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Hardware Trends

Tape Floppy CD HDD SSD

Evolution of Storage Technology



electronic device

fast random access

concurrent I/Os

write latency > read latency

Solid State Drives



Symmetric cost for Read & Write

One I/O at a time

Read/Write Asymmetry (𝛼)

Concurrency (k)

HDD SSD
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Parallelism at different levels (channel, chip, die, plane block, page)
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Writes in SSD
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What if there is no space?

Garbage Collection!

Read/Write Asymmetry in SSD



Device 
PCIe SSD - P4510 (1TB)

Quantifying Asymmetry & Concurrency
DaMoN@SIGMOD 2021
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Device 
PCIe SSD - P4510 (1TB)

Quantifying Asymmetry & Concurrency
DaMoN@SIGMOD 2021

read concurrency 
(kr) = 80



33x

Device 
PCIe SSD - P4510 (1TB)

Quantifying Asymmetry & Concurrency
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Yet, systems are not 

always tailored for 𝛼/k

For 4K random read,

Asymmetry: 2.8

Concurrency: 80

Quantifying Asymmetry & Concurrency
DaMoN@SIGMOD 2021



know thy device exploit  kr  and  kw 
(with care)

≠
treat read and 

write differently
asymmetry (𝛼) 

controls performance

Guidelines for System Design in SSDs

read 
concurrency write 

concurrency

DaMoN@SIGMOD 2021
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Bufferpool is Tightly Connected to Storage

Free frame

Disk page

Main Memory

Bufferpool

Dirty page

IEEE ICDE 2023

Application

DB



Free frame

Disk page

Bufferpool
Page request

Dirty page

Bufferpool Manager
IEEE ICDE 2023

Application

DB
Main Memory



Free frame

Disk page

Bufferpool

If page is not in BP, 
fetch from disk

Dirty page

Bufferpool Manager
IEEE ICDE 2023

Application

DB
Main Memory



Disk page

Bufferpool

Dirty page

Bufferpool Manager
IEEE ICDE 2023

Application

DB



If BP is full, one page is selected for eviction 
based on page replacement policy

Disk page

Bufferpool

Dirty page

Traditional Bufferpool Manager
IEEE ICDE 2023

Application

DB

Page request



Disk page

Bufferpool

Dirty page

Disk page

Dirty page

Traditional Bufferpool Manager
IEEE ICDE 2023

Application

DB

If the page is dirty, it is written back to disk



Disk page

Bufferpool

Dirty page

Disk page

Dirty page

Page request comes

Traditional Bufferpool Manager
IEEE ICDE 2023

Requested page is fetched in its place
(exchanging one write for a read)

Application

DB



§ With write asymmetry, exchanging 

one write for one read is NOT ideal.

§ Without exploiting concurrency, 

device remains vastly underutilized.

IEEE ICDE 2023

The Challenges



Replacement Algorithm
How many pages to write?
- 1 page
- n pages (exploit kw)

Write-back Policy

Which pages to write-back? 

When & how to write-back?

- dirty pages following
 replacement policy

- background &
  concurrently

Eviction Policy
How many page(s) to evict?

- 1 page

- n pages

Which page(s) to evict?

- follow page 

replacement policy

40

Bufferpool Manager

When to prefetch?
- Prefetch on miss

Which pages?
- Sequential
- History-based

How many pages?
- 1 or x pages

How to prefetch?
- Sequentially

Read-ahead Policy

Optional

- LRU
- NRU
- Clock
- Second Chance

- FIFO
- 2Q
- ARC

- CFLRU
- LRU-WSR
- CCF-LRU

- CFLRU/C
- CFLRU/E
- DL-CFLRU/E

Eviction Policy

Which page to evict/write?

Flash-
friendly 
policies

When to prefetch?
- Prefetch on miss

Which pages?
- Sequential
- History-based

How many pages?
- 1 or x pages

How to prefetch?
- Concurrently

Read-ahead Policy

IEEE ICDE 2023
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Bufferpool Manager

When to prefetch?
- Prefetch on miss

Which pages?
- Sequential
- History-based

How many pages?
- 1 or x pages

How to prefetch?
- Concurrently

Read-ahead Policy

How many pages to write?
- 1 page
- n pages (exploit kw)

Write-back Policy

Which pages to write-back? 

