Optimizing Data Systems for Modern Storage Technology

Tarikul Islam Papon

PhD Researcher

DOMO DATA NEVER SLEEPS 10.0

Data Systems

Data Systems & Hardware

Memory Hierarchy

Hardware Trends

Evolution of Storage Technology

Solid State Drives

Goal: Developing Hardware-Aware Data Systems

Goal: Developing Hardware-Aware Data Systems

SSD-Aware Systems [IEEE ICDE '24]

SSD Concurrency

Parallelism at different levels (channel, chip, die, plane block, page)

Block 0

Block 0

Block 1

Writing in a free page isn't costly!

Block 0

Block 0

Block 0

Block 1

Not all updates are costly!

What if there is no space?

. . .

Block 0

Block N

What if there is no space?

Garbage Collection!

Block 0

Block N

. . .

What if there is no space?

Garbage Collection!

. . .

Read/Write Asymmetry in SSD

Higher average update cost (due to GC) \rightarrow *Read/Write asymmetry*

DaMoN@SIGMOD 2021

Guidelines for System Design in SSDs

Goal: Developing Hardware-Aware Data Systems

SSD-Aware Systems [IEEE ICDE '24]

Bufferpool is Tightly Connected to Storage

If the page is dirty, it is written back to disk

Traditional Bufferpool Manager

The Challenges

• With write asymmetry, exchanging

one write for one read is **NOT ideal**.

Without exploiting concurrency,

device remains vastly **underutilized**.

Asymmetry/Concurrency-Aware (ACE) Bufferpool Manager

ACE Bufferpool Manager

Use device's properties

- Can be integrated with any
 - replacement algorithm
- Any prefetching technique
 can be used

ACE Bufferpool Manager

An Example

Let's assume: $k_w = 3$, LRU is the replacement policy & red indicates dirty page

Write request of page 8 comes

An Example ($k_w = 3$)

Candidate for eviction

write page 8

Since candidate page is clean, we simply evict 9

After eviction:

Write request of page 1 comes

An Example ($k_w = 3$)

ഀ൬൬ഀ

After eviction:

After eviction:

An Example (
$$k_w = 3$$
)

LRU+ACE (w/o PF)

LRU

write page 1

After eviction:

After eviction:

5

4

An Example
$$(k_w = 3)$$

LRU+ACE (w/o PF) LRU+ACE (w/PF)
Candidate
5 7 4 8 6 2 3 5 7 4 8 6 2 3 5 7 4

LRU

After eviction:

write page

After eviction:

An Example (
$$k_w = 3, n_e = 2$$
)

 write page 1

 LRU
 LRU+ACE (w/o PF)
 LRU+ACE (w/PF)

 8
 6
 2
 5
 7

 After eviction:
 After eviction:
 1
 8
 6
 2
 5
 7

4,5,2 concurrently written4,7 evicted

An Example
$$(k_w = 3, n_e = 2)$$

write page 1
LRU LRU+ACE (w/o PF) LRU+ACE (w/PF)
B 8 6 2 3 5 7 4 8 6 2 3 5 7 4 8 6 2 3 5

After eviction:

O

After eviction:

After eviction:

Experimental Evaluation

Device	α	k _r	k_w
Optane SSD	1.1	6	5
PCIe SSD	2.8	80	8
SATA SSD	1.5	25	9
Virtual SSD	2.0	11	19

Workload:

synthesized traces

TPC-C benchmark

ACE Improves Runtime

Device: PCIe SSD

 α = 2.8, k_w = 8

ACE improves runtime by 22-26%

Negligible increase in buffer miss (<0.009%)

Benefit comes at no cost

Higher Gain for Write-Heavy Workload

Device: PCIe SSD

$$\alpha$$
 = 2.8, k_w = 8

Write-intensive workloads have higher benefit (up to 32%)

Impact of R/W Ratio & Asymmetry

more writes, more speedup higher asymmetry, higher speedup good benefit even for low asymmetry

Impact of #Concurrent I/Os

Device: PCIe SSD

IEEE ICDE 2023

 α = 2.8, k_w = 8

Highest speedup when optimal concurrency is used

IEEE ICDE 2023 Experimental Evaluation (TPC-C) 2 Read-Write Read-Only Write-Heavy 1.5 **1.5x** Speedup **1.3x**

ACE-LRU

ACE Achieves 1.3x for mixed TPC-C

ACE works with **any** page replacement policy

Any prefetching technique can be used

With low engineering effort, any DBMS

bufferpool can benefit from this approach

Goal: Developing Hardware-Aware Data Systems

SSD-Aware Systems [IEEE ICDE '24]

Rise of Large Graphs

Graphs are everywhere!

