
Optimizing Data Systems for

Modern Storage Technology

Tarikul Islam Papon
PhD Researcher

data analysis

knowledge

Data Systems

company every

Data Systems

Memory Hierarchy

larger

faster

Data Systems & Hardware

Hardware Trends

Tape Floppy CD HDD SSD

Evolution of Storage Technology

electronic device

fast random access

concurrent I/Os

write latency > read latency

Solid State Drives

Symmetric cost for Read & Write

One I/O at a time

Read/Write Asymmetry (𝛼)

Concurrency (k)

HDD SSD

Goal: Developing Hardware-Aware Data Systems

Tailor Data Systems
for SSD Asymmetry

& Concurrency

Need	for	an	I/O	Model	[CIDR ’21]
PIO	Model	[DaMoN@SIGMOD ’21]
ACE	Bufferpool	[IEEE ICDE ’23]
CAVE	Graph	Engine	[SIGMOD ’24]
SSD-Aware	Systems	[IEEE ICDE ’24]

Goal: Developing Hardware-Aware Data Systems

Tailor Data Systems
for SSD Asymmetry

& Concurrency

Need	for	an	I/O	Model	[CIDR ’21]
PIO	Model	[DaMoN@SIGMOD ’21]
ACE	Bufferpool	[IEEE ICDE ’23]
CAVE	Graph	Engine	[SIGMOD ’24]
SSD-Aware	Systems	[IEEE ICDE ’24]

Symmetric cost for Read & Write

One I/O at a time

Read/Write Asymmetry (𝛼)

Concurrency (k)

HDD SSD

Parallelism at different levels (channel, chip, die, plane block, page)

Controller
Chip 1 Chip 2 Chip N

Chip 1 Chip 2 Chip N

…
…

…

Channel 1…

Channel N

…Die N
Plane1 PlaneN

Block 1

Block N

…

…Die 1
PlaneN

Page 1

Page N
…

Plane1

SSD Concurrency

Block 0

Free Free Free

Free Free Free

Free Free Free

Free Free Free

Free Free Free

Free Free Free

Free Free Free

Free Free Free

Block 1

Writes in SSD

Block 0

Free Free Free

Free Free Free

Free Free Free

Free Free Free

A B C

D E F

G H Free

Free Free Free

Block 1

Writing in a free page isn’t costly!

Writes in SSD

Block 0

Free Free Free

Free Free Free

Free Free Free

Free Free Free

A B C

D E F

G H Free

Free Free Free

Block 1

Update

A, B, C, D

Writes in SSD

Block 0

Free Free Free

Free Free Free

Free Free Free

Free Free Free

B C

D E F

G H Free

Free Free Free

Block 1

Update

A, B, C, D

A

Writes in SSD

Block 0

Free Free Free

Free Free Free

Free Free Free

Free Free Free

B C

D E F

G H

Free Free Free

Block 1

Update

A, B, C, D

A

A’

Writes in SSD

Block 0

Free Free Free

Free Free Free

Free Free Free

Free Free Free

C

D E F

G H

Free Free Free

Block 1

Update

A, B, C, D

A

A’

B

Writes in SSD

Block 0

Free Free Free

Free Free Free

Free Free Free

Free Free Free

C

D E F

G H

Free Free

Block 1

Update

A, B, C, D

A

A’

B

B’

Writes in SSD

Block 0

Free Free Free

Free Free Free

Free Free Free

Free Free Free

E F

G H A’

B’ C’ D’

Block 1

Not all updates are costly!

Update

A, B, C, D

A B C

D

Writes in SSD

…Block 0

E F

G H A’

B’ C’ D’

A B C

D

M’ N’ O’

P’ Q’ R’

Block N

M N O

P Q R

What if there is no space?

Writes in SSD

…Block 0

E F

G H A’

B’ C’ D’

A B C

D

M’ N’ O’

P’ Q’ R’

Block N

M N O

P Q R

What if there is no space?

Garbage Collection!

Writes in SSD

…

What if there is no space?

Garbage Collection!
Block 0

Erased Erased

Erased Erased Erased

Erased Erased Erased

Erased Erased Erased

Erased

Erased Erased Erased

Erased Erased Erased

Block N

Erased Erased Erased

Erased Erased Erased

Valid pages:

Writes in SSD

Block 0

Q’ R’ Free

Free Free Free

Free Free Free

Free Free Free

E F G

H A’ B’

C’ D’ M’

N’ O’ P’

Block N…

What if there is no space?