When & how to write-back?

- dirty pages following
replacement policy

- background &
concurrently

Optional

Eviction Policy

How many page(s) to evict?
- 1 page
- n pages

Which page(s) to evict?
- follow page 
replacement policy

Flash-
friendly
policies

- LRU
- NRU
- Clock
- Second Chance

- FIFO
- 2Q
- ARC

- CFLRU
- LRU-WSR
- CCF-LRU

- CFLRU/C
- CFLRU/E
- DL-CFLRU/E

Replacement Algorithm

IEEE ICDE 2023



Asymmetry/Concurrency-Aware 
(ACE) Bufferpool Manager

IEEE ICDE 2023



ACE Bufferpool Manager

Use device’s properties

IEEE ICDE 2023



ACE Bufferpool Manager

ü  Can be integrated with any 

replacement algorithm

ü  Any prefetching technique 

can be used

IEEE ICDE 2023

ACE Bufferpool

DB

write back kw 
dirty pages

⍺, kw, kr

prefetch 
multiple pages 

evict multiple pages 



LRU

Clock
Sweep

FIFO
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Second 
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2Q
ARC

SSD Controller 
Optimization

CFLRU

LRU-WSR

CFLRU/C
CFLRU/E

DL-CFLRU/E

CCF-LRU
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Address 𝛼 via 
write-amortization

Better device utilization

Low deployment cost

High performance

Ease of integration

ACE

IEEE ICDE 2023

ACE Bufferpool Manager



Let’s assume: kw = 3, LRU is the replacement 
policy & red indicates dirty page

Write request of page 8 comes 

lrumru

B 6 2 3 5 7 4 9

An Example
IEEE ICDE 2023



475326

Candidate for eviction

Since candidate page is 
clean, we simply evict 9

After eviction:

Write request of page 1 comes 

B 6 2 3 5 7 4 9

write page 8

8B

An Example (kw = 3)
IEEE ICDE 2023



LRU

After eviction:

Candidate

753268B 8 6 2 3 5 7 4

1B

write page 1
An Example (kw = 3)

IEEE ICDE 2023



LRU

After eviction:

Candidate

753268B 8 6 2 3 5 7 4

1 8 6 2 3 5 7B

LRU+ACE(w/o PF)

7532688 6 2 3 5 7 4

write page 1
An Example (kw = 3)

IEEE ICDE 2023
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LRU

After eviction:

Candidate

753268B 8 6 2 3 5 7 4

1 8 6 2 3 5 7B

LRU+ACE(w/o PF)

7532688 6 2 3 5 7 42 5

4,5,2 concurrently written

write page 1

4 evicted

An Example (kw = 3)
IEEE ICDE 2023



LRU

After eviction:

753268B 8 6 2 3 5 7 4

1 8 6 2 3 5 7B

LRU+ACE(w/o PF)

After eviction:

7532688 6 2 3 5 7

1

write page 1
An Example (kw = 3)

IEEE ICDE 2023

more clean pages



LRU

After eviction:

753268B 8 6 2 3 5 7 4

1 8 6 2 3 5 7B

LRU+ACE(w/o PF)

After eviction:

7532688 6 2 3 5 7 4

1 8 6 2 3 5 7

LRU+ACE(w/PF)
Candidate

7532688 6 2 3 5 7 4

write page 1
An Example (kw = 3)

IEEE ICDE 2023
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LRU

After eviction:

753268B 8 6 2 3 5 7 4

1 8 6 2 3 5 7B

LRU+ACE(w/o PF)

After eviction:

7532688 6 2 3 5 7 4

1 8 6 2 3 5 7

LRU+ACE(w/PF)

7532688 6 2 3 5

4,5,2 concurrently written

write page 1
An Example (kw = 3, ne = 2)