Social Network

Physical Science

Transportation Network

Machine Learning

Real-world graphs often have more than a billion nodes

Processing Large Graphs

Distributed Systems

Single-node in-memory systems Single-node out-of-core systems

Out of Core Systems

Data partitioning

Improve memory & disk locality

Reduce random I/O

Designed for HDDs

Our Goal

- Optimize for storage-based workload
- Focus on **traversal** operations
- Utilize efficient SSD concurrency by parallelizing independent I/Os
- Maintain core algorithm properties

Concurrency-Aware Graph (V, E) Manager

CAVE

CAVE Architecture

Concurrent Graph Algorithms

- Parallel Breadth-First Search
- Parallel pseudo Depth-First Search
- Parallel Weakly Connected Components
- Parallel PageRank
- Parallel Random Walk

Parallel BFS

processed nodes

processing in progress

yet to be processed

Each iteration involves

- 1. processing a list of vertices aka the frontier
- 2. accessing the neighbors of each vertex
- 3. updating vertex values
- determining which vertices should be visited in the next iteration

Parallel BFS

processed nodes

processing in progress

yet to be processed

Each iteration involves

- 1. processing a list of vertices aka the frontier
- 2. accessing the neighbors of each vertex
- 3. updating vertex values
- determining which vertices should be visited in the next iteration

Experimental Evaluation

Dataset	Description	#Nodes	#Edges	Diameter	Size
FS	Friendster Social Network	65M	1.8B	32	32 GB
TW	Twitter Social Network	53M	2B	18	28 GB
RN	RoadNet Network of PA	1M	1.5M	786	47 MB
LJ	LiveJournal Social Network	5M	69M	16	1 GB
YT	YouTube Social Network	1.1M	3M	20	39 MB
SD	Synthetic data	50M	1.25B	6	20 GB

6 datasets

3 devices Optane SSD ($k_r = 6$) PCIe SSD ($k_r = 80$) SATA SSD ($k_r = 25$)

Approaches Used:

GraphChi, GridGraph, Mosaic, CAVE, CAVE_blocked

CAVE's Preprocessing is Efficient

System	Preprocessing Time (s)		Data File Size (GB)		
System	Dataset: FS	Dataset: TW	Dataset: FS	Dataset: TW	
GraphChi	819	784	8.3	8.4	
GridGraph	55	86	84	75	
Mosaic	469	370	27	17	
CAVE	52	49	14	13	

CAVE Performs Efficient PBFS

CAVE Performs Efficient PBFS

CAVE Performs Efficient PBFS

Both CAVE implementations outperforms GridGraph, Mosaic and GraphChi

CAVE Utilizes Concurrent I/O

Dataset: FS

SATA SSD ($k_r = 25$) PCIe SSD ($k_r = 80$) Optane SSD ($k_r = 6$)

Device gets saturated at *optimal concurrency*

Goal: Developing Hardware-Aware Data Systems

- How can α/k help the agent?
- How to handle **deduplication**?
- How to ensure data consistency?

- How to handle **deduplication**?
- How to ensure **data consistency**?

- How can ML models contribute to query optimization? - Learned indexes & Learned database tuning - ML techniques to optimize energy consumption in data centers Machine Learning for Ξ **FPGA** SSD1 Data Systems - How to handle updates? SSD2 Effortless Data Migration in - How to do **compression**? Locality via **Hierarchical Storage using** - Impact on DB architecture SSD3 **Relational Fabric Reinforcement Learning** - Leverage computational SSDs to build 'Relational Storage'
- How can α/k help the agent?
- How to handle **deduplication**?
- How to ensure **data consistency**?

- How can ML models contribute to query optimization? - Learned indexes & Learned database tuning - ML techniques to optimize energy consumption in data centers Machine Learning for Ξ **FPGA** SSD1 Data Systems - How to handle **updates**? SSD2 Effortless Data Migration in - How to do **compression**? Locality via **Hierarchical Storage using** - Impact on DB architecture SSD3 **Relational Fabric Reinforcement Learning** - Leverage computational SSDs to build 'Relational Storage' - How can α/k help the agent? **CXL-Optimized** - How to handle **deduplication**? Disaggregated - How to ensure **data consistency**? **Database System**
 - Can we ensure scalable transactions & reliability in disaggregated databases?
 - How to manage storage and memory efficiently via **automatic resource provisioning**?
 - How to ensure **compatibility** across generations?

Thank You!

Tarikul Islam Papon

PhD Researcher

cs-people.bu.edu/papon/