Garbage Collection!

Writes in SSD

Block 0

Q’ R’ Free

Free Free Free

Free Free Free

Free Free Free

E F G

H A’ B’

C’ D’ M’

N’ O’ P’

Block N…

Higher average update cost (due to GC) à Read/Write asymmetry

What if there is no space?

Garbage Collection!

Read/Write Asymmetry in SSD

Device
PCIe SSD - P4510 (1TB)

Quantifying Asymmetry & Concurrency
DaMoN@SIGMOD 2021

Device
PCIe SSD - P4510 (1TB)

Quantifying Asymmetry & Concurrency
DaMoN@SIGMOD 2021

Device
PCIe SSD - P4510 (1TB)

Quantifying Asymmetry & Concurrency
DaMoN@SIGMOD 2021

Device
PCIe SSD - P4510 (1TB)

Quantifying Asymmetry & Concurrency
DaMoN@SIGMOD 2021

read concurrency
(kr) = 80

33x

Device
PCIe SSD - P4510 (1TB)

Quantifying Asymmetry & Concurrency
DaMoN@SIGMOD 2021

0

100

200

300

400

500

600

0 50 100 150 200 250 300

IO
PS

Threads

×103

2.8x

1.9x

0

300

600

0 100 200 300

IO
PS

Threads

4K Random Read 4K Random Write 8K Random Read 8K Random Write

0

300

600

0 100 200 300

IO
PS

Threads

4K Random Read 4K Random Write 8K Random Read 8K Random WriteDevice
PCIe SSD - P4510 (1TB)

Yet, systems are not

always tailored for 𝛼/k

For 4K random read,

Asymmetry: 2.8

Concurrency: 80

Quantifying Asymmetry & Concurrency
DaMoN@SIGMOD 2021

know thy device exploit kr and kw
(with care)

≠
treat read and

write differently
asymmetry (𝛼)

controls performance

Guidelines for System Design in SSDs

read
concurrency write

concurrency

DaMoN@SIGMOD 2021

Goal: Developing Hardware-Aware Data Systems

Tailor Data Systems
for SSD Asymmetry

& Concurrency

Need	for	an	I/O	Model	[CIDR ’21]
PIO	Model	[DaMoN@SIGMOD ’21]
ACE	Bufferpool	[IEEE ICDE ’23]
CAVE	Graph	Engine	[SIGMOD ’24]
SSD-Aware	Systems	[IEEE ICDE ’24]

Bufferpool is Tightly Connected to Storage

Free frame

Disk page

Main Memory

Bufferpool

Dirty page

IEEE ICDE 2023

Application

DB

Free frame

Disk page

Bufferpool
Page request

Dirty page

Bufferpool Manager
IEEE ICDE 2023

Application

DB
Main Memory

Free frame

Disk page

Bufferpool

If page is not in BP,
fetch from disk

Dirty page

Bufferpool Manager
IEEE ICDE 2023

Application

DB
Main Memory

Disk page

Bufferpool

Dirty page

Bufferpool Manager
IEEE ICDE 2023

Application

DB

If BP is full, one page is selected for eviction
based on page replacement policy

Disk page

Bufferpool

Dirty page

Traditional Bufferpool Manager
IEEE ICDE 2023

Application

DB

Page request

Disk page

Bufferpool

Dirty page

Disk page

Dirty page

Traditional Bufferpool Manager
IEEE ICDE 2023

Application

DB

If the page is dirty, it is written back to disk

Disk page

Bufferpool

Dirty page

Disk page

Dirty page

Page request comes

Traditional Bufferpool Manager
IEEE ICDE 2023

Requested page is fetched in its place
(exchanging one write for a read)

Application

DB

§ With write asymmetry, exchanging

one write for one read is NOT ideal.

§ Without exploiting concurrency,

device remains vastly underutilized.

IEEE ICDE 2023

The Challenges

Replacement Algorithm
How many pages to write?
- 1 page
- n pages (exploit kw)

Write-back Policy

Which pages to write-back?