452

eviction window

4,7 evicted

IEEE ICDE 2023



LRU

After eviction:

753268B 8 6 2 3 5 7 4

1 8 6 2 3 5 7B

LRU+ACE(w/o PF)

After eviction:

7532688 6 2 3 5 7 4

1 8 6 2 3 5 7

LRU+ACE(w/PF)

73688 6 3

1 9

After eviction:

prefetched

write page 1

2 552

An Example (kw = 3, ne = 2)
IEEE ICDE 2023



Experimental Evaluation

Workload:

synthesized traces

TPC-C benchmark

11.5

Clock Sweep
LRU

CFLRU
LRU-WSR

vs their ACE counterparts

IEEE ICDE 2023



ACE Improves Runtime

ACE improves runtime by 22-26%

Negligible increase in buffer miss (<0.009%)

Device: PCIe SSD

⍺ = 2.8, kw = 8
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26% 
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Benefit comes at no cost

Mixed Skewed Trace
(r/w: 50/50, locality 90/10)

IEEE ICDE 2023



Higher Gain for Write-Heavy Workload
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Write-intensive workloads have 

higher benefit (up to 32%)
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Device: PCIe SSD

⍺ = 2.8, kw = 8

Mixed Skewed Trace
(r/w: 50/50, locality 90/10)

IEEE ICDE 2023



Impact of R/W Ratio & Asymmetry
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more writes, more speedup

higher asymmetry, higher speedup

good benefit even for low asymmetry

⍺ = 2.8, kw = 8
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IEEE ICDE 2023



Impact of #Concurrent I/Os
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Highest speedup when 
optimal concurrency is used

kw = 8

Device: PCIe SSD

⍺ = 2.8, kw = 8

Mixed Skewed Trace
(r/w: 50/50, locality 90/10)

IEEE ICDE 2023



Experimental Evaluation (TPC-C)
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ACE Bufferpool

DB

ACE works with any page replacement policy

Any prefetching technique can be used

With low engineering effort, any DBMS 

bufferpool can benefit from this approach



Goal: Developing Hardware-Aware Data Systems

Tailor Data Systems 
for SSD Asymmetry 

& Concurrency

Need	for	an	I/O	Model	[CIDR ’21]
PIO	Model	[DaMoN@SIGMOD ’21]
ACE	Bufferpool	[IEEE ICDE ’23]
CAVE	Graph	Engine	[SIGMOD ’24]
SSD-Aware	Systems	[IEEE ICDE ’24]



Rise of Large Graphs
Graphs are everywhere!

Social Network Transportation 
NetworkPhysical Science Machine Learning

Real-world graphs often have more than a billion nodes



Processing Large Graphs

Distributed Systems Single-node
in-memory systems

Single-node
out-of-core systems



Out of Core Systems

Designed for HDDs

Data partitioning
Improve memory 

& disk locality Reduce random I/O



Our Goal

• Optimize for storage-based workload

• Focus on traversal operations

• Utilize efficient SSD concurrency by parallelizing independent I/Os

• Maintain core algorithm properties

Concurrency-Aware Graph (V, E) Manager

CAVE



CAVE Architecture
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Concurrent Graph Algorithms

• Parallel Breadth-First Search

• Parallel pseudo Depth-First Search

• Parallel Weakly Connected Components

• Parallel PageRank

• Parallel Random Walk



Parallel BFS

A

D

B

C

E

F H

G

processed	nodes processing	in	progress yet	to	be	processed

Each iteration involves 

1. processing a list of vertices aka the frontier

2. accessing the neighbors of each vertex

3. updating vertex values

4. determining which vertices should be 

visited in the next iteration



Parallel BFS
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E

F H

G
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4

processed	nodes processing	in	progress yet	to	be	processed

Each iteration involves 

1. processing a list of vertices aka the frontier

2. accessing the neighbors of each vertex

3. updating vertex values

4. determining which vertices should be 

visited in the next iteration

frontier = {B, D, E, F}



Parallel pseudo DFS
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Parallel pseudo DFS
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Parallel pseudo DFS
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Parallel pseudo DFS
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Experimental Evaluation
6 datasets

