) \cdot ||S_j|| + 2 \cdot ||R_j|| \right)$$

s.t.
$$\forall i \in [n], \sum_{j=1}^{m+1} P_{i,j} = 1$$

$$||R_1|| + m + 2 \le B$$

$$P_{i,j} \in \{0,1\}, \forall i \in [n], \forall j \in [m+1]$$

Instance-Optimal Join (Optimal Correlation-Aware Partitioning) Input: n, B, b_R, b_S, CT Output: P, m

Exponential searching space to enumerate all possible partitions!

Index <i>i</i>	Frequency in S
1	1
n-1	77
n	100

$$||R_{j}|| = \sum_{i=1}^{n} P_{i,j} / b_{R}$$
$$||S_{j}|| = \sum_{i=1}^{n} P_{i,j} \cdot CT[i] / b_{S}$$

Three Properties of P_{opt} to Reduce Complexity

Consecutiveness

Bisc

 $O(B^{n+1}) \Rightarrow O(B^2 \cdot n^2)$

Monotonicity $O(B^2 \cdot n^2) \Rightarrow O(n^2 \cdot B \cdot \log B)$

Divisibility $O(n^2 \cdot B \cdot \log B) \Rightarrow O(n^2 \cdot \log B / B)$

Consecutiveness

Theorem 1 Given an arbitrary sorted CT array, there is an optimal partitioning $P_{opt} = \langle P_1, P_2, ..., P_{m+1} \rangle$ where for any $i_1 \leq i_2$, if $i_1 \in P_j$ and $i_2 \in P_j$, we have $i \in P_j$ for any $i \in [i_1, i_2]$.

Index i	Frequency in S
1	1
n-1	77
n	100

Monotonicity

ଅଂଲି DiSC

> **Theorem 2** Given an arbitrary sorted CT array, there is an optimal partitioning $P_{opt} = \langle P_1, P_2, \dots, P_{m+1} \rangle$ **from Theorem 1** where $\left[\frac{||R_{m+1}||}{B-2}\right] \ge \left[\frac{||R_m||}{B-2}\right] \ge \dots \ge \left[\frac{||R_2||}{B-2}\right] \ge \left[\frac{||R_1||}{B-2}\right]$.

> > R_j is a group of records from relation R while P_j is a group of keys

Index i	Frequency in S
1	1
n-1	77
n	100

Divisibility

ଅଟ୍ଲ DiSC

> **Theorem 3** Given an arbitrary sorted CT array, there is an optimal partitioning $P_{opt} = \langle P_1, P_2, ..., P_{m+1} \rangle$ from Theorem 2 where $||R_j||$ is divisible by B - 2 for $j \in [2, m]$.

$$\frac{||R_{m+1}||}{B-2} \ge \left\lceil \frac{||R_m||}{B-2} \right\rceil \ge \dots \ge \left\lceil \frac{||R_2||}{B-2} \right\rceil \ge \left\lceil \frac{||R_1||}{B-2} \right\rceil \text{ from Theorem 2}$$

Index i	Frequency in S
1	1
n-1	77
n	100

Practical Challenges for OCAP

1. We cannot have the whole *CT* in practice

<mark>ଅ</mark>ଥ୍ୟ DiSC

Index <i>i</i>	Frequency in S
1	1
10M	1000

2. Partitioning assignment also occupies memory
$$P = \begin{bmatrix} 0 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 0 \end{bmatrix}_{n \times (m+1)}$$

Inspirations from OCAP

B B DiSC

Consecutiveness and Monotonicity: $\left[\frac{||R_{m+1}||}{B-2}\right] \ge \cdots \ge \left[\frac{||R_1||}{B-2}\right]$ for sorted CT

⇒ We can prioritize MCVs in *two* ways: build an in-memory hash table (if B is large) or assign them into a small partition on disk (if B is small)

Divisibility: On-disk partitions should be mostly divisible by B - 2

⇒ We should ensure on-disk partitions fulfill $z \cdot (B - 2)$ pages ($z \in Z^+$)

ଅଟ୍ଲ DiSC

Prioritizing MCVs with Constrained Memory

ଅଟ୍ଲ DiSC

Total Available Memory NOCAP *HT_{mem}* Call DHH with m_r pages useless Partitioning Phase of R 9 **Disk Partitions for R** P_7 P_4 P_1 P_2 YES P_7 P_4 $r \in HS$? Split Hash Function h_{split} NO Partitioning Workflow: P_2 P_1 NO 1 YES Input **R** $r \in f$? **OCAP** for top-k' frequent keys P_7 9 **Disk Partitions for S** Input S **DHH** to partition the rest 0 0 0 0 0 P_1 P_2 Split Hash Function h_{split} P_4 NO YES $P_1 \overline{P_2}$ $r \in f$? NO Partitioning Phase of S Probe Hash Function h_{probe} **Disk-resident Partition** YES **Staged Partition** Input Page 25 Join Output Page Probe In-memory Hash Table

Experiment Setup

Storage: PCIe P4510 SSD

₿8 <u>@</u> DiSC

Measured read/write symmetry:

random_write_latency/sequential_read_latency = 3.3
sequential_write_latency/sequential_read_latency = 3.2
PK-FK join input size: 1M #records join with 8M #records
Record size: 1KB per record

Page size: 4KB

Selected Experimental Results

ଅଟ୍ଲ DiSC

Correlation-aware joins (**DHH**, **Histojoin**, **and NOCAP**) can **adaptively** reduce I/O cost when it comes to a **skew** distribution.

Note: OCAP only represents a lower bound, not a practical algorithm ²⁷

28

<mark>।</mark> Disc

While DHH helps reduce #I/Os, **NOCAP** can better exploit the correlation skew to **achieve even lower I/O cost**.

Other datasets (JCC-H and JOB)

88 윤 DiSC

Summary of NOCAP

ଅଟ୍ଟ DiSC

NOCAP join outperforms DHH by up to 30%, and the textbook GHJ by up to 4X. Even for uniform distribution, NOCAP outperforms DHH by up to 10%!

CS 561: Data Systems Architectures

Class 20

Correlation-Aware Partitioning for Joins

Zichen Zhu

https://bu-disc.github.io/CS561/