When & how to write-back?

- dirty pages following
 replacement policy

- background &
 concurrently

Eviction Policy
How many page(s) to evict?

- 1 page

- n pages

Which page(s) to evict?

- follow page

replacement policy

40

Bufferpool Manager

When to prefetch?
- Prefetch on miss

Which pages?
- Sequential
- History-based

How many pages?
- 1 or x pages

How to prefetch?
- Sequentially

Read-ahead Policy

Optional

- LRU
- NRU
- Clock
- Second Chance

- FIFO
- 2Q
- ARC

- CFLRU
- LRU-WSR
- CCF-LRU

- CFLRU/C
- CFLRU/E
- DL-CFLRU/E

Eviction Policy

Which page to evict/write?

Flash-
friendly
policies

When to prefetch?
- Prefetch on miss

Which pages?
- Sequential
- History-based

How many pages?
- 1 or x pages

How to prefetch?
- Concurrently

Read-ahead Policy

IEEE ICDE 2023

41

Bufferpool Manager

When to prefetch?
- Prefetch on miss

Which pages?
- Sequential
- History-based

How many pages?
- 1 or x pages

How to prefetch?
- Concurrently

Read-ahead Policy

How many pages to write?
- 1 page
- n pages (exploit kw)

Write-back Policy

Which pages to write-back?

When & how to write-back?

- dirty pages following
replacement policy

- background &
concurrently

Optional

Eviction Policy

How many page(s) to evict?
- 1 page
- n pages

Which page(s) to evict?
- follow page
replacement policy

Flash-
friendly
policies

- LRU
- NRU
- Clock
- Second Chance

- FIFO
- 2Q
- ARC

- CFLRU
- LRU-WSR
- CCF-LRU

- CFLRU/C
- CFLRU/E
- DL-CFLRU/E

Replacement Algorithm

IEEE ICDE 2023

Asymmetry/Concurrency-Aware
(ACE) Bufferpool Manager

IEEE ICDE 2023

ACE Bufferpool Manager

Use device’s properties

IEEE ICDE 2023

ACE Bufferpool Manager

ü Can be integrated with any

replacement algorithm

ü Any prefetching technique

can be used

IEEE ICDE 2023

ACE Bufferpool

DB

write back kw
dirty pages

⍺, kw, kr

prefetch
multiple pages

evict multiple pages

LRU

Clock
Sweep

FIFO

NRU

Second
Chance

2Q
ARC

SSD Controller
Optimization

CFLRU

LRU-WSR

CFLRU/C
CFLRU/E

DL-CFLRU/E

CCF-LRU

Addressing 𝛼

Exploitin
g k & Addressin

g 𝛼

Do not address
Asymmetry (𝛼)

D
o

no
t c

on
si

de
r

C
on

cu
rr

en
cy

Address 𝛼 via
write-avoidance

C
on

si
de

r
C

on
cu

rr
en

cy

Ex
pl

oi
ti

ng
 k

Address 𝛼 via
write-amortization

Better device utilization

Low deployment cost

High performance

Ease of integration

ACE

IEEE ICDE 2023

ACE Bufferpool Manager

Let’s assume: kw = 3, LRU is the replacement
policy & red indicates dirty page

Write request of page 8 comes

lrumru

B 6 2 3 5 7 4 9

An Example
IEEE ICDE 2023

475326

Candidate for eviction

Since candidate page is
clean, we simply evict 9

After eviction:

Write request of page 1 comes

B 6 2 3 5 7 4 9

write page 8

8B

An Example (kw = 3)
IEEE ICDE 2023

LRU

After eviction:

Candidate

753268B 8 6 2 3 5 7 4

1B

write page 1
An Example (kw = 3)

IEEE ICDE 2023

LRU

After eviction:

Candidate

753268B 8 6 2 3 5 7 4

1 8 6 2 3 5 7B

LRU+ACE(w/o PF)

7532688 6 2 3 5 7 4

write page 1
An Example (kw = 3)

IEEE ICDE 2023

4

LRU

After eviction:

Candidate

753268B 8 6 2 3 5 7 4

1 8 6 2 3 5 7B

LRU+ACE(w/o PF)