3 devices
Optane SSD (kr = 6)
PCIe SSD (kr = 80)
SATA SSD (kr = 25)

Approaches Used: 

GraphChi, GridGraph, Mosaic, CAVE, CAVE_blocked



CAVE’s Preprocessing is Efficient



CAVE Performs Efficient PBFS

Dataset: FS

(0.4%) (50%)
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CAVE Performs Efficient PBFS

Dataset: FS

Both CAVE implementations outperforms GridGraph, Mosaic and GraphChi

CAVE’s Speedup

(0.4%) (50%)

7x 5x
3.3x



CAVE Utilizes Concurrent I/O
Dataset: FS

Device gets saturated at optimal concurrency

PDFS SATA SSD (kr = 25) 
PCIe SSD (kr = 80)
Optane SSD (kr = 6)



Goal: Developing Hardware-Aware Data Systems

Tailor Data Systems 
for SSD Asymmetry 

& Concurrency

Need	for	an	I/O	Model	[CIDR ’21]
PIO	Model	[DaMoN@SIGMOD ’21]
ACE	Bufferpool	[IEEE ICDE ’23]
CAVE	Graph	Engine	[SIGMOD ’24]
SSD-Aware	Systems	[IEEE ICDE ’24]

Minimize Data 
Movement through 
Memory Hierarchy

Learned CPU Embedding Silhouette	[mlforsys@NeuRIPS ’23]

Timely Deletion in 
LSM Storage Layout

LETHE	[SIGMOD ’20 + ACM TODS ’23]
Delete-Compliance	[IEEE DEBULL ’22]

Relational	Memory	[EDBT ’23 + 
Demo: VLDB ’23]
Relational	Fabric	[IEEE ICDE ’23]
RelFeb	ext.	[Under Revision@TKDE]

vBest Demo



Future Work

SSD1

SSD2

SSD3

Data Migration in 
Hierarchical Storage using 
Reinforcement Learning

- How can 𝛼/k help the agent? 
- How to handle deduplication?

- How to ensure data consistency?



Future Work

SSD1

SSD2

SSD3

Data Migration in 
Hierarchical Storage using 
Reinforcement Learning

- How can 𝛼/k help the agent? 
- How to handle deduplication?

- How to ensure data consistency?

Effortless 
Locality via 

Relational Fabric

- How to handle updates?
- How to do compression?

- Leverage computational SSDs 
to build ‘Relational Storage’

- Impact on DB architecture

FPGA



Future Work

SSD1

SSD2

SSD3

Data Migration in 
Hierarchical Storage using 
Reinforcement Learning

- How can 𝛼/k help the agent? 
- How to handle deduplication?

- How to ensure data consistency?

Effortless 
Locality via 

Relational Fabric

- How to handle updates?
- How to do compression?

- Leverage computational SSDs 
to build ‘Relational Storage’

- Impact on DB architecture

FPGAMachine Learning for 
Data Systems

- ML techniques to optimize energy consumption in data centers
- Learned indexes & Learned database tuning
- How can ML models contribute to query optimization?



Future Work

SSD1

SSD2

SSD3

Data Migration in 
Hierarchical Storage using 
Reinforcement Learning

- How can 𝛼/k help the agent? 
- How to handle deduplication?

- How to ensure data consistency?

Effortless 
Locality via 

Relational Fabric

- How to handle updates?
- How to do compression?

- Leverage computational SSDs 
to build ‘Relational Storage’

- Impact on DB architecture

FPGA

CXL-Optimized 
Disaggregated 

Database System

- How to ensure compatibility across generations? 
- How to manage storage and memory efficiently via automatic resource provisioning?
- Can we ensure scalable transactions & reliability in disaggregated databases?

Machine Learning for 
Data Systems

- ML techniques to optimize energy consumption in data centers
- Learned indexes & Learned database tuning
- How can ML models contribute to query optimization?
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Tarikul Islam Papon
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