
CS 561: Data Systems Architectures

Class 16

Asymmetry and Concurrency Aware
Storage Management

Manos Athanassoulis

https://bu-disc.github.io/CS561/

https://bu-disc.github.io/CS561/

Data Systems

Memory Hierarchy

larger

faster

Data Systems & Hardware

Hardware Trends

Tape Floppy CD HDD SSD

Evolution of Storage Technology

electronic device

fast random access

concurrent I/Os

write latency > read latency

Solid State Drives

Symmetric cost for Read & Write

One I/O at a time

Read/Write Asymmetry (𝛼)

Concurrency (k)

HDD SSD

Goal: Developing Hardware-Aware Data Systems

Tailor Data Systems

for SSD Asymmetry

& Concurrency

Need for an I/O Model [CIDR ’21]

PIO Model [DaMoN@SIGMOD ’21]

ACE Bufferpool [IEEE ICDE ’23]

CAVE Graph Engine [SIGMOD ’24]

SSD-Aware Systems [IEEE ICDE ’24]

Goal: Developing Hardware-Aware Data Systems

Tailor Data Systems

for SSD Asymmetry

& Concurrency

Need for an I/O Model [CIDR ’21]

PIO Model [DaMoN@SIGMOD ’21]

ACE Bufferpool [IEEE ICDE ’23]

CAVE Graph Engine [SIGMOD ’24]

SSD-Aware Systems [IEEE ICDE ’24]

Symmetric cost for Read & Write

One I/O at a time

Read/Write Asymmetry (𝛼)

Concurrency (k)

HDD SSD

Parallelism at different levels (channel, chip, die, plane block, page)

SSD Concurrency

Block 0

Free Free Free

Free Free Free

Free Free Free

Free Free Free

Free Free Free

Free Free Free

Free Free Free

Free Free Free

Block 1

Writes in SSD

Block 0

Free Free Free

Free Free Free

Free Free Free

Free Free Free

A B C

D E F

G H Free

Free Free Free

Block 1

Writing in a free page isn’t costly!

Writes in SSD

Block 0

Free Free Free

Free Free Free

Free Free Free

Free Free Free

A B C

D E F

G H Free

Free Free Free

Block 1

Update

A, B, C, D

Writes in SSD

Block 0

Free Free Free

Free Free Free

Free Free Free

Free Free Free

B C

D E F

G H Free

Free Free Free

Block 1

Update

A, B, C, D

A

Writes in SSD

Block 0

Free Free Free

Free Free Free

Free Free Free

Free Free Free

B C

D E F

G H

Free Free Free

Block 1

Update

A, B, C, D

A

A’

Writes in SSD

Block 0

Free Free Free

Free Free Free

Free Free Free

Free Free Free

C

D E F

G H

Free Free Free

Block 1

Update

A, B, C, D

A

A’

B

Writes in SSD

Block 0

Free Free Free

Free Free Free

Free Free Free

Free Free Free

C

D E F

G H

Free Free

Block 1

Update

A, B, C, D

A

A’

B

B’

Writes in SSD

Block 0

Free Free Free

Free Free Free

Free Free Free

Free Free Free

E F

G H A’

B’ C’ D’

Block 1

Not all updates are costly!

Update

A, B, C, D

A B C

D

Writes in SSD

…Block 0

E F

G H A’

B’ C’ D’

A B C

D

M’ N’ O’

P’ Q’ R’

Block N

M N O

P Q R

What if there is no space?

Writes in SSD

…Block 0

E F

G H A’

B’ C’ D’

A B C

D

M’ N’ O’

P’ Q’ R’

Block N

M N O

P Q R

What if there is no space?

Garbage Collection!

Writes in SSD

…

What if there is no space?

Garbage Collection!