7532688 6 2 3 5 7 42 5

4,5,2 concurrently written

write page 1

4 evicted

An Example (kw = 3)
IEEE ICDE 2023

LRU

After eviction:

753268B 8 6 2 3 5 7 4

1 8 6 2 3 5 7B

LRU+ACE(w/o PF)

After eviction:

7532688 6 2 3 5 7

1

write page 1
An Example (kw = 3)

IEEE ICDE 2023

more clean pages

LRU

After eviction:

753268B 8 6 2 3 5 7 4

1 8 6 2 3 5 7B

LRU+ACE(w/o PF)

After eviction:

7532688 6 2 3 5 7 4

1 8 6 2 3 5 7

LRU+ACE(w/PF)
Candidate

7532688 6 2 3 5 7 4

write page 1
An Example (kw = 3)

IEEE ICDE 2023

4

LRU

After eviction:

753268B 8 6 2 3 5 7 4

1 8 6 2 3 5 7B

LRU+ACE(w/o PF)

After eviction:

7532688 6 2 3 5 7 4

1 8 6 2 3 5 7

LRU+ACE(w/PF)

7532688 6 2 3 5

4,5,2 concurrently written

write page 1
An Example (kw = 3, ne = 2)

452

eviction window

4,7 evicted

IEEE ICDE 2023

LRU

After eviction:

753268B 8 6 2 3 5 7 4

1 8 6 2 3 5 7B

LRU+ACE(w/o PF)

After eviction:

7532688 6 2 3 5 7 4

1 8 6 2 3 5 7

LRU+ACE(w/PF)

73688 6 3

1 9

After eviction:

prefetched

write page 1

2 552

An Example (kw = 3, ne = 2)
IEEE ICDE 2023

Experimental Evaluation

Workload:

synthesized traces

TPC-C benchmark

11.5

Clock Sweep
LRU

CFLRU
LRU-WSR

vs their ACE counterparts

IEEE ICDE 2023

ACE Improves Runtime

ACE improves runtime by 22-26%

Negligible increase in buffer miss (<0.009%)

Device: PCIe SSD

⍺ = 2.8, kw = 8

 0
 100
 200
 300
 400
 500
 600
 700

Clock LRU CFLRU LRUW

La
te

nc
y

(s)

SOA ACE w/o PF ACE w/ PF

26%
22% 23% 23%

Benefit comes at no cost

Mixed Skewed Trace
(r/w: 50/50, locality 90/10)

IEEE ICDE 2023

Higher Gain for Write-Heavy Workload

 0
 100
 200
 300
 400
 500
 600
 700

Clock LRU CFLRU LRUW

La
te

nc
y

(s)

SOA ACE w/o PF ACE w/ PF

Write-intensive workloads have

higher benefit (up to 32%)

32%
30%

29%
29%

Device: PCIe SSD

⍺ = 2.8, kw = 8

Mixed Skewed Trace
(r/w: 50/50, locality 90/10)

IEEE ICDE 2023

Impact of R/W Ratio & Asymmetry

1

1.2

1.4

1.6

0 1 2 3 4 5 6 7 8 9 10 11

Sp
ee

du
p

Read/Write Ratio

PCIe SSD Virtual SSD
SATA SSD Optane SSD

0:100 10:90 20:80 30:70 40:60 50:50 60:40 70:30 80:20 90:10 100:0

more writes, more speedup

higher asymmetry, higher speedup

good benefit even for low asymmetry

⍺ = 2.8, kw = 8
⍺ = 2.0⍺ = 1.5, kw = 9⍺ = 1.1, kw = 5

IEEE ICDE 2023

Impact of #Concurrent I/Os

1

1.1

1.2

1.3

1.4

0 2 4 6 8 10 12 14 16

Sp
ee
du

p

nw

ACE-Clock ACE-LRU
ACE-CFLRU ACE-LRUW

Highest speedup when
optimal concurrency is used

kw = 8

Device: PCIe SSD

⍺ = 2.8, kw = 8

Mixed Skewed Trace
(r/w: 50/50, locality 90/10)

IEEE ICDE 2023

Experimental Evaluation (TPC-C)

 0

 0.5

 1

 1.5

 2

ACE-LRU ACE-CFLRU ACE-LRUW ACE-Clock

Sp
ee

du
p

Read-Write
Read-Write

Read-Write
Read-Only

Read-Only
Write-Heavy

M
ix

N
ew

 O
rd

er
Pa

ym
en

t
O

rd
er

St
at

us
St

oc
kL

ev
el

D
el

iv
er

y

M
ix

N
ew

 O
rd

er
Pa

ym
en

t
O

rd
er

St
at

us
St

oc
kL

ev
el

D
el

iv
er

y

M
ix

N
ew

 O
rd

er
Pa

ym
en

t
O

rd
er

St
at

us
St

oc
kL

ev
el

D
el

iv
er

y

M
ix

N
ew

 O
rd

er
Pa

ym
en

t
O

rd
er

St
at

us
St

oc
kL

ev
el

D
el

iv
er

y

1.3x

1.5x

ACE Achieves 1.3x for mixed TPC-C

IEEE ICDE 2023

ACE Bufferpool

DB

ACE works with any page replacement policy

Any prefetching technique can be used

With low engineering effort, any DBMS

bufferpool can benefit from this approach

Goal: Developing Hardware-Aware Data Systems

Tailor Data Systems
for SSD Asymmetry

& Concurrency

Need	for	an	I/O	Model	[CIDR ’21]
PIO	Model	[DaMoN@SIGMOD ’21]
ACE	Bufferpool	[IEEE ICDE ’23]
CAVE	Graph	Engine	[SIGMOD ’24]
SSD-Aware	Systems	[IEEE ICDE ’24]

Rise of Large Graphs
Graphs are everywhere!

Social Network Transportation
NetworkPhysical Science Machine Learning

Real-world graphs often have more than a billion nodes

Processing Large Graphs

Distributed Systems Single-node
in-memory systems

Single-node
out-of-core systems

Out of Core Systems

Designed for HDDs

Data partitioning
Improve memory

& disk locality Reduce random I/O

Our Goal

• Optimize for storage-based workload

• Focus on traversal operations

• Utilize efficient SSD concurrency by parallelizing independent I/Os

• Maintain core algorithm properties

Concurrency-Aware Graph (V, E) Manager

CAVE

CAVE Architecture

Global	lock

CB0

CB1

CB2

CB3

0

1

0

2
Cached	
blocks	
map

Threads

1

2

3

1

2

33

Cache	Pool Metadata

VB0

VB1

EB0

EB1

EB2

EB3

Hand

0

degree eb_addr

…
degree eb_addr

degree eb_addr degree eb_addr

e0 e1 e2 e3
…

e1020 e1021 e1022 e1023
EB4

EB5

4KB

8KB

4B 8B 12B

reserved	space

|EB||V| |B| |VB|
0File	on	SSD

1

2

Ref	counter

Block	Structure

Cache	block

Concurrent Graph Algorithms

• Parallel Breadth-First Search

• Parallel pseudo Depth-First Search

• Parallel Weakly Connected Components

• Parallel PageRank

• Parallel Random Walk

Parallel BFS

A

D

B

C

E

F H

G

processed	nodes processing	in	progress yet	to	be	processed

Each iteration involves

1. processing a list of vertices aka the frontier

2. accessing the neighbors of each vertex

3. updating vertex values

4. determining which vertices should be

visited in the next iteration

Parallel BFS

A

D

B

C

E

F H

G
2

1

3

4

processed	nodes processing	in	progress yet	to	be	processed

Each iteration involves

1. processing a list of vertices aka the frontier

2. accessing the neighbors of each vertex

3. updating vertex values

4. determining which vertices should be

visited in the next iteration

frontier = {B, D, E, F}

Parallel pseudo DFS

A1
Time

Thread #1

A

B

D

C

E

F

J

G H

I

K

processed	nodes processing	in	progress yet	to	be	processed

Parallel pseudo DFS

A

C

1

2

Thread #1

A

B

D

C

E

F

J

G H

I

K

processed	nodes processing	in	progress yet	to	be	processed

Time

Parallel pseudo DFS

A

C

B D E F

B D E F

1

2

3

Thread #1

#2

A

B

D

C

E

F

J

G H

I

K

processed	nodes processing	in	progress yet	to	be	processed

Time

Parallel pseudo DFS

A

C

B D E F

B D E F

1

2

3

B G H E JI

B G H I
4

Thread #1

#2

#3

K

E J K

A

B

D

C

E

F

J

G H

I

K

Split

Split

processed	nodes processing	in	progress yet	to	be	processed

Time

Experimental Evaluation
6 datasets

3 devices
Optane SSD (kr = 6)
PCIe SSD (kr = 80)
SATA SSD (kr = 25)