Block 0

Erased Erased

Erased Erased Erased

Erased Erased Erased

Erased Erased Erased

Erased

Erased Erased Erased

Erased Erased Erased

Block N

Erased Erased Erased

Erased Erased Erased

Valid pages: E F G H A’ B’ C’ D’ M’ N’ O’ P’ Q’ R’

Writes in SSD

Block 0

Q’ R’ Free

Free Free Free

Free Free Free

Free Free Free

E F G

H A’ B’

C’ D’ M’

N’ O’ P’

Block N…

What if there is no space?

Garbage Collection!

Writes in SSD

Block 0

Q’ R’ Free

Free Free Free

Free Free Free

Free Free Free

E F G

H A’ B’

C’ D’ M’

N’ O’ P’

Block N…

Higher average update cost (due to GC) → Read/Write asymmetry

What if there is no space?

Garbage Collection!

Read/Write Asymmetry in SSD

Device
PCIe SSD - P4510 (1TB)

Quantifying Asymmetry & Concurrency

DaMoN@SIGMOD 2021

Device
PCIe SSD - P4510 (1TB)

Quantifying Asymmetry & Concurrency

DaMoN@SIGMOD 2021

Device
PCIe SSD - P4510 (1TB)

Quantifying Asymmetry & Concurrency

DaMoN@SIGMOD 2021

Device
PCIe SSD - P4510 (1TB)

Quantifying Asymmetry & Concurrency

DaMoN@SIGMOD 2021

read concurrency
(kr) = 80

33x

Device
PCIe SSD - P4510 (1TB)

Quantifying Asymmetry & Concurrency

DaMoN@SIGMOD 2021

Device
PCIe SSD - P4510 (1TB)

Yet, systems are not

always tailored for 𝛼/k

For 4K random read,

Asymmetry: 2.8

Concurrency: 80

Quantifying Asymmetry & Concurrency

DaMoN@SIGMOD 2021

Impact of the File System

29

Device
PCIe SSD - P4510 (1TB)

32001900

30

Impact of the File System
Device
PCIe SSD - P4510 (1TB)

32001900

31

Impact of the File System

FS affects 𝛼 and k.

Much stable &

increased bandwidth

w/o the file system.

Device
PCIe SSD - P4510 (1TB)

Empirical Asymmetry and Concurrency

32

4KB 8KB

Devices 𝛼 kr kw 𝛼 kr kw

Optane SSD 1.1 6 5 1.0 4 4

PCIe SSD (with FS) 2.8 80 8 1.9 40 7

PCIe SSD (w/o FS) 3.0 16 6 3.0 15 4

SATA SSD 1.5 25 9 1.3 21 5

know thy device exploit kr and kw
(with care)

≠
treat read and

write differently
asymmetry (𝛼)

controls performance

Guidelines for System Design in SSDs

read
concurrency write

concurrency

DaMoN@SIGMOD 2021

Goal: Developing Hardware-Aware Data Systems

Tailor Data Systems

for SSD Asymmetry

& Concurrency

Need for an I/O Model [CIDR ’21]

PIO Model [DaMoN@SIGMOD ’21]

ACE Bufferpool [IEEE ICDE ’23]

CAVE Graph Engine [SIGMOD ’24]

SSD-Aware Systems [IEEE ICDE ’24]

Bufferpool is Tightly Connected to Storage

Free frame

Disk page

Main Memory

Bufferpool

Dirty page

IEEE ICDE 2023

Application

DB

Free frame

Disk page

Bufferpool

Page request

Dirty page

Bufferpool Manager

IEEE ICDE 2023

Application

DB

Main Memory

Free frame

Disk page

Bufferpool

If page is not in BP,
fetch from disk

Dirty page

Bufferpool Manager

IEEE ICDE 2023

Application

DB

Main Memory

Disk page

Bufferpool

Dirty page

Bufferpool Manager

IEEE ICDE 2023

Application

DB

If BP is full, one page is selected for eviction
based on page replacement policy

Disk page

Bufferpool

Dirty page

Traditional Bufferpool Manager

IEEE ICDE 2023

Application

DB

Page request

Disk page

Bufferpool

Dirty page

Disk page

Dirty page

Traditional Bufferpool Manager

IEEE ICDE 2023

Application

DB

If the page is dirty, it is written back to disk

Disk page

Bufferpool

Dirty page

Disk page

Dirty page

Page request comes

Traditional Bufferpool Manager

IEEE ICDE 2023

Requested page is fetched in its place
(exchanging one write for a read)

Application

DB

▪ With write asymmetry, exchanging

one write for one read is NOT ideal.