Approaches Used:

GraphChi, GridGraph, Mosaic, CAVE, CAVE_blocked

CAVE’s Preprocessing is Efficient

CAVE Performs Efficient PBFS

Dataset: FS

(0.4%) (50%)

CAVE Performs Efficient PBFS

Dataset: FS

(0.4%) (50%)

CAVE Performs Efficient PBFS

Dataset: FS

Both CAVE implementations outperforms GridGraph, Mosaic and GraphChi

CAVE’s Speedup

(0.4%) (50%)

7x 5x
3.3x

CAVE Utilizes Concurrent I/O
Dataset: FS

Device gets saturated at optimal concurrency

PDFS SATA SSD (kr = 25)
PCIe SSD (kr = 80)
Optane SSD (kr = 6)

Goal: Developing Hardware-Aware Data Systems

Tailor Data Systems
for SSD Asymmetry

& Concurrency

Need	for	an	I/O	Model	[CIDR ’21]
PIO	Model	[DaMoN@SIGMOD ’21]
ACE	Bufferpool	[IEEE ICDE ’23]
CAVE	Graph	Engine	[SIGMOD ’24]
SSD-Aware	Systems	[IEEE ICDE ’24]

Minimize Data
Movement through
Memory Hierarchy

Learned CPU Embedding Silhouette	[mlforsys@NeuRIPS ’23]

Timely Deletion in
LSM Storage Layout

LETHE	[SIGMOD ’20 + ACM TODS ’23]
Delete-Compliance	[IEEE DEBULL ’22]

Relational	Memory	[EDBT ’23 +
Demo: VLDB ’23]
Relational	Fabric	[IEEE ICDE ’23]
RelFeb	ext.	[Under Revision@TKDE]

vBest Demo

Future Work

SSD1

SSD2

SSD3

Data Migration in
Hierarchical Storage using
Reinforcement Learning

- How can 𝛼/k help the agent?
- How to handle deduplication?

- How to ensure data consistency?

Future Work

SSD1

SSD2

SSD3

Data Migration in
Hierarchical Storage using
Reinforcement Learning

- How can 𝛼/k help the agent?
- How to handle deduplication?

- How to ensure data consistency?

Effortless
Locality via

Relational Fabric

- How to handle updates?
- How to do compression?

- Leverage computational SSDs
to build ‘Relational Storage’

- Impact on DB architecture

FPGA

Future Work

SSD1

SSD2

SSD3

Data Migration in
Hierarchical Storage using
Reinforcement Learning

- How can 𝛼/k help the agent?
- How to handle deduplication?

- How to ensure data consistency?

Effortless
Locality via

Relational Fabric

- How to handle updates?
- How to do compression?

- Leverage computational SSDs
to build ‘Relational Storage’

- Impact on DB architecture

FPGAMachine Learning for
Data Systems

- ML techniques to optimize energy consumption in data centers
- Learned indexes & Learned database tuning
- How can ML models contribute to query optimization?

Future Work

SSD1

SSD2

SSD3

Data Migration in
Hierarchical Storage using
Reinforcement Learning

- How can 𝛼/k help the agent?
- How to handle deduplication?

- How to ensure data consistency?

Effortless
Locality via

Relational Fabric

- How to handle updates?
- How to do compression?

- Leverage computational SSDs
to build ‘Relational Storage’

- Impact on DB architecture

FPGA

CXL-Optimized
Disaggregated

Database System

- How to ensure compatibility across generations?
- How to manage storage and memory efficiently via automatic resource provisioning?
- Can we ensure scalable transactions & reliability in disaggregated databases?

Machine Learning for
Data Systems

- ML techniques to optimize energy consumption in data centers
- Learned indexes & Learned database tuning
- How can ML models contribute to query optimization?

Thank		You!

Tarikul Islam Papon
PhD Researcher

cs-people.bu.edu/papon/

https://cs-people.bu.edu/papon/