▪ Without exploiting concurrency,

device remains vastly underutilized.

IEEE ICDE 2023

The Challenges

Replacement Algorithm
How many pages to write?
- 1 page

- n pages (exploit kw)

Write-back Policy

Which pages to write-back?

When & how to write-back?

- dirty pages following

 replacement policy

- background &

 concurrently

Eviction Policy
How many page(s) to

evict?

- 1 page

- n pages

Which page(s) to evict?

- follow page

replacement policy

Bufferpool Manager

When to prefetch?
- Prefetch on miss

Which pages?
- Sequential

- History-based

How many pages?
- 1 or x pages

How to prefetch?
- Sequentially

Read-ahead Policy

Optiona
l

- LRU

- NRU

- Clock

- Second Chance

- FIFO

- 2Q

- ARC

- CFLRU

- LRU-WSR

- CCF-LRU

- CFLRU/C

- CFLRU/E

- DL-CFLRU/E

Eviction Policy

Which page to
evict/write?

Flash-
friendly
policies

When to prefetch?
- Prefetch on miss

Which pages?
- Sequential

- History-based

How many pages?
- 1 or x pages

How to prefetch?
- Concurrently

Read-ahead Policy

IEEE ICDE 2023

Asymmetry/Concurrency-Aware
(ACE) Bufferpool Manager

IEEE ICDE 2023

ACE Bufferpool Manager

Use device’s properties

IEEE ICDE 2023

ACE Bufferpool Manager

✓ Can be integrated with any

replacement algorithm

✓ Any prefetching technique

can be used

IEEE ICDE 2023

ACE Bufferpool

DB

write back kw
dirty pages

⍺, kw, kr

prefetch
multiple pages

evict multiple pages

LRU

Clock
Sweep

FIFO

NRU

Second
Chance

2Q
ARC

SSD Controller
Optimization

CFLRU

LRU-WSR

CFLRU/C
CFLRU/E

DL-CFLRU/E

CCF-LRU

Addressing 𝛼

Do not address
Asymmetry (𝛼)

D
o

 n
o

t
co

n
si

d
er

C

o
n

cu
rr

en
cy

Address 𝛼 via
write-

avoidance

C
o

n
si

d
e

r
C

o
n

cu
rr

en
cy

E
x

p
lo

it
in

g
k

Address 𝛼 via
write-

amortization

Better device utilization

Low deployment cost

High performance

Ease of integration

ACE

IEEE ICDE 2023

ACE Bufferpool Manager

Let’s assume: kw = 3, LRU is the replacement
policy & red indicates dirty page

Write request of page 8 comes

lrumru

B 6 2 3 5 7 4 9

An Example
IEEE ICDE 2023

475326

Candidate for eviction

Since candidate page is
clean, we simply evict 9

After eviction:

Write request of page 1 comes

B 6 2 3 5 7 4 9

write page 8

8B

An Example (kw = 3)
IEEE ICDE 2023

LRU

After eviction:

Candidate

753268B 8 6 2 3 5 7 4

1B

write page 1
An Example (kw = 3)

IEEE ICDE 2023

LRU

After eviction:

Candidate

753268B 8 6 2 3 5 7 4

1 8 6 2 3 5 7B

LRU+ACE(w/o PF)

7532688 6 2 3 5 7 4

write page 1
An Example (kw = 3)

IEEE ICDE 2023

4

LRU

After eviction:

Candidate

753268B 8 6 2 3 5 7 4

1 8 6 2 3 5 7B

LRU+ACE(w/o PF)

7532688 6 2 3 5 7 42 5

4,5,2 concurrently written

write page 1

4 evicted

An Example (kw = 3)
IEEE ICDE 2023

LRU

After eviction:

753268B 8 6 2 3 5 7 4

1 8 6 2 3 5 7B

LRU+ACE(w/o PF)

After eviction:

7532688 6 2 3 5 7

1

write page 1
An Example (kw = 3)

IEEE ICDE 2023

more clean pages

LRU

After eviction:

753268B 8 6 2 3 5 7 4

1 8 6 2 3 5 7B

LRU+ACE(w/o PF)

After eviction:

7532688 6 2 3 5 7 4

1 8 6 2 3 5 7

LRU+ACE(w/PF)
Candidate

7532688 6 2 3 5 7 4

write page 1
An Example (kw = 3)

IEEE ICDE 2023

4

LRU

After eviction:

753268B 8 6 2 3 5 7 4

1 8 6 2 3 5 7B

LRU+ACE(w/o PF)

After eviction:

7532688 6 2 3 5 7 4

1 8 6 2 3 5 7

LRU+ACE(w/PF)

7532688 6 2 3 5

4,5,2 concurrently written

write page 1
An Example (kw = 3, ne = 2)

452

eviction window

4,7 evicted

IEEE ICDE 2023

LRU

After eviction:

753268B 8 6 2 3 5 7 4

1 8 6 2 3 5 7B

LRU+ACE(w/o PF)

After eviction:

7532688 6 2 3 5 7 4

1 8 6 2 3 5 7

LRU+ACE(w/PF)

73688 6 3

1 9

After eviction:

prefetched

write page 1

2 552

An Example (kw = 3, ne = 2)
IEEE ICDE 2023

Experimental Evaluation

Workload:

synthesized traces

TPC-C benchmark

11.5

Clock Sweep
LRU

CFLRU
LRU-WSR

vs their ACE counterparts

IEEE ICDE 2023

ACE Improves Runtime

ACE improves runtime by 22-26%

Negligible increase in buffer miss (<0.009%)

Device: PCIe SSD

⍺ = 2.8, kw = 8

26%
22%

23% 23%

Benefit comes at no cost

Mixed Skewed Trace
(r/w: 50/50, locality

90/10)

IEEE ICDE 2023

Higher Gain for Write-Heavy Workload

Write-intensive workloads have

higher benefit (up to 32%)

32%
30%

29%
29%

Device: PCIe SSD

⍺ = 2.8, kw = 8

Mixed Skewed Trace
(r/w: 50/50, locality

90/10)

IEEE ICDE 2023

Impact of R/W Ratio & Asymmetry

more writes, more speedup

higher asymmetry, higher speedup

good benefit even for low asymmetry

IEEE ICDE 2023

Impact of #Concurrent I/Os

Highest speedup when
optimal concurrency is used

kw = 8

Device: PCIe SSD

⍺ = 2.8, kw = 8

Mixed Skewed Trace
(r/w: 50/50, locality

90/10)

IEEE ICDE 2023

62

Experimental Evaluation (TPC-C)

63

Experimental Evaluation (TPC-C)

TPC-C consists of 5 transactions

 NewOrder (45%) R/W Mix

 Payment (43%) R/W Mix

 OrderStatus (4%) R-only

 StockLevel (4%) R-only

 Delivery (4%) W-heavy

Experimental Evaluation (TPC-C)

1.3x

1.5x

ACE Achieves 1.3x for mixed TPC-C

IEEE ICDE 2023

ACE Bufferpool

DB

✅ ACE works with any page replacement policy

✅ Any prefetching technique can be used

✅With low engineering effort, any DBMS

bufferpool can benefit from this approach

Goal: Developing Hardware-Aware Data Systems

Tailor Data Systems

for SSD Asymmetry

& Concurrency

Need for an I/O Model [CIDR ’21]

PIO Model [DaMoN@SIGMOD ’21]

ACE Bufferpool [IEEE ICDE ’23]

CAVE Graph Engine [SIGMOD ’24]

SSD-Aware Systems [IEEE ICDE ’24]

Rise of Large Graphs

Graphs are everywhere!

Social Network
Transportation

Network
Physical Science Machine Learning

Real-world graphs often have more than a billion nodes

Processing Large Graphs

Distributed Systems
Single-node

in-memory systems
Single-node

out-of-core systems

Out of Core Systems

Designed for HDDs

Data partitioning
Improve memory

& disk locality
Reduce random I/O

Our Goal

• Optimize for storage-based workload

• Focus on traversal operations

• Utilize efficient SSD concurrency by parallelizing independent I/Os

• Maintain core algorithm properties

Concurrency-Aware Graph (V, E) Manager

CAVE

Concurrent Graph Algorithms

• Parallel Breadth-First Search

• Parallel pseudo Depth-First Search

• Parallel Weakly Connected Components

• Parallel PageRank

• Parallel Random Walk

Parallel BFS

A

D

B

C

E

F H

G

processed nodes processing in progress yet to be processed

Each iteration involves

1. processing a list of vertices aka the frontier

2. accessing the neighbors of each vertex

3. updating vertex values

4. determining which vertices should be

visited in the next iteration

Parallel BFS

A

D

B

C

E

F H

G
2

1

3

4

processed nodes processing in progress yet to be processed

Each iteration involves

1. processing a list of vertices aka the frontier

2. accessing the neighbors of each vertex

3. updating vertex values

4. determining which vertices should be

visited in the next iteration

frontier = {B, D, E, F}

Parallel pseudo DFS

A1

Time
Thread #1

A

B

D

C

E

F

J

G H

I

K

processed nodes processing in progress yet to be processed

Parallel pseudo DFS

A

C

1

2

Thread #1

A

B

D

C

E

F

J

G H

I

K

processed nodes processing in progress yet to be processed

Time

Parallel pseudo DFS

A

C

B D E F

B D E F

1

2

3

Thread #1

#2

A

B

D

C

E

F

J

G H

I

K

processed nodes processing in progress yet to be processed

Time

Parallel pseudo DFS

A

C

B D E F

B D E F

1

2

3

B G H E JI

B G H I
4

Thread #1

#2

#3

K

E J K

A

B

D

C

E

F

J

G H

I

K

Split

Split

processed nodes processing in progress yet to be processed

Time

Experimental Evaluation
6 datasets

3 devices

Optane SSD (kr = 6)
PCIe SSD (kr = 80)
SATA SSD (kr = 25)

Approaches Used:

GraphChi, GridGraph, Mosaic, CAVE, CAVE_blocked

CAVE’s Preprocessing is Efficient

CAVE Performs Efficient PBFS

Dataset: FS

(0.4%) (50%)

CAVE Performs Efficient PBFS

Dataset: FS

(0.4%) (50%)

CAVE Performs Efficient PBFS

Dataset: FS

Both CAVE implementations outperforms GridGraph, Mosaic and GraphChi

CAVE’s Speedup

(0.4%) (50%)

7x 5x
3.3x

CAVE Utilizes Concurrent I/O
Dataset: FS

Device gets saturated at optimal concurrency

PDFS SATA SSD (kr = 25)
PCIe SSD (kr = 80)
Optane SSD (kr = 6)

Make asymmetry and concurrency part of algorithm design

… not simply an engineering optimization

Build algorithms/data structures for storage devices

with asymmetry 𝛼 and concurrency 𝑘

index structures graph traversal algorithms bufferpool management

Conclusion

85

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85

